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Abstract 

Objectives To explore the association between lower extremity muscle features from CTA and peripheral arterial 
disease (PAD) severity using digital subtraction angiography (DSA) as reference standard.

Methods Informed consent was waived for this Institutional Review Board approved retrospective study. PAD 
patients were recruited from July 2016 to September 2020. Two radiologists evaluated PAD severity on DSA and CTA 
using runoff score. The patients were divided into two groups: mild PAD (DSA score ≤ 7) vs. severe PAD (DSA score > 7). 
After segmenting lower extremity muscles from CTA, 95 features were extracted for univariable analysis, logistic 
regression model (LRM) analysis, and sub-dataset analysis (PAD prediction based on only part of the images). AUC 
of CTA score and LRMs for PAD prediction were calculated. Features were analyzed using Student’s t test and chi-
squared test. p < 0.05 was considered statistically significant.

Results A total of 56 patients (69 ± 11 years; 38 men) with 56 lower legs were enrolled in this study. The lower leg 
muscles of mild PAD group (36 patients) showed higher CT values (44.6 vs. 39.5, p < 0.001) with smaller dispersion 
(35.6 vs. 41.0, p < 0.001) than the severe group (20 patients). The AUC of CTA score, LRM-I (constructed with muscle 
features), and LRM-II (constructed with muscle features and CTA score) for PAD severity prediction were 0.81, 0.84, 
and 0.89, respectively. The highest predictive performance was observed in the image subset of the middle and infe-
rior segments of lower extremity (LRM-I, 0.83; LRM-II, 0.90).

Conclusions Lower extremity muscle features are associated with PAD severity and can be used for PAD prediction.

Critical relevance statement Quantitative image features of lower extremity muscles are associated with the degree 
of lower leg arterial stenosis/occlusion and can be a beneficial supplement to the current imaging methods of vascu-
lar stenosis evaluation for the prediction of peripheral arterial disease severity.

Key points 

• Compared with severe PAD, lower leg muscles of mild PAD showed higher CT values (39.5 vs. 44.6, p < 0.001).

• Models developed with muscle CT features had AUC = 0.89 for predicting PAD.
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• PAD severity prediction can be realized through the middle and inferior segment of images (AUC = 0.90).

Keywords Computed tomography angiography, Lower extremity, Muscle feature, Peripheral arterial disease, Vascular 
stenosis

Graphical Abstract

Introduction
Lower extremity peripheral arterial disease (PAD) is an 
atherosclerotic disease of the lower leg arteries [1–3] that 
represents a spectrum from asymptomatic stenosis to 
limb-threatening ischemia [4–6]. More than 200 million 
people worldwide are living with PAD, and its prevalence 
continues to rise [4, 7]. Compared with cardiovascular 
(2.6%) and cerebrovascular (-20.9%) diseases, PAD mor-
tality has increased by 91.9% in the past 20 years [8]. PAD 
also has a high disability rate, causing a huge economic 
burden to society and families [9]. Therefore, it is particu-
larly important to accurately assess the PAD severity and 
implement timely intervention and treatment to prevent 
patients from developing advanced symptoms that even-
tually lead to disability [10].

Currently, digital subtraction angiography (DSA) 
remains the gold standard for determining the degree 
of vascular stenosis [5]. However, it is now performed 
less routinely and is replaced by less-invasive imaging 
techniques, such as computed tomography angiography 

(CTA) [11–14]. With the advantages of high image qual-
ity, short imaging time, and low operator dependency, 
double lower limb CTA is widely used in the preopera-
tive examination and surgical planning of patients who 
need revascularization. However, CTA has limitations 
in the evaluation of vascular stenosis. First, CTA evalua-
tion is a subjective qualitative analysis process, and it may 
be difficult to distinguish severe stenosis from complete 
occlusion of lower leg vessels with the naked eye. Second, 
CTA can hardly display microvessels, so it is sometimes 
difficult for radiologists to evaluate collateral circulation, 
which leads to negative arterial morphology results in 
some symptomatic patients.

Considering the above problems with CTA for vas-
cular evaluation, we tried to find other indicators that 
could be used as a reference for PAD severity. The 
clinical symptoms of PAD are mainly caused by mus-
cle ischemia [15]. Ischemia (including microvascular 
occlusion) induces tissue hypoperfusion, inflamma-
tion, and mitochondrial dysfunction leading to muscle 
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atrophy [16]. Thus, limb ischemia is associated with 
decreased skeletal muscle area, increased muscle fat 
infiltration, and decreased muscle density [17, 18]; 
these changes can be evaluated by image features (such 
as CT value). Increasing evidence suggests that mus-
cle image features can reflect tissue perfusion, assist 
evaluation of lower leg ischemia, and are independent 
predictors of cardiovascular events among people with 
PAD [19–21]. Therefore, we considered the feasibility 
of circumventing the assessment of vascular steno-
sis and analyzing CT features of the lower extremity 
to evaluate muscle ischemia/perfusion and conduct 
a quantitative auxiliary analysis of PAD severity. The 
significance of this study is to provide additional refer-
ence information for clinical practice to help optimize 
the diagnostic and therapeutic path for PAD, particu-
larly in patients with discrepancies between imaging 
signs and clinical symptoms.

In this study, we aimed to investigate the relation-
ship between quantitative lower leg muscle features 
and PAD severity using DSA as the gold standard, and 
established logistic regression models (LRM) for PAD 
severity prediction based on the selected muscle fea-
tures. Area under the receiver operating characteristic 
curve (AUC) of CTA score and LRMs was calculated 
to compare performance.

Methods
Patient selection
The Institutional Review Board of Peking Union Medi-
cal College Hospital approved this retrospective study 
and waived the requirement for informed consent. We 
initially enrolled 362 patients with PAD who visited our 
hospital between July 2016 and September 2020. After 
reviewing the electronic medical records, 306 patients 
who did not meet the criteria were excluded (Fig. 1). Ulti-
mately, 56 patients (56 lower limbs) were included in the 
study. The clinical data, CTA images, and DSA exami-
nation results of the enrolled patients were collected for 
further analysis. Details of patient selection criteria, CT 
protocol, and DSA protocol are set out in Supplementary 
Material.

Image evaluation
The severity and extent of PAD were evaluated using 
the modified Society for Vascular Surgery runoff score 
based on DSA and CTA, respectively [5, 6]. The runoff 
score ranged from 0 to 19, with a higher score indicating 
more severe disease, and was calculated by assessing the 
patency and degree of stenosis/occlusion in the lower leg 
artery segments [22–24]. According to the DSA results, 
the enrolled patients were divided into two groups: mild 
PAD (DSA score ≤ 7) and severe PAD (DSA score > 7) [25, 
26]. The CTA score was used for comparison with the 

Fig. 1 Patient selection flowchart. PAD peripheral arterial disease, CTA computed tomography angiography, DSA digital subtraction angiography
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lower leg muscle features for PAD severity assessment. 
Details of the runoff score can be found in Supplemen-
tary Material.

Both DSA and CTA were analyzed by two vascu-
lar imaging radiologists (10-years’ experience; 3-years’ 
experience), and the consistency of the scores between 
the two readers were assessed using intraclass correla-
tion coefficient (ICC). Ambiguous results were discussed 
together to reach a conclusion by consensus. The radi-
ologists first assessed the CTA runoff score and then the 
DSA runoff score. The washout period between the two 
readings was more than 3 months and each reading ses-
sion was completed within 1 week.

Image segmentation
The lower leg muscle was segmented from the CTA scans 
using a semi-automatic method based on the threshold 
technique (Fig. 2). The segmentation region was from the 
inferior border of the patella to the superior border of 
the talus, and the CT attenuation threshold was between 
-10 Hounsfield unit (HU) and 100 HU [20, 27]. After the 
preliminary separation of muscles and other tissues (fat, 
bone, and artery), the segmentation results were cor-
rected manually to remove the interference structures 
(bone marrow and veins), which cannot be segmented  
correctly by the automatic process only. The above process 
was realized using MATLAB (version R2020b, MathWorks, 
Massachusetts) programming.

Feature extraction
Based on the segmentation results of the lower extrem-
ity muscles, 20 histogram features and 75 texture features 
were extracted from the entire region of interest. Histo-
gram features, such as energy, entropy, coefficient of vari-
ation (CV), and interquartile range (IQR), describe the 
distribution of intensities within the image region [28]. 
Texture features quantify the relationship between voxels 
and their surroundings, for both distance and intensity 
[29]. In total, 95 features were extracted from the inter-
ested region of the CTA slices using Python (version 3.7, 
Python Software Foundation, Delaware) programming.  
Detailed description of these features is provided in 
Supplementary Material.

Furthermore, 2 conventional shape features and 14 
radiomic shape features were also automatic extracted 
from the lower limb muscles for further analysis.

Univariable analysis
The clinical characteristics, histogram features, and tex-
ture features were analyzed in this study. Z-score nor-
malization was used to standardize the original data to 
ensure comparability between histogram and texture 
features. In univariable analysis, continuous variables 
were analyzed using Student’s t test or Mann-Whitney 
U test. Categorical variables were compared using the 
chi-squared test or Fisher’s exact test. p values less than 
0.05 were considered to indicate significant differences. 

Fig. 2 Image segmentation and data division. a The segmentation region was from the inferior border of the patella to the superior border 
of the talus. This part of the lower leg was divided into five equal segments. The computed tomography angiography (CTA) images in each 
segment constituted an independent dataset, and sub-datasets were constructed (1 to 5 in order from knee to ankle). b An original axial CTA image 
of the lower extremity. c The red area represents the segmentation results of the lower leg muscles in image b 
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Statistical analyses were performed using SPSS (version 
26.0, IBM, Armonk). Details of univariable analysis are 
shown in Supplementary Materials.

Logistic regression analysis
Considering the potential multicollinearity of the fea-
tures, least absolute shrinkage and selection operator 
(LASSO) regression based on ten-fold cross-validation 
was used to produce more relevant features [30]. The 
final selected features were used to construct LRM. Coef-
ficients in the logistic regression equation and odds ratios 
(OR) with 95% confidence intervals (CI) of variables were 
recorded. The AUC with 95% CI, cutoff value, classifi-
cation accuracy, sensitivity, and specificity were used to 
assess the performance of LRM.

In this study, we established two LRMs (LRM-I and 
LRM-II) for comparison. The input variables of LRM-I 
were the muscle features selected by LASSO regression. 
The variables of LRM-II included not only the selected 
features, but also the CTA scores. Both LRMs were com-
pared with the predictive performance of the CTA score. 
All the above processes were performed using SPSS. Spe-
cific process of logistic regression analysis is provided in 
Supplementary Materials.

Sub‑dataset analysis
After completing multivariable analysis and establishing 
LRMs, we further conducted a sub-dataset analysis to 
verify whether PAD severity prediction can be realized 
through only a part of the lower leg images. We divided 
the segmentation region of the lower leg, as previously 
defined, into five equal segments. The CT images in each 
segment constituted an independent dataset, and sub-
datasets 1–5 were constructed from the knee to the ankle 
(Fig. 2a). The muscle features (20 histogram features and 
75 texture features) extracted from each sub-dataset were 
inputted into LRM-I and LRM-II, and the PAD predictive 
performance of the five subsets was evaluated.

Results
Patient characteristics
The comparison of this study with our previously pub-
lished work [20, 31] can be found in Table S1. The repro-
ducibility of image evaluation results between the two 
radiologists was excellent for the DSA score (ICC, 0.978; 
95% CI, 0.961–0.988; p < 0.001) and CTA score (ICC, 
0.992; 95% CI, 0.990–0.994; p < 0.001).

A total of 56 patients (38 men; median age, 69  years 
(IQR, 64–78  years)) with 56 lower limbs were included 
in this study. The patients were divided into two groups 
according to the DSA runoff score. The group with a low 
DSA score (≤ 7) included 36 patients (26 men; median 
age, 68  years (IQR, 63–78  years); mean DSA score, 

3.3 ± 2.6; mean CTA score, 6.1 ± 4.0), and the group with 
a high DSA score (> 7) included 20 patients (12 men; 
median age, 70  years [IQR, 64–79  years]; mean DSA 
score, 12.3 ± 3.0; mean CTA score, 11.8 ± 5.1).

The clinical characteristics of the enrolled patients are 
shown in Table  1. The height of the patients was 1.7  m 
(IQR, 1.6–1.7 m), the weight was 68 ± 12 kg, and the BMI 
was 25.2  kg/m2 (IQR, 22.2–27.4  kg/m2). In the study 
cohort, 15 patients (27%, 15/56) had coronary heart dis-
ease, 41 (73%, 41/56) had hypertension, 31 (55%, 31/56) 
had diabetes, 7 (13%, 7/56) had hyperlipidemia, 31 
(55%, 31/56) had a smoking history, and 18 (32%, 18/56) 
had a history of drinking alcohol. As shown in Table  1, 
there was no statistical difference in the clinical features 
between the two groups.

Results of univariable analysis
Table 2 presents the results of the univariate analysis of 
the 20 histogram features extracted from the lower leg 
muscles. Seven features, which measured the intensity 
of CT values from different aspects, showed significant 
differences between the two groups (DSA score ≤ 7 vs. 
DSA score > 7): 10th percentile (24.2 vs. 19.0, p < 0.001), 
90th percentile (64 vs. 61, p = 0.006), energy (6.8 ×  108 vs. 
5.2 ×  108, p = 0.04), mean (44.6 vs. 39.5, p < 0.001), median 
(45 vs. 39, p < 0.001), mode (47 vs. 40, p = 0.001), and root 
mean squared (47.2 vs. 43.1, p < 0.001). All these features 
showed higher values in the mild PAD group.

In addition, there were significant differences between 
the groups in the following seven features that indicate 
the dispersion or deviation of CT values (DSA score ≤ 7 
vs. DSA score > 7): CV (35.6 vs. 41.0, p < 0.001), IQR (20 
vs. 21, p = 0.009), mean absolute deviation (12.4 vs. 12.9, 
p = 0.04), robust mean absolute deviation (8.5 vs. 8.9, 
p = 0.01), skewness (0.0 vs. 0.3, p = 0.002), standard devia-
tion (16.0 vs. 16.7, p = 0.03), and variance (256 vs. 280, 
p = 0.03). These features showed higher dispersion in the 
severe PAD group. For the other six histogram features, 
no differences were observed between the two groups. 
Details of the statistical results are shown in Table 2.

Figure 3 shows the analysis results of the 75 texture fea-
tures. Figure  3a presents the p values of these features. 
The values in the red, yellow, and blue areas represent 
p < 0.01, 0.01 < p < 0.05, and p > 0.05, respectively. Fig-
ure  3b was the feature names corresponding to Fig.  3a. 
As shown in Fig.  3, there were significant differences 
between the two groups in 31 texture features. Results of 
the shape features can be found in Table S2 and Supple-
mentary Materials. Compared to the severe PAD group, 
the mild PAD group had larger muscle volume and aver-
age area (volume  (cm3), 1084 vs. 876, p = 0.01; area  (cm2), 
32 vs. 25, p = 0.04).
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Results of logistic regression analysis
Considering the collinearity between muscle features, we 
further selected 45 features (14 histogram features and 31 
texture features) with p < 0.05 using LASSO regression. 
As shown in Fig.  4, five representative image features 
were finally identified. Figure 4a–c describes the process 
of feature selection, and Fig. 4d shows the feature names 
and weight coefficients of the final selected features.

Table  3 presents the multivariable analysis results 
of the two LRMs (LRM-I and LRM-II). As shown in 
Table  3, histogram_10Percentile (OR, 0.28; 95% CI, 

0.13–0.61; p = 0.001) and gldm_DependenceNonU-
niformityNormalized (OR, 0.51; 95% CI, 0.27–0.98; 
p = 0.04) retained significant difference in LRM-I. CTA 
runoff score (OR, 3.27; 95% CI, 1.42–7.53; p = 0.006), 
histogram_10Percentile (OR, 0.33; 95% CI, 0.14–0.77; 
p = 0.01), and gldm_DependenceNonUniformityNormal-
ized (OR, 0.51; 95% CI, 0.25–1.03; p = 0.06) were eventu-
ally selected in LRM-II.

According to the coefficients of variables and 
the constant in Table  3, we establish logistic 
regression equations of the two models: LRM-I, 

Table 1 Demographics and clinical risk factors of the enrolled patients

Unless otherwise indicated, continuous variables are presented as mean ± standard deviation or median (interquartile range). Categorical variables are presented as 
numbers (percentage)

Abbreviations: DSA Digital subtraction angiography, BMI Body mass index
a Fontaine stage: stage 1 indicates numbness and coldness in the lower limbs; stage 2 indicates intermittent claudication; stage 3 indicates ischemic rest pain; and 
stage 4 indicates necrotic tissue ulceration

Characteristics All
n = 56

DSA score ≤ 7
n = 36

DSA score > 7
n = 20

p value

Age (years) 69 (64, 78) 68 (63, 78) 70 (64, 79) 0.66

Sex … … … 0.35

 Men 38 (68%) 26 (72%) 12 (60%) …

 Women 18 (32%) 10 (28%) 8 (40%) …

Height (m) 1.7 (1.6, 1.7) 1.7 (1.6, 1.7) 1.6 (1.6, 1.7) 0.69

Weight (kg) 68 ± 12 69 ± 10 65 ± 15 0.32

BMI (kg/m2) 25.2 (22.2, 27.4) 25.4 (22.3, 27.0) 24.4 (20.6, 27.5) 0.51

Coronary heart disease … … … 0.82

 Yes 15 (27%) 10 (28%) 5 (25%) …

 No 41 (73%) 26 (72%) 15 (75%) …

Hypertension … … … 0.10

 Yes 41 (73%) 29 (81%) 12 (60%) …

 No 15 (27%) 7 (19%) 8 (40%) …

Diabetes … … … 0.97

 Yes 31 (55%) 20 (56%) 11 (55%) …

 No 25 (45%) 16 (44%) 9 (45%) …

Hyperlipidemia … … … 0.69

 Yes 7 (13%) 4 (11%) 3 (15%) …

 No 49 (87%) 32 (89%) 17 (85%) …

Smoking history … … … 0.09

 Yes 31 (55%) 23 (64%) 8 (40%) …

 No 25 (45%) 13 (36%) 12 (60%) …

Alcohol consumption … … … 0.39

 Yes 18 (32%) 13 (36%) 5 (25%) …

 No 38 (68%) 23 (64%) 15 (75%) …

Fontaine  stagea … … … < 0.001

 Stage 1 0 (0%) 0 (0%) 0 (0%) …

 Stage 2 39 (70%) 31 (86%) 8 (40%) …

 Stage 3 5 (9%) 1 (3%) 4 (20%) …

 Stage 4 8 (14%) 1 (3%) 7 (35%) …

 Unknown 4 (7%) 3 (8%) 1 (5%) …
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Logit(P) = −1.29× Feature1− 0.67× Feature2− 0.85 ; LRM-II, 
Logit(P) = 1.18× CTAscore− 1.11× Feature1− 0.68× Feature2− 0.90  . 
In the two equations, Logit (·) represents logit 
transformation, P represents the output probabil-
ity of the LRMs, Feature1 represents the value of 
histogram_10Percentile, and Feature2 represents the 
value of gldm_DependenceNonUniformityNormalized.

Table  4 shows the performance of the CTA runoff 
score and the LRMs constructed with lower leg muscle 
features. Both LRMs were significant (Omnibus test, 
p < 0.001) with a high goodness of fit (Hosmer–Leme-
show test, p > 0.05). Compared to the CTA score (AUC, 
0.81; sensitivity, 75%; specificity, 75%; accuracy, 75%), 
LRM-I achieved a better predictive performance (AUC, 
0.84; sensitivity, 80%; specificity, 81%; accuracy, 80%). 
LRM-II achieved the best results (AUC, 0.89; sensitiv-
ity, 80%; specificity, 83%; accuracy, 82%).

Figure  5 shows two examples of CT values of lower 
leg muscles with lower (≤ 7) or higher (> 7) DSA runoff 
score. Comparing the two sets of heatmaps, the lower leg 
muscles of patient with mild PAD is shown as red regions 
with higher CT values. And the patient with severe PAD 
is shown as blue regions with lower CT values.

Results of sub‑dataset analysis
To validate whether the severity of PAD can be predicted 
using only partial lower extremity images, we extracted 
muscle features from sub-datasets 1 to 5 and input them 
into the logistic regression equations of LRM-I and LRM-
II to evaluate the predictive performance of each subset. 
The results (Table 5) showed that the AUC of LRM-I on 
sub-datasets 1 to 5 were 0.79, 0.79, 0.82, 0.83, and 0.78, 
respectively. The AUC of LRM-II on the subsets were 
0.86, 0.86, 0.88, 0.90, and 0.86, respectively. The trend 
of the AUC values for the five subsets was consistent for 
both LRMs, and the largest AUC were obtained in sub-
dataset 4 (LRM-I, 0.83; LRM-II, 0.90). Details of the other 
evaluation indices can be found in Table 5.

Discussion
In this study, we collected CTA images and clinical data 
of patients with PAD and divided them into a mild PAD 
group (DSA runoff score ≤ 7) and a severe PAD group 
(DSA runoff score > 7). After segmenting the lower limb 
muscles and extracting CT features, we analyzed the 
relationship between the muscle features and severity of 
PAD. The results showed that there was a significant dif-
ference in the histogram features of the lower extremity 
muscles between the two groups, and the mild group had 
higher CT values (mean, 44.6 HU vs. 39.5 HU, p < 0.001) 
with smaller dispersion (CV, 35.6 vs. 41.0, p < 0.001) than 
the severe group. Since the CT value of blood is usu-
ally higher than that of soft tissues, it is reasonable that 
patients in the mild PAD group had better blood flow and 
muscle perfusion in the lower extremities and therefore 
obtained higher feature values.

In addition, we established two LRMs based on the 
muscle features, without (LRM-I) or with (LRM-II) CTA 
runoff score. Compared with the independent predic-
tive performance of the CTA score, LRM-I, the model 
containing only muscle features, obtained more accu-
rate results (CTA vs. LRM-I, 0.81 vs. 0.84). This suggests 
that CTA features of the lower leg muscles can assist 
in the assessment of PAD severity and hold promise as 
a useful complement to CTA. Meanwhile, LRM-II, the 
model containing both imaging features and CTA scores, 
showed the highest AUC value (0.89), which indicates 
that richer features incorporated in the model are associ-
ated with improved predictive performance.

Table 2 Univariable analysis of the histogram features of the 
lower leg muscles

Unless otherwise indicated, data are mean ± standard deviation or median 
(interquartile range)

Abbreviations: DSA Digital subtraction angiography, CV Coefficient of variation, 
IQR Interquartile range, MAD Mean absolute deviation, RMAD Robust mean 
absolute deviation, RMS Root mean squared, SD Standard deviation
* p values less than 0.05

Features All
n = 56

DSA 
score ≤ 7
n = 36

DSA score > 7
n = 20

p value

10th Percen-
tile

22.4 ± 5.3 24.2 ± 5 19.0 ± 4 < 0.001*

90th Percen-
tile

63 (60, 65) 64 (63, 65) 61 (57, 64) 0.006*

CV 37.2 (34.4, 
41.8)

35.6 (32.8, 
38.2)

41.0 (38.9, 
45.9)

< 0.001*

Energy  (108) 6.3 ± 2.7 6.8 ± 2.7 5.2 ± 2.4 0.04*

Entropy 1.6 ± 0.1 1.5 ± 0.1 1.6 ± 0.1 0.32

IQR 20 (19, 21) 20 (19, 21) 21 (20, 22) 0.009*

Kurtosis 3.8 (3.5, 4.2) 3.8 (3.5, 4.3) 3.6 (3.5, 3.9) 0.20

Maximum 156.6 ± 14.2 157.6 ± 14.3 154.8 ± 13.8 0.50

Mean 44.0 (39.2, 
45.8)

44.6 (43.0, 
47.0)

39.5 (37.0, 
43.5)

< 0.001*

MAD 12.6 ± 0.9 12.4 ± 0.9 12.9 ± 0.7 0.04*

Median 44 (39, 46) 45 (43, 47) 39 (36, 44) < 0.001*

Minimum -61.4 ± 16.6 -64.4 ± 16.7 -56.1 ± 15 0.08

Mode 45 (39, 47) 47 (44, 48) 40 (34, 44) 0.001*

Range 218.0 ± 24.1 221.9 ± 23.2 210.9 ± 24.2 0.11

RMAD 8.6 ± 0.7 8.5 ± 0.7 8.9 ± 0.6 0.01*

RMS 45.8 ± 4.5 47.2 ± 4 43.1 ± 4 < 0.001*

Skewness 0.1 (0.0, 0.4) 0.0 (0.0, 0.2) 0.3 (0.1, 0.6) 0.002*

SD 16.1 (15.7, 
16.9)

16.0 (15.5, 
16.4)

16.7 (16.0, 
17.1)

0.03*

Uniformity 0.4 (0.4, 0.4) 0.4 (0.4, 0.4) 0.4 (0.4, 0.4) 0.26

Variance 260 (247, 286) 256 (241, 270) 280 (255, 294) 0.03*
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Due to the relatively long lower extremities, even with 
a thickness of 5  mm, each patient’s lower leg, from the 
patella to the talus, still covers 60–70 CTA slices. In 
addition, because of limitations in the generalization of 
current automatic muscle segmentation techniques, it 
is somewhat unrealistic to ask doctors to segment the 
muscles of the entire lower limb. Therefore, we tested the 
previously developed LRMs on the five sub-datasets that 
were divided from the original dataset to verify whether 
PAD severity can be predicted from only a part of the 
lower leg images. The results showed that even a segment 
of the lower leg images still had the ability to predict PAD 
severity. And the highest performance was found in sub-
dataset four (images of middle and inferior segments of 
the lower extremity) along the knee-to-ankle direction. 

This finding is reasonable because the clinical symptoms 
of muscle ischemia caused by upper vascular stenosis 
were usually more obvious distally.

In addition to CTA, imaging technologies cur-
rently used in the clinical scenario of PAD include 
duplex ultrasound imaging (DUS) and magnetic reso-
nance angiography (MRA) [2, 5]. DUS can identify 
the anatomical location of the disease and determine 
the severity of focal stenosis. However, DUS is oper-
ator-dependent and sometimes cannot be used in 
overweight patients. MRA is also useful for assess-
ing PAD anatomy and the presence of stenosis, but 
it may be inaccurate in arteries treated with metal 
stents. Furthermore, there are many new methods for 
PAD severity assessment, such as deep learning-based 

Fig. 3 Univariable analysis of texture features of the lower leg muscles. Texture features contain 75 statistics in 5 categories: 24 gray level 
co-occurrence matrix (GLCM) features, 14 gray level dependence matrix (GLDM) features, 16 gray level run length matrix (GLRLM) features, 16 gray 
level size zone matrix (GLSZM) features, and 5 neighboring gray tone difference matrix (NGTDM) features. a The p values of the statistical analysis 
of the 75 texture features. The values in the red, yellow, and blue areas represent p < 0.01, 0.01 < p < 0.05, and p > 0.05, respectively. b Feature names 
corresponding to (a). The numbers before the feature names in b corresponding to the leftmost line number in a 
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classification models [32], non-contrast QISS-MRA 
[33, 34], near infrared spectroscopy [35], and some 
dynamic imaging technology [31, 36].

For muscle perfusion, several previous studies have 
confirmed its relationship with muscle ischemia using 

MR arterial spin labeling [19, 37, 38]. The results 
showed that blood flow gradually decreased with 
increasing severity of limb ischemia, whereas model 
arterial resistance progressively increased. In addi-
tion, low leg muscle density on CT was proved to be 

Fig. 4 Feature selection based on least absolute shrinkage and selection operator (LASSO) regression. a Forty-five features (14 histogram features 
and 31 texture features) with p < 0.05 selected by univariable analysis. b The trend graph of the mean square error (MSE) with different λ (Lamda) 
during cross-validation. λ is an important parameter of LASSO regression that is usually adjusted by cross-validation to find the optimal value. The 
red dots represent the average values of the MSE. The blue error bars represent the standard deviation of the MSE. The black dotted line indicates 
the best value of λ. c The convergence graph of the weight coefficients of the features under different λ values. Each convergence line corresponds 
to a feature, and the color of the line matches the color before the feature name in a. As shown in b and c, the MSE is minimized (0.21 ± 0.07) 
at λ = 0.044 (the black dotted line), where five representative features were finally identified (weight coefficient ≠ 0). d Feature names and weight 
coefficients of the five selected features. GLCM gray level co-occurrence matrix, GLDM gray level dependence matrix, GLRLM gray level run length 
matrix, GLSZM gray level size zone matrix
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associated with increased risk of lower limb events 
(rate ratio 1.41) and was a strong, independent predic-
tor of major cardiovascular events in people with PAD 
[21]. Our previous published work has also validated 
the association between lower leg enhancement on 
dynamic CTA and PAD severity [20]. Compared with 
previous studies, this study further developed a predic-
tion model for PAD severity based on standard CTA 
features and tested its adaptability on a subset of lower 
limb images, thus further validating the feasibility, 
accuracy, and convenience of lower leg muscle features 
as an indicator of PAD assessment.

In clinical practice, discrepancies between imaging 
findings and clinical symptoms are sometimes observed. 
For example, mild claudication with severe vessel ste-
nosis, or ischemic rest pain but negative lower extrem-
ity arterial abnormalities. Whether these patients should 
receive timely intervention and the therapeutic effect that 
can be achieved after treatment are usually confusing to 
clinicians. Our research demonstrate that quantitative 
muscle features are associated with PAD severity and 
have the potential to be an indicator for PAD prediction. 
These features provide clinicians with additional perfu-
sion information, which usually reflects the true blood 

Table 3 Multivariable analysis results of the two logistic regression models for peripheral arterial disease prediction

Abbreviations: OR Odds ratio, CI Confidence interval, LRM Logistic regression model, GLCM Gray level co-occurrence matrix, GLDM Gray level dependence matrix, 
GLSZM Gray level size zone matrix, CTA  Computed tomography angiography, NR Not reported
a Coefficient of variables in logistic regression equation
b Intercept in logistic regression equation

Variables in logistic regression model Coefficienta OR (95% CI) p value

LRM-I
 histogram_10Percentile -1.29 0.28 (0.13, 0.61) 0.001

 glcm_Correlation NR NR NR

 gldm_DependenceNonUniformityNormalized -0.67 0.51 (0.27, 0.98) 0.04

 glszm_GrayLevelNonUniformityNormalized NR NR NR

 glszm_SmallAreaLowGrayLevelEmphasis NR NR NR

  Constantb -0.85 0.43 (NR, NR) 0.02

LRM-II
 CTA runoff score 1.18 3.27 (1.42, 7.53) 0.006

 histogram_10Percentile -1.11 0.33 (0.14, 0.77) 0.01

 glcm_Correlation NR NR NR

 gldm_DependenceNonUniformityNormalized -0.68 0.51 (0.25, 1.03) 0.06

 glszm_GrayLevelNonUniformityNormalized NR NR NR

 glszm_SmallAreaLowGrayLevelEmphasis NR NR NR

  Constantb -0.90 0.41 (NR, NR) 0.03

Table 4 Comparison of CTA score and logistic regression models for PAD prediction

Abbreviations: CTA  Computed tomography angiography, PAD Peripheral arterial disease, LRM Logistic regression model, AUC  Area under curve, CI Confidence interval
† p value of Omnibus test
‡ p value of Hosmer and Lemeshow test
a Selection criterion of the cutoff value: the highest value of Youden index (sensitivity + specificity − 1)

Evaluation index CTA runoff score LRM‑I LRM‑II

Omnibus  test† … < 0.001 < 0.001

Hosmer and Lemeshow  test‡ … 0.19 0.90

AUC (95% CI) 0.81 (0.69, 0.92) 0.84 (0.73, 0.94) 0.89 (0.80, 0.97)

p value of AUC < 0.001 < 0.001 < 0.001

Sensitivity 75 (15/20) 80 (16/20) 80 (16/20)

Specificity 75 (27/36) 81 (29/36) 83 (30/36)

Classification accuracy 75 (42/56) 80 (45/56) 82 (46/56)

Cutoff  valuea 9.50 0.35 0.43
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Fig. 5 Examples of CT values of lower leg muscles with lower (≤ 7) or higher (> 7) digital subtraction angiography (DSA) runoff score. a 
A 67-year-old man with mild peripheral arterial disease (PAD) (DSA score = 1). The first image shows a coronal view of lower extremity vessels. 
The second image is a localizer. The third column are axial computed tomography angiography (CTA) images, corresponding to the white lines 
in the localizer image. The fourth column shows the heatmaps of CT values of the muscles in the third column images. The red area of the color 
bar reflects high CT values and the blue reflects low values. b A 63-year-old woman with severe PAD (DSA score = 16). Images of b represent 
the same meaning as a 
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supply to the lower limb. However, the morphology of 
the microvasculature is difficult to be assessed using con-
ventional imaging examinations such as CTA.

Our study has several limitations. (a) This was a retro-
spective study which enrolled only 56 patients as most 
patients were excluded because of missing data. There-
fore, this study lacks a re-test dataset and the findings 
need to be validated by prospective studies based on 
a larger sample. (b) Limited by existing segmentation 
techniques, we used a semi-automatic method for lower 
extremity muscle segmentation to ensure accurate fea-
ture extraction. Although we verified that a segment of 
the entire image has predictive ability, this approach 
limits the generalization of this method. (c) The CT 
attenuation-based values of lower limb muscle features 
analyzed in this study were derived from the single-phase 
CTA images, which is probably too prone for artifacts 
and incorrect phase imaging. In the future, we will fur-
ther explore the value of lower extremity muscle features 
in the prediction of PAD severity in conjunction with 
other imaging techniques, such as perfusion imaging, 
dual-energy imaging and photon-counting imaging. (d) 
Collateral vessels play an important role in the vascular 
assessment of PAD patients. However, due to the lack of 
collateral vessel evaluation in the modified SVS runoff 
score and the limited demonstration of collateral circu-
lation on CTA, it was difficult to assign an appropriate 
and reasonable weight (relative to other lower extremity 
vessels) to collateral vessels and include it in the current 
scoring system. (e) Although we used a semi-automatic 

segmentation process, combining the threshold algo-
rithm and manual correction, to remove fat from the 
CT images as much as possible, we were unable to com-
pletely exclude the influence of adipose tissue (especially 
intramuscular fat) due to differences in patients and 
imaging equipment.

In conclusion, CTA features of lower extremity mus-
cle are associated with PAD severity and can be used for 
PAD prediction, and to compensate for the limitations 
of vascular stenosis assessment from the perspective of 
muscle ischemia evaluation. In the future, we will further 
explore the feasibility of PAD severity prediction based 
on the radiomic features of non-contrast CT images.

Abbreviations
AUC   Area under the curve
CI  Confidence interval
CTA   Computed tomography angiography
CV  Coefficient of variation
DSA  Digital subtraction angiography
HU  Hounsfield unit
ICC  Intraclass correlation efficient
IQR  Interquartile range
LASSO  Least absolute shrinkage and selection operator
LRM  Logistic regression model
OR  Odds ratio
PAD  Peripheral arterial disease
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Table 5 Performance of logistic regression models on the five sub-datasets

Abbreviations: AUC  Area under curve, CI Confidence interval, LRM Logistic regression model
a The segmentation region (from the inferior border of the patella to the superior border of the talus) of the lower leg muscles was divided into five equal segments. 
The CT images in each segment constituted an independent dataset, and sub-datasets 1–5 were constructed from the knee to the ankle

Sub‑dataseta AUC (95% CI) p value Sensitivity Specificity Accuracy Cut‑point

Sub-dataset 1
 LRM-I 0.79 (0.68, 0.91) < 0.001 60 (12/20) 75 (27/36) 70 (39/56) 0.35

 LRM-II 0.86 (0.76, 0.96) < 0.001 70 (14/20) 81 (29/36) 77 (43/56) 0.43

Sub-dataset 2
 LRM-I 0.79 (0.66, 0.91) < 0.001 70 (14/20) 64 (23/36) 66 (37/56) 0.35

 LRM-II 0.86 (0.76, 0.96) < 0.001 75 (15/20) 83 (30/36) 80 (45/56) 0.43

Sub-dataset 3
 LRM-I 0.82 (0.70, 0.93) < 0.001 80 (16/20) 78 (28/36) 79 (44/56) 0.35

 LRM-II 0.88 (0.79, 0.97) < 0.001 75 (15/20) 81 (29/36) 79 (44/56) 0.43

Sub-dataset 4
 LRM-I 0.83 (0.72, 0.94) < 0.001 85 (17/20) 69 (25/36) 75 (42/56) 0.35

 LRM-II 0.90 (0.83, 0.98)  < 0.001 70 (14/20) 81 (29/36) 77 (43/56) 0.43

Sub-dataset 5
 LRM-I 0.78 (0.67, 0.90) < 0.001 70 (14/20) 72 (26/36) 71 (40/56) 0.35

 LRM-II 0.86 (0.77, 0.96) < 0.001 60 (12/20) 86 (31/36) 77 (43/56) 0.43
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