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Abstract 

Objective We aimed to develop a radiomics-clinical nomogram using multi-sequence MRI to predict recurrence-free 
survival (RFS) in bladder cancer (BCa) patients and assess its superiority over clinical models.

Methods A retrospective cohort of 229 BCa patients with preoperative multi-sequence MRI was divided into a train-
ing set (n = 160) and a validation set (n = 69). Radiomics features were extracted from T2-weighted images, diffusion-
weighted imaging, apparent diffusion coefficient, and dynamic contrast-enhanced images. Effective features were 
identified using the least absolute shrinkage and selection operator (LASSO) method. Clinical risk factors were deter-
mined via univariate and multivariate Cox analysis, leading to the creation of a radiomics-clinical nomogram. Kaplan-
Meier analysis and log-rank tests assessed the relationship between radiomics features and RFS. We calculated the net 
reclassification improvement (NRI) to evaluate the added value of the radiomics signature and used decision curve 
analysis (DCA) to assess the nomogram’s clinical validity.

Results Radiomics features significantly correlated with RFS (log-rank p < 0.001) and were independent of clinical 
factors (p < 0.001). The combined model, incorporating radiomics features and clinical data, demonstrated the best 
prognostic value, with C-index values of 0.853 in the training set and 0.832 in the validation set. Compared to the clini-
cal model, the radiomics-clinical nomogram exhibited superior calibration and classification (NRI: 0.6768, 95% CI: 
0.5549-0.7987, p < 0.001).

Conclusion The radiomics-clinical nomogram, based on multi-sequence MRI, effectively assesses the BCa recurrence 
risk. It outperforms both the radiomics model and the clinical model in predicting BCa recurrence risk.

Critical relevance statement The radiomics-clinical nomogram, utilizing multi-sequence MRI, holds promise for pre-
dicting bladder cancer recurrence, enhancing individualized clinical treatment, and performing tumor surveillance.

Key points 

• Radiomics plays a vital role in predicting bladder cancer recurrence.

• Precise prediction of tumor recurrence risk is crucial for clinical management.

• MRI-based radiomics models excel in predicting bladder cancer recurrence.
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Graphical Abstract

Introduction
Bladder cancer (BCa) is the tenth most common cancer 
worldwide and is associated with high morbidity and 
mortality, especially in men. In 2020, 573,278 new cases 
and 212,536 deaths were reported. The reported inci-
dence rate was 9.5 per 100,000, and the mortality rate was 
3.3 per 100,000 [1, 2]. BCa has become a great challenge 
in oncology due to the need for long-term surveillance 
and invasive treatment. Distinguished into non-muscle-
invasive bladder cancer (NMIBC, ≤ T1 stage) and mus-
cle-invasive bladder cancer (MIBC, ≥ T2 stage), BCa’s 
diverse molecular characteristics and clinical outcomes 
necessitate distinct treatment approaches [3, 4]. For 
early-stage NMIBC, the recommended course involves 
transurethral resection of bladder tumor (TURBT) sup-
plemented by Bacille Calmette-Guérin (BCG) therapy 
[5]. However, patients facing more advanced MIBC con-
front bleak prognoses, typically requiring radical cys-
tectomy (RC) followed by bilateral pelvic lymph node 
dissection (PLND) [6].

Recurrence of BCa remains a concern, particularly for 
NMIBC patients, where recurrence rates are as high as 
61% within 2 years of TURBT [7, 8]. MIBC patients are 
not spared either, as the metastatic or recurrence rate 
ranges from 5 to 50% within the first 2 years after RC [4]. 

Inadequate treatment for those at high risk of recurrence 
can have fatal consequences, underscoring the impera-
tive of robust, long-term monitoring [9]. Thus, the need 
arises for the development of more effective early treat-
ment strategies and closer follow-up management to 
enhance patient survival [10].

The management of BCa often falters, and conven-
tional clinical staging systems have proven unreliable in 
predicting prognosis and guiding treatment decisions. 
The predominant risk assessment methods, such as the 
European Organization for Research and Treatment of 
Cancer (EORTC) risk model [8] and the Spanish Club of 
Urology Oncology Treatment (CUETO) scoring model 
[11], rely on clinical and histological factors to assess risk 
of recurrence and progression. Regrettably, both models 
exhibit poor discriminatory power for recurrence and 
consistently overestimate the risk for high-risk patients 
[12]. This not only jeopardizes the patient’s physical well-
being but also compounds the complexity of manage-
ment [4, 13, 14].

To address these shortcomings, a novel concept in bio-
marker assessment known as “radiomics” has emerged, 
showing substantial promise in BCa prognosis and 
follow-up management [15, 16]. Radiomics leverages 
medical imaging to analyze the relationship between 
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phenotypic image features (radiomics biomarkers) and 
tumor diagnosis, thereby refining patient risk strati-
fication and treatment decisions. Among the array of 
imaging modalities, MRI shines with its ability to offer 
multi-sequence imaging, high-resolution soft tissue 
visualization, and multi-level structural and functional 
information [17–19]. When combined with the Vesical 
Imaging Reporting and Data System (VI-RADS), MRI 
facilitates a comprehensive assessment of image classi-
fication and muscular infiltration [20–22]. Several stud-
ies have demonstrated the efficacy of radiomics based on 
CT or MRI in accurately predicting BCa’s preoperative 
grading, lymph node metastasis, and myometrial inva-
sion status (MIS), thereby guiding clinical treatment and 
prognosis assessment [23, 24].

Yet, a research gap remains regarding radiomics signa-
tures based on multi-sequence MRI for evaluating BCa 
recurrence risk. A previous study [25] found that radiol-
ogy characteristics based on diffusion-weighted imaging 
(DWI) could independently predict progression-free sur-
vival (PFS) in MIBC patients. An opportunity exists for 
further research regarding the additional value of crafting 
a nomogram incorporating multi-sequence MRI features 
alongside clinical risk factors in a collective study.

In this study, we embark on developing a radiom-
ics nomogram to forecast BCa patient prognosis. Our 
nomogram draws from radiomics features extracted 
from multi-sequence MRI, including T2-weighted image 
(T2WI), DWI, apparent diffusion coefficient (ADC), 
and dynamic contrast-enhanced (DCE) imaging, to pre-
dict recurrence-free survival (RFS) in BCa patients. We 
also investigated a combined model by merging clinical 
risk factors with radiomics features, to demonstrate the 
enhanced value of such an integrated approach in strati-
fying BCa recurrence risk.

Materials and methods
Patients
This retrospective study was approved by the Institu-
tional Review Board of the First Hospital of Shanxi Medi-
cal University. Written informed consent was obtained 
from all patients in this study. We conducted a retrospec-
tive search within the pathology and radiology databases 
of the First Hospital of Shanxi Medical University, span-
ning from January 2018 to June 2021, to identify patients 
diagnosed with BCa. Subsequently, we analyzed the clini-
cal data of 229 patients with pathologically confirmed 
BCa.

Inclusion criteria were defined as follows: (1) confir-
mation of BCa through pathology following TURBT 
or RC; (2) initial TURBT or cystectomy procedure; (3) 
MRI examination conducted within 3 weeks prior to 
surgery; and (4) the availability of complete clinical and 

pathological data. Exclusion criteria comprised the fol-
lowing: (1) receipt of preoperative radiotherapy or 
chemotherapy; (2) cases exhibiting poor image quality or 
tumors with a diameter less than 3 mm, making delinea-
tion unfeasible; (3) instances with incomplete clinical and 
pathological data; or (4) patients lost to follow-up or fol-
low-up was less than 2 years. The process of case inclu-
sion and screening is presented in Fig. 1.

Clinical data collection and patient follow‑up
We collected clinical data from 229 patients with con-
firmed BCa, including seven parts: demographic charac-
teristics (such as age at diagnosis, BMI, gender, smoking, 
and drinking), clinical characteristics (such as frequent 
urination, urinary urgency, odynuria, urinary inconti-
nence, low back pain, and previous malignancies), serum 
laboratory information (such as total cholesterol, triglyc-
eride, high-density lipoprotein, low-density lipoprotein, 
urea, creatinine, and uric acid), tumor characteristics 
(such as tumor location, tumor size, and tumor num-
ber), pathological data (such as pathological grading, and 
MIS), treatment information (such as infusion drug, and 
surgical methods), and survival information (RFS).

Following surgical intervention, each patient under-
went a meticulously planned follow-up regimen, involv-
ing an initial assessment within 3–5 months post-surgery, 
subsequent evaluations every 6 months for a duration of 
2 years, and annual appointments thereafter. These fol-
low-up assessments entailed comprehensive cystoscopy 
and imaging examinations (CT or MRI) to scrutinize for 
any signs of suspected bladder tumor recurrence. For the 
purpose of this study, recurrent tumors were defined as 
tumors that reappeared within the bladder, prostate, ure-
thra, pelvis, or ileum subsequent to surgical intervention. 
By the end of follow-up, 81 BCa patients experienced a 
recurrence. Importantly, we documented the time to RFS 
for each patient, calculated from the date of their initial 
surgery.

MRI protocol
All MRI scans were conducted using a 3.0-T MRI scan-
ner (Skyra: Siemens, Erlangen, Germany) equipped with 
an 8-channel truncal phased-array coil or body coil. Spe-
cific scan range, scan sequence, and detailed scan param-
eters are provided in Additional file 1.

Tumor ROI segmentation
Two experienced radiologists, referred to as Reader1 
and Reader2, each possessing over 8 years of experi-
ence working with MRI, manually delineated the entire 
bladder tumor using ITK-SNAP 3.8.0 (http:// www. itk- 
snap. org/). Importantly, they remained blinded to the 
patient’s pathological findings throughout the procedure. 

http://www.itk-snap.org/
http://www.itk-snap.org/
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Subsequently, the axial images from T2WI, DWI, ADC, 
and DCE were segmented to extract the volume of inter-
est (VOI). In cases where disagreements arose, a resolu-
tion was reached through consultation.

Additionally, to assess the consistency of the image 
feature delineation both within and between observ-
ers, 1 month later, the VOI of 15 recurrent and 15 

non-recurrent patients were randomly selected and 
delineated by a single radiologist, Reader1. This allowed 
for the evaluation of the intraclass correlation coefficient 
(ICC) for the delineated image features.

The tumor delineation contours of all sequences are 
shown in Fig. 2. The definition of tumor margin on dif-
ferent weighted images needs to be determined based on 

Fig. 1 Flowchart shows selection criteria for the 229 patients in the study group

Fig. 2 A 69-year-old male patient presented with recurrent BCa on follow-up surveillance and an 85-year-old male patient with follow-up 
surveillance for non-recurrent BCa
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the signal characteristics. The specific rules for this pro-
cess can be found in Additional file 2.

Radiomics feature extraction
We used the open-source software FAE (https:// github. 
com/ salan 668/ FAE) using PyRadiomics package to 
extract radiomics features from T2WI, DWI, ADC, and 
DCE images of BCa patient. The VOI delineated on 
T2WI, DWI, ADC, and DCE images for each BCa patient 
underwent a series of preprocessing steps. The radiom-
ics feature extraction steps and feature categories are 
described in Additional file 3.

Development of the radiomics nomogram
Firstly, the reproducibility of each feature delineation 
process was quantified by evaluating the ICC values of 
the inter- and intra-group datasets, and the radiomics 
features with ICC < 0.75 were excluded for subsequent 
analysis. The remaining stable features were normalized 
and significant radiomics features were selected using 
univariate Cox regression with p < 0.05. Univariate analy-
sis and LASSO regression algorithm were used to select 
the optimal feature subset. The RFS prediction model 
of BCa was constructed based on the optimal radiom-
ics features, and the radiomics score (radscore) of each 
patient was calculated. The cutoff value for the high and 
low-risk groups were identified by the median radscore 
in the training set, and Kaplan-Meier analysis was used 
to assess the potential association between radscore and 
RFS, which was validated in the validation set.

Development of the clinical nomogram
Univariate Cox regression analysis was utilized to assess 
the association between clinical features and the RFS in 
patients. After finding a statistically significant difference 
(p < 0.05) between the recurrent and the non-recurrent, 
we conducted a multivariate Cox regression analysis and 
then selected independent predictors of BCa recurrence 
with p < 0.05. Based on this, a clinical model was devel-
oped and used for validation.

Development of the radiomics‑clinical nomogram
By incorporating the independent risk factors identi-
fied in the clinical model and integrating them with the 
radscore derived from the radiomics model as covari-
ates, we have devised a practical and clinically relevant 
radiomics-clinical nomogram. This nomogram serves as 
a valuable tool for predicting early BCa recurrence and 
individualized RFS. To evaluate the performance of the 
nomogram and its goodness of fit, we utilized metrics 
such as the C-index and calibration curve, both in the 
training set and the validation set. In order to evaluate 
the nomogram’s diagnostic capabilities, we employed the 

net reclassification improvement (NRI) and compared it 
against the radiomics model and clinical model. Lastly, 
we conducted decision curve analysis (DCA) for all three 
models, providing insights into the clinical validity and 
utility of our proposed tool.

Statistical analysis
The statistical analyses for this study were conducted 
using R version 4.2.0 (https:// www.r- proje ct. org/) and 
SPSS 26.0 (http:// www. spss. com. cn). The one-sample 
Shapiro-Wilk test was used to assess the normality of 
numerical variables. For normally distributed data, we 
presented results as mean ± standard deviation (M ± SD), 
while non-normally distributed data were represented as 
median (interquartile range (IQR), 25th and 75th percen-
tiles). Two-sample t-test was used to compare normally 
distributed data between groups, and the Mann-Whitney 
U test was used to compare non-normally distributed 
data. The chi-square test was used to analyze categorical 
data.

To gauge the relationship between the radscore derived 
from the prediction model and the RFS status of patients, 
we employed Kaplan-Meier analysis and Cox regression 
analysis to compute early recurrence rates. Statistical sig-
nificance was established at a threshold of p < 0.05. The 
C-index was utilized to evaluate the model’s accuracy in 
predicting recurrence stratification and RFS performance 
in two sets.

Results
Clinical characteristics of the patients
The demographic and tumor characteristics of the entire 
patient cohort are summarized in Table  1. The median 
age of the 229 patients included in the study was 66 years, 
comprising 199 males and 30 females, with the age range 
spanned from 26 to 88 years.

All patients were randomly divided into a training 
set (n = 160) and a validation set (n = 69) in a ratio of 
7:3. Among these, 58 patients in the training set and 23 
patients in the validation set experienced recurrence. The 
median RFS for all patients who relapsed was 391 days, 
with a range of 18 to 1461 days, while the median RFS 
for all non-relapsed patients was 1173 days, ranging from 
333 to 1812 days. Importantly, there were no significant 
differences in demographic distribution and clinical char-
acteristics between the training set and the validation set 
(p = 0.050 to 0.998).

Development and validation of the radiomics nomogram
Following rigorous reliability testing (both intra-rater and 
inter-rater), we retained 7462 radiomics features, exclud-
ing those with an ICC < 0.75 from the initial 10686 fea-
tures. Subsequently, through univariate Cox regression 

https://github.com/salan668/FAE
https://github.com/salan668/FAE
https://www.r-project.org/
http://www.spss.com.cn
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Table 1 Characteristics of BCa patients in the training set and validation set

Characteristics Overall (n = 229) Training set (n = 160) Validation set (n = 69) p values

Age (years) 66.54 ± 10.70 65.00 ± 11.14 66.80 ± 9.55 0.244

BMI (kg/m2) 23.94 (21.88–26.48) 23.90 (21.52–26.47) 24.44 (22.70–26.94) 0.271

Gender 0.403

 Female 30 (13.1%) 19 (11.9%) 11 (15.9%)

 Male 199 (86.9%) 141 (88.1%) 58 (84.1%)

Smoking 0.649

 No 128 (55.9%) 91 (56.9%) 37 (53.6%)

 Yes 101 (44.1%) 69 (43.1%) 32 (46.4%)

Drinking 0.805

 No 175 (76.4%) 123 (76.9%) 52 (75.4%)

 Yes 54 (23.6%) 37 (23.1%) 17 (24.6%)

Frequent urination 0.386

 No 174 (76.0%) 119 (74.4%) 55 (79.7%)

 Yes 55 (24.0%) 41 (25.6%) 14 (20.3%)

Urinary urgency 0.412

 No 171 (74.7%) 117 (73.1%) 54 (78.3%)

 Yes 58 (25.3%) 43 (26.9%) 15 (21.7%)

Odynuria 0.441

 No 182 (79.5%) 125 (78.1%) 57 (82.6%)

 Yes 47 (20.5%) 35 (21.9%) 12 (17.4%)

Urinary incontinence 0.102

 No 215 (93.9%) 147 (91.9%) 68 (98.6%)

 Yes 14 (6.1%) 13 (8.1%) 1 (1.4%)

Low back pain 0.705

 No 210 (91.7%) 146 (91.2%) 64 (92.8%)

 Yes 19 (8.3%) 14 (8.8%) 5 (7.2%)

Total cholesterol (mmol/L) 4.37 (3.65–5.04) 4.41 (3.62–5.09) 4.33 (3.70–4.82) 0.627

Triglyceride (mmol/L) 1.28 (0.98–1.78) 1.28 (0.95–1.76) 1.28 (1.01–1.86) 0.619

High-density lipoprotein (mmol/L) 1.06 (0.93–1.27) 1.05 (0.92–1.27) 1.07 (0.95–1.31) 0.653

Low-density lipoprotein (mmol/L) 2.81 (2.29–3.32) 2.86 (2.25–3.35) 2.79 (2.34-3.19) 0.682

Urea (mmol/L) 5.65 (4.65–6.68) 5.62 (4.53–6.67) 5.92 (4.76–6.83) 0.377

Creatinine (μmol/L) 72.10 (63.20–81.40) 72.90 (64.93–82.48) 69.10 (60.25–76.85) 0.050

Uric acid (μmol/L) 321.96 ± 79.93 326.98 ± 76.47 310.32 ± 86.89 0.148

Previous malignancies 0.991

 No 214 (93.4%) 149 (93.1%) 65 (94.2%)

 Yes 15 (6.6%) 11 (6.9%) 4 (5.8%)

Tumor location 0.861

 Posterior wall 99 (43.2%) 71 (44.4%) 28 (40.6%)

 Side wall, top wall 107 (46.7%) 73 (45.6%) 34 (49.3%)

 Trigone, neck 23 (10.0%) 16 (10.0%) 7 (10.1%)

Tumor size 0.998

 ≤ 3 cm 146 (63.8%) 102 (63.7%) 44 (63.8%)

 > 3 cm 83 (36.2%) 58 (36.3%) 25 (36.2%)

Tumor number 0.222

 Single 159 (69.4%) 115 (71.9%) 44 (63.8%)

 Multiple 70 (30.6%) 45 (28.1%) 25 (36.2%)

Pathological grading 0.210

 Low 115 (50.2%) 76 (47.5%) 39 (56.5%)

 High 114 (49.8%) 84 (52.5%) 30 (43.5%)
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analysis, we further refined the features to 263. To miti-
gate overfitting and identify the optimal radiomics sig-
nature, we employed the LASSO technique within the 
Cox proportional hazards regression model (illustrated in 
Fig.  3). Ultimately, by identifying the minimum λ value, 
we identified 22 MRI radiomics features with non-zero 
coefficients, demonstrating a higher C-index in predict-
ing BCa recurrence. Details on these specific character-
istics, corresponding coefficients, and hazard ratios (HR) 
can be found in Additional Fig 1. The radiomics features 
were combined linearly to derive the radscore.

The radiomics model’s recurrence prediction perfor-
mance was assessed using the C-index, which had a score 
of 0.823 [95% confidence interval (CI), 0.794–0.852] 
for the training set and 0.811 (95% CI, 0.772–0.850) for 
the independent validation set. Each patient’s radscore 
was computed based on the radiomics features within 

the training dataset. The median radscore of the train-
ing set was 0.809 as the cut-off point, and the patients 
were divided into high-risk group and low-risk group. 
Kaplan-Meier curves of radiomics features in the train-
ing and validation sets are presented in Fig.  4a and 4b, 
respectively. In the training set, the radscore exhibited a 
significant association with RFS (p < 0.0001, HR = 1.044, 
95% CI: 1.032, 1.056). Similarly, in the validation set (p = 
0.00016, HR = 1.122, 95% CI: 1.070, 1.175), the Kaplan-
Meier survival analysis in conjunction with the log-rank 
test underscored the substantial prognostic value of the 
radiomics model in effectively stratifying patients into 
high and low-risk groups.

Development and validation of the clinical nomogram
After conducting a univariate Cox regression, we found 
that four clinical risk factors were significant: odynuria, 

BCa bladder cancer, BMI body mass index, MIS myometrial invasion status TURBT Transurethral resection of bladder tumor, RC Radical cystectomy, RFS Relapse-free 
survival

Table 1 (continued)

Characteristics Overall (n = 229) Training set (n = 160) Validation set (n = 69) p values

MIS 0.348

 NMIBC (stage ≤ T1) 149 (65.1%) 101 (63.1%) 48 (69.6%)

 MIBC (stage ≥ T2) 80 (34.9%) 59 (36.9%) 21 (30.4%)

Infusion drug 0.869

 Pirarubicin hydrochloride 76 (33.2%) 54 (33.8%) 22 (31.9%)

 Gemcitabine hydrochloride 84 (36.7%) 57 (35.6%) 27 (39.1%)

 Epirubicin 44 (19.2%) 30 (18.8%) 14 (20.3%)

Other chemotherapy drugs 25 (10.9%) 19 (11.9%) 6 (8.7%)

Surgical methods 0.741

 TURBT 175 (76.4%) 120 (75.0%) 55 (79.7%)

 Partial RC 12 (5.2%) 9 (5.6%) 3 (4.3%)

 RC 42 (18.3%) 31 (19.4%) 11 (15.9%)

 RFS, days 1023 (662–1316) 1003 (597–1318) 1055 (853–1316) 0.196

Fig. 3 Dimension reduction of radiomics features in the LASSO Cox model
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previous malignancies, pathological grading, and MIS 
(p < 0.05). Finally, by multivariate Cox regression analy-
sis, these four risk factors were incorporated, leading to 
the identification of odynuria and previous malignancies 
as independent risk factors within the clinical model, 
both with p values of less than 0.05 (refer to Table  2). 
The C-index for the clinical model was determined to be 
0.611 (95% CI, 0.579–0.643) within the training set and 
0.583 (95% CI, 0.536–0.630) within the validation set.

Development and validation of the radiomics‑clinical 
nomogram
We constructed a radiomics-clinical nomogram by incor-
porating the independent risk factors from the clini-
cal model with the radscore derived from the radiomics 
model. This final model consisted of three key predictors: 
odynuria, previous malignancies, and the radscore. Uti-
lizing these predictors, we developed a comprehensive 
nomogram capable of predicting the 1-year, 2-year, and 
3-year recurrence probabilities for BCa patients.

The combined model exhibited a notable C-index of 
0.853 (95% CI, 0.829–0.877) within the training set and 
0.832 (95% CI, 0.784–0.880) within the validation set, 
surpassing the prognostic performance of the radiomics 
model when considered in isolation. The radiomics-clin-
ical nomogram incorporating these three independent 
predictors is visually depicted in Fig.  5a. Additionally, 
calibration plots for both the training and validation sets 
are presented in Fig. 5b and c.

To gauge the predictive advantages of the radiomics-
clinical nomogram compared to the clinical model or 
radiomics model, we utilized NRI for assessing the 3-year 
RFS. The NRI for the radiomics-clinical nomogram 
model, in comparison to the clinical model, was deter-
mined to be 0.6768 (95% CI: 0.5549–0.7987, p < 0.001). 
The result shows that the radiomics-clinical nomogram 
improves the efficiency of BCa recurrence risk stratifi-
cation by 67.68% compared to the clinical model alone. 
When compared to the radiomics model, the NRI for 
the radiomics-clinical nomogram was 0.0233 (95% CI: 
0.0720–0.1187, p = 0.631), indicating a modest 2.33% 
increase in diagnostic efficacy for the combined model 
over the radiomics model. Figure 6 shows that the radi-
omics-clinical model outperforms the radiomics and 
clinical models alone, providing superior net benefits 
within a wide range of threshold probabilities.

Discussion
The high recurrence rate stands as a pivotal factor signifi-
cantly impacting prognosis of BCa patients. Accurately 
predicting recurrence risk is crucial for tailoring treat-
ment strategies and follow-up plans. In the 2021 Euro-
pean Association of Urology (EAU) score model [26], 
high-risk NMIBC patients have been shown to still have 
a high recurrence rate after TURBT and are prone to 
progression to MIBC [27]. RC combined with PLND is 
currently the standard treatment for patients with MIBC 
[28]. However, some patients may refuse RC because 

Fig. 4 Kaplan-Meier analysis of RFS according to the radiomics signature in the training data set (a) and validation data set (b). The significant 
association of the radiomics signature with RFS was validated
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of the potential complications associated with this pro-
cedure including massive blood loss, risk of infection, 
paralytic ileus, and potential decreased quality of life. 
To address this clinical challenge, urologists are actively 
exploring a precise recurrence risk stratification aiming 
to provide an alternative to bladder protection strate-
gies for individuals who are unwilling or unsuitable for 
surgery [29, 30]. At present, cystoscopy is the gold stand-
ard for cancer tracking of urinary bladder, but due to the 
inherent heterogeneity of tumor lesions, it may lead to 
potential misdiagnosis and thus delay in treatment [31].

Radiomics is a bridge between medical images and 
computable data [32]. This study explored a nomogram 
to evaluate the recurrence risk of BCa, aiming to predict 
the RFS of BCa patients undergoing surgical treatment 
and guide future clinical management. Our radiological 
characteristics encompassed 22 distinct features, com-
prising three ADC sequences, four DWI sequences, 
seven DCE sequences, and eight T2WI sequences. 
Through internal validation, we determined that the rad-
score derived from multi-sequence MRI imaging was an 

independent predictor associated with clinical risk fac-
tors (p < 0.001). This finding underscores the advantages 
of a multi-sequence MRI-radiomics model in effectively 
stratifying BCa recurrence risk. It also highlights that 
different MRI sequences can complement and augment 
each other in the realm of imaging diagnosis and progno-
sis evaluation for BCa, aligning with prior research in this 
area. Two studies by Wang et al. [19, 33] compared post-
operative DCE and DWI information in BCa patients and 
found that the DWI sequence was better than the DCE 
sequence in differentiating postoperative BCa recurrence 
and inflammation in patients. Additionally, the addi-
tion of DWI to enhanced mucosal basement DCE could 
improve tumor detection and enhance the imaging stag-
ing diagnosis of BCa.

Prior investigations have shown that specific factors, 
including age, gender, histological grade, MIS, tumor size, 
the number of tumors, and the choice of surgical inter-
vention, wield significant influence over the recurrence 
of BCa [3, 34, 35]. In our study, we conducted a compre-
hensive analysis to assess the factors influencing RFS in 

Table 2 Cox univariate and multivariate proportional hazard models of risk factors for recurrence of BCa

HR Hazard ratio, CI Confidence interval

Characteristics Univariate Multivariate

HR (95% CI) p HR (95% CI) p

Age (years) 1.019 (0.994–1.044) 0.136

BMI 0.985 (0.923–1.051) 0.639

Gender 0.696 (0.330–1.468) 0.341

Smoking 0.908 (0.538–1.532) 0.718

Drinking 0.961 (0.518–1.783) 0.900

Frequent urination 1.523 (0.873–2.658) 0.138

Urinary urgency 1.417 (0.812–2.472) 0.220

Odynuria 2.355 (1.358–4.086) 0.002 2.214 (1.190–4.117) 0.012

Urinary incontinence 1.108 (0.443–2.772) 0.827

Low back pain 0.330 (0.080–1.353) 0.123

Total cholesterol 1.034 (0.829–1.291) 0.765

Triglyceride 1.265 (0.997–1.606) 0.053

High-density lipoprotein 1.163 (0.465–2.906) 0.747

Low-density lipoprotein 1.040 (0.770–1.404) 0.798

Urea 0.989 (0.842–1.162) 0.894

Creatinine 1.002 (0.984–1.020) 0.827

Uric acid 1.000 (0.997–1.004) 0.784

Previous malignancies 3.192 (1.508–6.757) 0.002 4.327 (1.987–9.420) < 0.001

Tumor location 1.165 (0.801–1.695) 0.423

Tumor size 1.018 (0.592–1.749) 0.950

Tumor number 1.096 (0.628–1.912) 0.748

Pathological grading 1.890 (1.106–3.230) 0.020 1.369 (0.637–2.940) 0.421

MIS 1.954 (1.167–3.273) 0.011 1.136 (0.502–2.568) 0.760

Infusion drug 1.012 (0.781–1.312) 0.928

Surgical methods 0.847 (0.596–1.204) 0.355
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Fig. 5 The nomogram integrates odynuria, previous malignancies and radscore to predict 1-year, 2-year, and 3-year RFS of BCa (a). The calibration 
curve evaluates the agreement between the predicted RFS probability of the nomogram and the actual RFS probability in the training set (b) 
and validation set (c)

Fig. 6 Decision curve analysis for the clinical model, radiomics model, and combined model for BCa recurrence risk assessment. Note: the Y-axis 
represents the net benefit; the X-axis represents the threshold probability. The net clinical benefit of the radiomics-clinical model was higher 
than that of the radiomics and clinical model across all risk threshold probabilities and higher than that of the two reference cases, namely the red 
line of “All” (all patients considered as recurrence) or the yellow line of “None” (all patients considered as no recurrence)
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BCa. The results of our univariate Cox regression analysis 
highlighted the significance of odynuria, previous malig-
nancies, pathological grading, and MIS in relation to RFS 
in BCa patients (p < 0.05). These findings align with pre-
vious research in this field.

To further gauge the value of incorporating clinical 
risk features into our predictive model, we identified two 
clinically independent predictors, namely odynuria and 
previous malignancies, in addition to the radscore. Nota-
bly, the two clinical risk factors had not been extensively 
studied among BCa recurrence factors. However, our 
nomogram suggested their pivotal role in BCa recurrence 
risk. Our results unveiled that the combined nomogram 
outperformed both the radiomics model (0.853 vs. 0.823) 
and the clinical model alone (0.853 vs. 0.611) in terms of 
C-index, demonstrating its superior predictive capabil-
ity. This trend was similarly observed in the validation 
set (0.832 vs. 0.811 vs. 0.583). Similarly, DCA analysis 
underscored the nomogram’s superiority over the radi-
omics model or clinical model within a wide range of risk 
thresholds, providing a greater net benefit.

Currently, radiomics methods have emerged as a popu-
lar solution for the clinical challenges faced in preopera-
tive prediction of MIS and tumor grade in BCa. However, 
there is a lack of research on the effectiveness of radiom-
ics features in predicting tumor recurrence. It is worth 
noting that our nomogram is not the first to study radi-
omics in predicting the prognosis of BCa. In 2019, Xu 
et al. [36] developed and validated a personalized predic-
tion model for the first 2 years of recurrence risk based 
on multi-sequence MRI radiomics. Their model achieved 
good results with an accuracy of 88% and an AUC of 0.915 
in the training set and an accuracy of 80.95% and an AUC 
of 0.838 in the validation set. Zhang et al. [25] established 
a lasso model that included a single DWI sequence, com-
bined with the radscore, clinical pathology, and other fac-
tors, achieving good performance in predicting individual 
PFS. However, these studies had incomplete scanning 
sequences and the study size was small, which required 
further external validation. Based on the current rele-
vant researches, our study highlighted the advantages of 
using multi-sequence MRI in soft tissue tumor diagnosis 
and multi-level information presentation, incorporating 
clinical risk factors to develop a combined nomogram as 
a powerful tool for personalized RFS prediction in BCa 
patients. Compared with traditional clinical models, this 
model showed strong promise and was guaranteed to be 
thoroughly validated in future research efforts.

Our research had certain limitations that need to be 
addressed. Firstly, the patient cohort was limited to a 
single institution, and retrospective studies may have 
some inherent bias. Secondly, the study did not include 

relevant genomic information. Key genomic biomark-
ers such as Ki67, FGFR3, and p53, which are strongly 
associated with RFS, should be incorporated into the 
nomogram to enhance its predictive performance [37, 
38]. Furthermore, the advancement of deep learning 
research has demonstrated promising results in predict-
ing BCa recurrence and assessing efficacy [12, 39]. While 
its clinical validation is pending, we hold the expectation 
that radiology can substantially enhance the efficiency of 
recurrence prediction. Our future endeavors involve the 
integration of a substantial dataset encompassing multi-
center and multi-parametric MRI data for leveraging 
deep learning technology in lesion delineation and fea-
ture data analysis. Furthermore, we intend to incorporate 
additional critical prognostic indicators, such as genomic 
features, to further augment the predictive capabilities 
of the nomogram. The validation of this extended model 
will be carried out using multi-center data, advancing its 
reliability and applicability.

Conclusions
To sum up, our study suggests that multi-sequence MRI-
based radiomics features hold promise as a valuable 
tool for assessing the recurrence  risk of  BCa patients. 
Additionally, the integration of radiomics with clinical 
risk factors into a nomogram may have the potential to 
enhance individualized predictions for BCa patients’ RFS. 
However, it is important to note that further validation of 
this approach is warranted.
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