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Abstract 

Objectives This retrospective single‑center analysis aimed to evaluate whether artificial intelligence can detect type 
2 diabetes mellitus by evaluating the pectoral muscle on digital breast tomosynthesis (DBT).

Material method An analysis of 11,594 DBT images of 287 consecutive female patients (mean age 60, range 40–77 
years) was conducted using convolutional neural networks (EfficientNetB5). The inclusion criterion was left‑sided 
screening images with unsuspicious interpretation who also had a current glycosylated hemoglobin A1c (HBA1c) % 
value. The exclusion criteria were inadequate imaging, history of breast cancer, and/or diabetes mellitus. HbA1c values 
between 5.6 and 6.4% were categorized as prediabetic, and those with values ≥ 6.5% were categorized as diabetic. 
A recorded HbA1c ≤ 5.5% served as the control group. Each group was divided into 3 subgroups according to age. 
Images were subjected to pattern analysis parameters then cropped and resized in a format to contain only pectoral 
muscle. The dataset was split into 85% for training and 15% for testing the model’s performance. The accuracy rate 
and F1‑score were selected as performance indicators.

Results The training process was concluded in the 15th epoch, each comprising 1000 steps, with an accuracy rate 
of 92% and a loss of only 0.22. The average specificity and sensitivity for all 3 groups were 95%. The F1‑score was 0.95. 
AUC‑ROC was 0.995. PPV was 94%, and NPV was 98%.

Conclusion Our study presented a pioneering approach, applying deep learning for the detection of diabetes  
mellitus status in women using pectoral muscle images and was found to function with an accuracy rate of 92%.

Critical relevance statement AI can differentiate pathological changes within pectoral muscle tissue by assessing 
radiological images and maybe a potential diagnostic tool for detecting diabetes mellitus and other diseases that 
affect muscle tissues.

Key points 

• AI may have an opportunistic use as a screening exam for diabetes during digital breast tomosynthesis.

• This technique allows for early and non‑invasive detection of diabetes mellitus by AI.

• AI may have broad applications in detecting pathological changes within muscle tissue.
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Graphical Abstract

Introduction
According to 2021 statistics, the global prevalence of dia-
betes mellitus is 10% among people aged 21–79 age [1]. 
Due to the emphasis on nutrition around ready-made 
and fast foods, sedentary lifestyle, and insufficient exer-
cise habits, the prevalence of type 2 diabetes mellitus 
(T2DM) continues to rise worldwide. The use of glucose 
in tissues that produce energy through the mitochondria 
is limited. When the body cannot use glucose efficiently, 
it resorts to alternative energy production pathways, 
leading to secondary ectopic fat accumulation.

T2DM is associated with microvascular complications 
such as nephropathy, neuropathy, and neglected retin-
opathy, which are related to higher mortality. Addition-
ally, macrovascular complications have been substantially 
associated with death rate (HR = 2.00, 95% CI = 1.69–
2.38) [2]. In addition to traditional micro- and macrovas-
cular disease leading to considerable disability, “frailty 
and sarcopenia” are emerging as a third category of com-
plications [3]. Loss of skeletal muscle mass, muscle weak-
ness, and/or loss of physical function are the hallmarks 
of the syndrome known as sarcopenia [4]. Insulin resist-
ance found in T2DM is an indirect contributing factor for 
diminished physical function and mobility, and T2DM is 
linked with a threefold increased risk of sarcopenia, as 

evidenced by 8.2% of newly diagnosed T2DM patients 
having sarcopenia [5].

Skeletal muscles are the largest and most insulin-
sensitive organs in the body. This enables them to be 
responsible for the majority of glucose uptake from the 
blood. They therefore play a key role in regulating glu-
cose homeostasis. Approximately 80–90% of glucose 
consumption and myokine synthesis occur in striated 
muscles [6]. Good-quality muscle tissue, defined by the 
normal attenuated muscle area/total abdominal muscle 
area ratio, has protective effects against T2DM [7]. A 
cohort study discovered that in previously healthy people, 
muscle mass was inversely correlated with the incidence 
of T2DM [8]. Ultrasound images of the deltoid muscles 
of patients with T2DM were recorded as hyperechoic 
compared with healthy individuals of the same age group 
[9]. This is a promising sign that the ability of artificial 
intelligence (AI) to analyze image features, such as shape, 
volume, and area, can be used to detect diabetic status. 
Deep learning, a recent innovation in AI, has shown the 
ability to, for some applications, interpret medical images 
with sensitivities and specificities at or near that of skilled 
clinicians [10]. However, there is currently no AI model 
attempting to diagnose diabetes mellitus based on radio-
logical muscle tissue images.
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Digital breast tomosynthesis (DBT) is a screening 
method for breast cancer in patients over 40 years of age. 
The pectoral muscle is included in the imaging to ensure 
that the breast tissue is covered. Although there are signif-
icant AI studies related to DBT, they have focused on the 
benign–malignant distinction, and there has been no pre-
vious scenario in which DBT has been used as an oppor-
tunistic diagnostic tool. From a physiological perspective, 
at the age of 40, progressive and generalized loss of muscle 
mass can be observed [11]. DM has been proven to nega-
tively contribute to this process. Accordingly, our study’s 
focus group was more vulnerable to the effects of diabetes 
mellitus on the skeletal muscles. Early diagnosis of T2DM 
can be lifesaving and reduce the burden of health costs. It 
can also prevent complications, improve patients’ quality 
of life, and reduce the time and budget spent on treating 
complications, thus reducing the workload of doctors.

Although routine practice uses blood biochemistry for 
the diagnosis of DM, visceral fat and muscle mass may 
also be good predictors of T2DM [8, 12]. Therefore, in 
this study, we aimed to investigate the pectoral muscle, 
which determines the quality of DBT and is not currently 
used for any output regarding the muscle tissue. We have 
developed a deep learning AI model that detects patients’ 
diabetes mellitus status from the muscle tissue within the 
imaging area, as a non-invasive and alternative method to 
blood biochemistry.

Material/method
This retrospective observational diagnostic study was 
approved by the non-interventional clinical research 
ethics committee at Medipol University with reference 
number E-10840098-772.02-1232 (17,02.2022/decision 
number:187). This was a retrospective, anonymized diag-
nostic study, ensuring patient privacy and confidentiality. 
Therefore, informed consent could not be acquired nor 
was it required.

Subjects
Our electronic records between March 2022 and January 
2023 were analyzed. Asymptomatic patients with screen-
ing tomosynthesis and same-day HbA1c% values were 
selected. A retrospective analysis was conducted on 2521 
DBT examinations of women aged 40 years or older who 
underwent breast tissue screening via DBT at the Breast 
Imaging Unit of the Department of Radiology at Medipol 
Mega University Hospital. All patients (all females; mean 
age ± standard deviation 55 ± 10, between the ages of 40 
and 77) were examined using the DBT method with Sie-
mens Mammomat Revelation (Erlangen, Germany). The 
patients’ left mediolateral oblique (MLO) DBT exams, 
which demonstrate adequate levels of pectoral muscle, 
were documented. In Fig.  1, the “data selection flow-
chart” is reviewed.

Fig. 1 Data selection flowchart
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The following are the inclusion criteria:

1. Cases with imaging interpretation results categorized 
as BIRADS 1, 2, and 3

2. Cases categorized as BIRADS 0 but with BIRADS 1, 
2, or 3 findings observed in the ultrasound examina-
tion performed during the same period as the com-
plementary tests

The following are the exclusion criteria:

1. Images containing inadequate, blurry, or no pectoral 
muscle tissue

2. Imaging interpretation with suspicious masses 
(BIRADS 4, 5, 6)

3. Patients with a history of cancer surgery, radiation 
therapy, or chemotherapy

4. Patients on prescription for diabetes
5. Right MLO images: not included in the study because 

of the expected hypertrophy of the right pectoral 
muscle caused by the more frequent use of the right 
upper extremity in the general population compared 
with the left

Study design
The left DBT images of the 40-year and older female 
patients included in the study who applied to Medipol 
Mega Hospital for comprehensive health screening were  
collected consecutively and anonymously in DICOM  
format from the radiologic information system to create a  
data set. The HbA1c% values obtained from the blood sam-
ples taken for diabetes screening were recorded from the 
electronic hospital information system. The blood samples 
were collected from the patients on the same day of the DBT. 
No additional DBT or HbA1c tests were performed for this 
study.

In routine practice, plasma HbA1c is the standard diag-
nostic test for evaluating a patient’s chronic blood sugar  
level. The HbA1c values of patients with normal values  
(≤ 5.5%) constituted the control group. Cases with HbA1c  
values between 5.6 and 6.4%were categorized as predia-
betic and those with ≥ 6.5% as diabetic and included in 
the study group. Each group was divided into three sub-
groups according to age: 40–49 years, 50–59 years, and 
60 years and above. We tried to provide the minimum 
number of images to maintain successful learning by the 
AI. Therefore, a minimum of 1000 images were aimed 
to be collected for each category in each age range. In 
total, 13,927 images were collected first. More than one 
image from the same patient was entered into our data-
set. To achieve cross-validation, all images from a sin-
gle patient were analyzed either in the training group or 

in the testing group. This way, we attempted to prevent 
overfitting.

Before feeding the AI, image selection and some nar-
rowing of groups were performed to prevent the model’s 
bias and to provide equal distribution among subgroups 
covering 3 age ranges (40–49 years, 50–59 years, and 
60 years and over) for all three categories (normal, pre-
diabetic, and diabetic). Overall, 11,594 pectoral muscle-
containing images were entered into the model. Numbers 
belonging to all subgroups are shown in Table 1.

The pectoral muscle images were cropped to include 
only the pectoral muscle. The cropped images were sepa-
rated into three different categories (normal, prediabetic, 
and diabetic) according to the patients’ HbA1c levels and 
saved. These three categories formed the necessary data-
set to train, evaluate, and test the AI model’s ability to 
distinguish between the groups. Our model determines 
the patients’ DM status (normal, prediabetic, or diabetic) 
by evaluating the density of the pectoral muscle.

Artificial intelligence model
The modified dataset was split into 85% for training and 
15% for testing the model’s performance, providing a clear 
separation for training and evaluation. The images men-
tioned above were used as the initial data and increased 
using data augmentation techniques, as a data replication/
improvement method. Data augmentation was applied  
using the ImageDataGenerator from Keras with horizon-
tal and vertical flips and rotation (-10, + 10 degrees). This 
was specified in the datagen object: ImageDataGenerator  
(horizontal_flip=True, vertical_flip=True). The techniques  
employed increased the diversity of the dataset and  
impacted the model’s accuracy positively. To further detail 
the deep learning methods for this image classification 
problem, convolutional neural networks (CNN) were used. 
Ready-made architectures that have proven successful in 
this field were taken, retrained to be used in our problem, 
and the model weights were updated.

The artificial neural network architecture we used was 
EfficientNetB5, which was adapted to our current classi-
fication problem. EfficientNet was developed by Google 
AI in 2019. When tested on ImageNet, a large visual 
database designed for visual object recognition software 

Table 1 Modified dataset: pectoral muscle containing image 
numbers per subgroup

Images per age 
group

Normal Pre-diabetic Diabetic

40–49 n = 1454 n = 1145 n = 1426

50–59 n = 1454 n = 1454 n = 1025

≥ 60 n = 994 n = 1222 n = 1420

Total 3902 3821 3871
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research, enterprise security architecture was found to 
produce classification models with faster and higher 
accuracy rates than other architectures because of its sys-
tem for almost optimal scaling (Google Research, 2019). 
Figure  2 shows a comparison of success rates on Ima-
geNet with other popular pre-trained architectures. As 
shown in this figure, EfficientNet models achieve higher 
accuracy and better efficiency with fewer parameters 
than current CNNs.

The EfficientNetB5 architecture was used for trans-
fer learning and adapted to the specific classification 

problem of normal, prediabetic, and diabetic classes. At 
the end of the architecture, the SoftMax function was 
chosen as the activation function for multi-class clas-
sification problems. Labeled images belonging to three 
classes (normal, prediabetic, diabetic) that underwent 
data augmentation and were resized to (224, 224) were 
separated into training and testing sets. Examples of 
images fed into the model after the cropping and resiz-
ing processes are shown in Fig. 3.

The model training process was initiated using the 
parameters shown in Fig.  4. Training parameters, 

Fig. 2 Comparison of EfficientNet and other ESA models’ success rates

Fig. 3 Examples of images that enter the model after cropping and resizing
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including the learning rate, were selected based on the 
architecture’s characteristics and best practices.

During the model’s training process, Google Colab was 
used, which is specifically designed for machine and deep 
learning and has professional resources to obtain fast 
results, including NVIDIA Tesla T4 GPU and 27.3 GB 
RAM (Fig. 5).

The validation process was present in the code using 
the validation data parameter in the model fit genera-
tor function. The validation data was provided as (x_val, 
y_val). However, details about external validation or a 
more comprehensive validation strategy were not explic-
itly mentioned in the provided code. The code includes 
the hyperparameter tuning for the learning rate (lr) 
using ReduceLROnPlateau. The learning rate is adjusted 
based on the validation loss. The code incorporates the 
model training, saving, and evaluation outcomes using 
the “Classification eport” from “scikit-learn,” providing 
metrics such as precision, recall, and F1-score for each 
class. We used these performance indicators to track the 
progress of our AI model. The priority was given to the 
accuracy rate. The accuracy rate is described as the ratio 
of the correctly predicted areas in the model to the total 
dataset. While the current code focuses on accuracy, 
precision, recall, and F1-score, additional metrics like 
area under the receiver operating characteristic curve 

(AUC-ROC), positive predictive value (PPV), and nega-
tive predictive value (NPV) were also calculated.

Results
The training process of our selected model was com-
pleted in the 15th epoch, each consisting of 1000 steps, 
with an accuracy rate of 92% and a loss of only 0.22 
(Table 2).

As an indicator of a healthy learning process, the paral-
lel run of training and test sets was observed for both the 
models’ accuracy and loss rate. Figure 6a shows that the 
success rates for both the training and test sets increased 
for each training round, whereas Fig.  6b shows that the 
loss rates decreased at a similar and regular pace for both 
the training and test sets for each training round. In addi-
tion to these analyses, the F1-score, which is summarized 
as the harmonic mean of the precision and recall values 
of the models, was tracked as an auxiliary indicator since 
the accuracy rate alone was not considered sufficient to 
prove a model’s success. The AUC-ROC is 0.995. The 
PPV is 94%, and the NPV of our model is 98%. These 
metrics provide a more comprehensive evaluation of the 
model’s performance, indicating high discriminative abil-
ity, precision in positive predictions, and reliability in 
negative predictions.

Fig. 4 Model parameters
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Fig. 5 Details and information on Google Colab GPU and RAM

Table 2 Accuracy and loss values of the training iterations

Epoch 15 steps per epoch 
= 1000 
Model/data fit generator
iphyton input

ms/step loss Accuracy Validation data loss Validation accuracy callbacks

Epoch 1/15 - 167s 141 1.1041 0.3590 1.0632 0.4362 5.000e−05

Epoch 2/15 - 135s 135 1.0670 0.4340 1.0191 0.5046 5.000e−05

Epoch 3/15 - 136s 136 1.0043 0.5110 0.9447 0.5552 5.000e−05

Epoch 4/15 - 136s 136 0.9489 0.5495 0.8263 0.6282 5.000e−05

Epoch 5/15 - 136s 136 0.8795 0.6005 0.8034 0.6448 5.000e−05

Epoch 6/15 - 136s 136 0.8193 0.6320 0.6383 0.7305 5.000e−05

Epoch 7/15 - 136s 136 0.7507 0.6810 0.5571 0.7856 5.000e−05

Epoch 8/15 - 136s 136 0.6613 0.7220 0.4912 0.7897 5.000e−05

Epoch 9/15 - 136s 136 0.5542 0.7660 0.4433 0.8103 5.000e−05

Epoch 10/15 - 136s 136 0.5055 0.7975 0.3150 0.8885 5.000e−05

Epoch 11/15 - 136s 136 0.3943 0.8500 0.2988 0.8931 5.000e−05

Epoch 12/15 - 136s 136 0.3728 0.8570 0.2376 0.9224 5.000e−05

Epoch 13/15 - 136s 136 0.3124 0.8800 0.2040 0.9322 5.000e−05

Epoch 14/15 - 136s 136 0.2849 0.8925 0.1816 0.9368 5.000e−05

Epoch 15/15 - 137s 137 0.2202 0.9245 0.1427 0.9454 5.000e−05
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The confusion matrix in Table 3 can be interpreted as 
follows:

Precision (specificity): This indicates the percentage 
of images predicted by the model to belong to a certain 
group that were actually in that group. According to the 
confusion matrix, for the test set, out of 577 images in the 
normal group, 98% were correctly identified as normal by 
the model. This rate is 93% for prediabetic and diabetic 
patients. When the averages of the three categories are 
taken, the precision value of the model is 95%.

Recall (sensitivity): This indicates the percentage of 
images that actually belong to a certain group that were 
correctly predicted by the model. According to the 
matrix, 90% of the images belonging to the normal class 
were correctly identified by the model. The same rate was 
95% for prediabetic cases and 98% for diabetic cases.

F1-score: The F1-score is calculated by taking the har-
monic mean of the above values. For normal cases, the 
F1-score is 0.94, for prediabetic cases is 0.94, and for dia-
betic cases is 0.96. Considering that the best F-score can 
be at most 1, it can be concluded that the model has a 

high F1-score for all three categories and is valuable in 
predicting the images.

Support: This value indicates the number of images in 
each class of the test dataset.

Discussion
Our study has shown an innovate approach using deep 
learning AI technology that has the potential to detect 
the diabetes status of women using pectoral muscle 
images on DBT (with an accuracy of 92%). There are sev-
eral other imaging techniques for muscle tissue, including 
magnetic resonance imaging (MRI), computed tomogra-
phy (CT), ultrasonography, bioelectrical impedance anal-
ysis, and dual-energy X-ray absorptiometry [13, 14]. The 
use of cross-sectional imaging, such as CT and MRI, in 
modern medicine is widespread and sometimes regarded 
as the gold standard for assessing the body’s proportions 
of muscle and fat [15]. Moreover, CT has aimed to be 
used as an opportunistic screening modality for various 
conditions beyond the desired clinical indication and is 
a potentially useful modality for diagnosing type 2 diabe-
tes mellitus, but has not yet been used as such [16]. Yet 
their high cost, limited accessibility, high-dose radiation 
exposure (in CT), and labor-intensive segmentation pro-
cedure limit their usage in clinical research [17]. To over-
come these shortcomings, we took advantage of muscle 
images obtained from DBT to creatively enhance its 
use beyond breast tissue evaluation as an opportunistic 
screening tool for T2DM. Further studies can be con-
ducted on comparing the performance of DBT with the 
other modalities for their ability to assess muscle tissues.

The opportunistic nature of our model holds immense 
potential in targeting a susceptible group, as screening 
of women older than 40 years has already been recom-
mended by the World Health Organization every 2 years. 

Fig. 6 a Model’s accuracy. b Model’s loss rate after each training round

Table 3 Confusion matrix

Precision 
(specificity)

Recall 
(sensitivity)

F1-score Support 
(numbers of 
images)

0 (control 
group)

0.98 0.90 0.94 577

1 (prediabetics) 0.93 0.95 0.94 583

2 (diabetics) 0.93 0.98 0.96 580

Accuracy 0.95 1740

Macroaverage 0.95 0.95 0.95 1740

Weighted 
average

0.95 0.95 0.95 1740
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The development of our AI model offers a non-invasive 
alternative method to blood biochemistry, with several 
notable advantages (Table  4). Our model demonstrates 
the same accuracy as the standard diagnostic method, 
highlighting its reliability and potential for clinical imple-
mentation. Moreover, it enables a more rapid diagnosis, 
thereby reducing the time required for healthcare pro-
fessionals to assess patients. By employing an AI-based 
approach, our method can minimize the need for exten-
sive healthcare professional involvement and may be 
profitable and practical for widespread adoption.

One significant implication of our study is the poten-
tial expansion of our algorithm for diagnosing muscle 
tissue-related conditions beyond diabetes mellitus. The 
model can be further developed to derive additional diag-
nostic information from images containing muscle tis-
sue. By leveraging the algorithm’s capability to analyze 
various image textures, it may be applied as a diagnostic 
tool for disorders such as Duchenne/Becker dystrophy, 
rhabdomyosarcoma, dermatomyositis/polymyositis, and 
congenital metabolic storage diseases. This expansion 
could benefit patients and healthcare professionals alike, 
offering a non-invasive and efficient approach to diagnos-
ing a range of conditions. To comprehensively diagnose 
diseases and manage treatment options, supplemen-
tary studies are recommended for developing a versatile 
deep learning system that combines various modalities 
of information, such as patient symptoms, imaging from  
different modalities, blood test data, and clinical data [18].

Additionally, the relationship between insulin and 
lower breast density in premenopausal women is known. 
According to a study, diabetes mellitus could potentially 
affect breast density in DBT through the insulin signal-
ing pathway [19]. In light of this information, in a differ-
ent study design, our dataset can be used for screening 
women with confirmed diabetes mellitus in terms of 
breast cancer risk. On a technical level, another study 
strength is the use of convolutional neural networks 
(CNN) to train our AI model. CNN, which originated 
from the deep learning community, have been adopted 
by the radiological community because of their ability to 
learn spatial features from medical images [20].

Despite these strengths, our study has certain limitations 
that should be acknowledged. First, there may be potential 
population bias because the study’s patient selection might 
not fully represent the diverse demographics of the general 
population. Second, the retrospective design of our study 
may introduce inherent limitations and biases in data col-
lection and analysis. Third, the limited number of patients 
included in our study might restrict the generalizability of 
our findings. It is important to conduct further research 
with larger and more diverse patient groups to validate and 
refine our AI model. Moreover, our study acknowledges the 
limitation of multiple images from a single patient, which 
could introduce correlations or dependencies within the 
dataset. This issue should be carefully considered when 
interpreting the results and further developing the algo-
rithm. Lastly, our study focuses primarily on women, which 
limits the generalizability of our findings to the broader 
population. Future studies should include a more balanced 
representation of both genders to ensure the applicability of 
our AI model across diverse populations.

In conclusion, our study showed that AI can detect dia-
betes mellitus status from the pectoral muscle on DBT 
images, which could be an inspiration for other studies 
focusing on AI development.
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