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Abstract 

Objective To develop a deep learning (DL) model for segmenting fat metaplasia (FM) on sacroiliac joint (SIJ) MRI 
and further develop a DL model for classifying axial spondyloarthritis (axSpA) and non-axSpA.

Materials and methods This study retrospectively collected 706 patients with FM who underwent SIJ MRI 
from center 1 (462 axSpA and 186 non-axSpA) and center 2 (37 axSpA and 21 non-axSpA). Patients from center 1 
were divided into the training, validation, and internal test sets (n = 455, 64, and 129). Patients from center 2 were 
used as the external test set. We developed a UNet-based model to segment FM. Based on segmentation results, 
a classification model was built to distinguish axSpA and non-axSpA. Dice Similarity Coefficients (DSC) and area 
under the curve (AUC) were used for model evaluation. Radiologists’ performance without and with model assistance 
was compared to assess the clinical utility of the models.

Results Our segmentation model achieved satisfactory DSC of 81.86% ± 1.55% and 85.44% ± 6.09% on the internal 
cross-validation and external test sets. The classification model yielded AUCs of 0.876 (95% CI: 0.811–0.942) and 0.799 
(95% CI: 0.696–0.902) on the internal and external test sets, respectively. With model assistance, segmentation per-
formance was improved for the radiological resident (DSC, 75.70% vs. 82.87%, p < 0.05) and expert radiologist (DSC, 
85.03% vs. 85.74%, p > 0.05).

Conclusions DL is a novel method for automatic and accurate segmentation of FM on SIJ MRI and can effectively 
increase radiologist’s performance, which might assist in improving diagnosis and progression of axSpA.

Critical relevance statement DL models allowed automatic and accurate segmentation of FM on sacroiliac joint 
MRI, which might facilitate quantitative analysis of FM and have the potential to improve diagnosis and prognosis 
of axSpA.

Key points 

• Deep learning was used for automatic segmentation of fat metaplasia on MRI.

• UNet-based models achieved automatic and accurate segmentation of fat metaplasia.

• Automatic segmentation facilitates quantitative analysis of fat metaplasia to improve diagnosis and prognosis 
of axial spondyloarthritis.
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Graphical Abstract

Introduction
Axial spondyloarthritis (axSpA) is a chronic inflamma-
tory disease that typically begins in the sacroiliac joints 
(SIJs) [1]. Magnetic resonance image (MRI) is the stand-
ard imaging modality for early detection of SIJ changes 
of axSpA, including inflammation (represented by bone 
marrow edema) and structural damage (such as ero-
sion, fat metaplasia (FM), sclerosis, and ankylosis) [2, 
3]. Besides inflammation, contextual information of 
structural damage enhances axSpA diagnosis [4]. FM is 
the second most common structural damage, occurring 
in more than a quarter of axSpA and showing the high-
est specificity for axSpA diagnosis [3, 5]. Furthermore, 
ankylosis progression of SIJs and the spine usually fol-
lows the onset of FM in SIJs, resulting in loss of function 
and poorer quality of life [6, 7]. Therefore, analysis of FM 
in SIJ MRI is crucial for the diagnosis and prognosis of 
axSpA.

For FM analysis, T1-weighted imaging is a routinely 
used imaging sequence [3]. On SIJ T1W images, FM 
indicative of axSpA typically appears as a bright and 
well-defined lesion in the subchondral bone [3]. Semi-
quantitative scoring methods for FM based on visual 
assessment have been developed for prognosis evaluation 

of axSpA [8]. However, FM can also occur in 13.8% of 
non-axSpA [9], such as undifferentiated arthritis, pso-
riatic arthritis, gouty arthritis, and so on [10]. Further-
more, with increasing age, the distribution patterns of 
FM commonly change from focal to extensive [11]. These 
complex situations might mislead the radiologist’s vis-
ual interpretation of FM indicative of axSpA and cause 
incorrect diagnosis or prognostic evaluation. Recently, 
quantitative analysis of segmented FM using proton den-
sity fat fraction based on chemical shift-encoded MRI has 
been proposed to provide deeper insights into the asso-
ciation between FM and axSpA diagnosis and prognosis 
[12, 13]. However, the widespread clinical application of 
quantitative analysis of FM urgently requires robust and 
accurate automatic segmentation methods.

Deep learning (DL) utilizes multiple layers to auto-
matically learn features from raw images and is widely 
used in automatic segmentation, classification, and 
detection for medical image analysis [14]. Several stud-
ies reported the success of MRI-based DL algorithms 
for detecting inflammation and structural damage in 
SIJs of axSpA [15–17]. Recent studies demonstrated 
that DL models using the popular UNet architecture 
had high performance for automatic segmentation of 
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orbital, subcutaneous, and visceral fat [18, 19]. UNet is 
one of the most popular convolutional neural networks 
(CNNs) that is robust and efficient in image segmenta-
tion [20]. However, the feasibility of using DL methods 
for automatic segmentation of FM on SIJ MRI has not 
been fully explored.

This study aimed to develop DL models for auto-
matic segmentation of FM on SIJ MRI and further 
developed DL models to classify axSpA from non-
axSpA based on FM. We also evaluated the clinical 
utility of the models in assisting radiologists.

Materials and methods
The institutional review board approved this retro-
spective study of center 1 (IRB number: 201501003) 
followed by center 2. Written informed consent was 
waived for all patients because of the retrospective 
nature of the study. The study was conducted accord-
ing to the Checklist for Artificial Intelligence in Medi-
cal Imaging (CLAIM) guideline (Supplementary 
Materials II ) [21].

Study participants
We enrolled patients from March 2011 to January 2022 
in center 1 and from July 2011 to August 2021 in center 
2, respectively. The inclusion criteria were patients (a) 
who had chronic low back pain; (b) with axSpA or non-
axSpA diagnosed by rheumatologists; and (c) with SIJ 
axial T1-weighted images (T1WI), T2-weighted images 
(T2WI), fat-saturated (FS) T2WI, and available clini-
cal data. FS T2WI techniques included T2 STIR, T2 
SPAIR, and T2 DIXON techniques. Details of non-axSpA 
were described in  Supplementary Materials I:  Appen-
dix Table  1. The exclusion criteria were as follows: (a) 
patients with age > 45 years; (b) patients with no FM on 
MRI observed by radiologists; and (c) MR image quality 
was poor due to artifacts and foreign bodies. Image qual-
ity was considered poor if radiologists (Q.Y. and Y.H.Z. 
with 12 and 31  years of radiology reading experience, 
respectively) consensually agreed that segmentation of 
the radiograph could not be performed for meaningful 
analysis. The flowchart of patient inclusion and exclu-
sion is shown in Fig. 1. After patient exclusion, we finally 
included 648 patients (462 axSpA and 186 non-axSpA) 

Fig. 1 Flowchart of patient inclusion and exclusion. T1WI T1-weighted images; axSpA axial spondyloarthritis; non-axSpA non-axial spondyloarthritis
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from center 1 and 58 patients (37 axSpA and 21 non-
axSpA) from center 2, respectively. For the segmentation 
task, 103 patients were randomly selected from center 1 
as the training set with a fourfold cross-validation strat-
egy; 20 patients randomly selected from center 2 were 
used as the external test set. For the classification task, we 
divided patients from center 1 into the training (n = 455), 
validation (n = 64), and internal test sets (n = 129); and 
used all 58 patients from center 2 as the external test set. 
All clinical characteristics, including age, gender, human 
leukocyte antigen-B27 (HLA-B27) status, erythrocyte 
sedimentation rate (ESR), and C-reactive protein (CRP) 
concentration, were collected from the electronic health 
records.

Image analysis
The MRI protocols are shown in Supplementary Materi-
als I:  Appendix Table  2. The 2009 Assessment of Spon-
dyloArthritis International Society (ASAS) considers 
that both axial and coronal oblique views of SIJ MRI 
are available [22]. All patients who underwent sacroiliac 
joint MRI in two centers had T1 oblique axial, T2 oblique 
coronal, and T2 fat-suppressed oblique coronal images. 
Axial oblique T1WI, coronal oblique T2WI, and coronal 
oblique FS T2WI were downloaded and stored as Digi-
tal Imaging and Communications in Medicine (DICOM) 
files. Patient-protected health information was deleted 
from DICOM data to meet the US (HIPAA), European 
(GDPR), or Other Relevant Legal Requirements [23]. 

According to evaluation criteria defined by the ASAS 
MRI working group (Supplementary Materials I: Appen-
dix  method 1) [3], the region of interest (ROI) of FM 
was manually delineated for each slice on the SIJ T1WI 
of all patients using ITK-SNAP software (version 3.6.0; 
www. itk- snap. org) by two radiologists (Y.Y.S. and X.L.), 
who have 3 and 5  years of musculoskeletal experience. 
Then, the ROIs were reviewed and corrected in con-
cordance between the two senior radiologists (Q.Y. and 
Y.H.Z.). MR images on all data sets were preprocessed 
before inputting into the model (Fig.  2a and  Supple-
mentary Materials I: Appendix  method 2). The initially 
determined ROIs by two senior radiologists are used as 
inputs to the trained segmentation model. The output 
segmentation masks of the trained model were corrected 
again by all radiologists for the calibration of ROIs. This 
human-model interaction was repeated five times, and 
the final determined ROIs were used as the ground truth 
for the 2.5D-AttentionUnet model’s segmentation task. 
Two senior radiologists (Q.Y. and Y.H.Z.) independently 
reviewed the electronic health records and annotated 
participants as axSpA or non-axSpA patients.

Model development
We developed a novel 2.5D-AttentionUnet model spe-
cifically designed for the segmentation of FM on SIJ 
MRI. This model effectively combines the capabilities of 
2D and 3D CNNs to extract hierarchical image features. 
Additionally, we employ the attention mechanism to 

Fig. 2 Framework of the deep-learning-based segmentation and classification models. The 2.5D-AttentionUnet segmentation model 
was developed by combining two- and three-dimensional convolution. The automatic classification model was developed with the assistance 
of the segmentation results. axSpA axial spondyloarthritis; non-axSpA non-axial spondyloarthritis; ROI region of interest

http://www.itk-snap.org
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accurately capture metaplasia regions of various shapes 
and sizes. We utilized spatial attention [24] and squeeze-
and-attention [25] to learn the relative importance of 
each spatial position in the encoded features (Supple-
mentary Materials I:  Appendix  method 3). The spatial 
attention mechanism captures the spatial distribution of 
encoded features, highlighting important features and 
suppressing less significant ones. The squeeze-and-atten-
tion mechanism involves reducing feature dimensional-
ity through global average pooling (squeeze operation) 
and obtaining attention weights for each channel using 
an activation function (excitation operation). These 
attention weights are then applied to the encoded fea-
tures, resulting in the final feature representation. The 
cross-entropy loss, Dice score loss, and attention loss 
[26] were adopted as the loss functions for 2.5D-Atten-
tionUnet. The Adam algorithm was used as the optimizer 
with a batch size of 2 during training. The model was 
trained for 400 epochs, with the learning rate initialized 
to 5e − 4 and halved every 3800 iterations. We have also 
trained the 2D-UNet, 3D-UNet, ResUNet, UNETR [27], 
and Attention UNet [28] models to compare their seg-
mentation performance with our 2.5D-AttentionUNet 
model (Fig.  2b and Supplementary Materials I:  Appen-
dix method 3).

Furthermore, we developed a classification model 
to distinguish axSpA from non-axSpA based on the 
best segmentation model. Specifically, the ROI of FM 
on the segmentation mask was cropped to generate an 
ROI map for the original image. The ROI map was then 
concatenated with the original image to be fed into the 
classification model. The binary cross-entropy loss was 
used for the classification model. We trained the model 
for 300 epochs with an initial learning rate of 0.001. 
The Gradient-weighted Class Activation Mapping 
(Grad-CAM) method was used to visualize essential 
response areas during the classification. Further details 
of the classification development of the DL model are 
presented in Fig.  2c and Supplementary Materials I: 
Appendix method 4.

Two Intel Xeon gold 5220R 2.2 GHz central processing 
units with 16 × 64 GB of double-data-rate-4 synchronous 
dynamic random-access memory and a GeForce RTX 
3090 Ti graphics processing unit (Nvidia, Santa Clara, 
CA, USA) were used and ran on a Linux system (Ubuntu, 
version 18.04) with a CUDA version 11.1 platform. Our 
DL models were implemented using MONAI open-
source libraries (version 0.9.0) and the PyTorch package 
(version 1.10.0), based on open-source software (Python, 
version 3.8.0; Python Software Foundation, Wilmington, 
DE, USA). The training parameters and source code can 
be found online (https:// github. com/ hust- linyi/2. 5D- 
Atten tionU Net).

Radiologist evaluation
The T1W images on the external test set were evaluated 
by a radiological resident (M.H.W. with 3 years of mus-
culoskeletal experience) and an expert radiologist (R.Z. 
with 17  years of musculoskeletal experience) who were 
blinded to the ground truth. They independently seg-
mented FM lesions and classified the cases as axSpA or 
non-axSpA at baseline. After 3 months, they re-evaluated 
the images with the assistance of DL models.

Statistical analysis
Statistical analyses were performed using the SPSS (ver-
sion 23.0, IBM, Armonk, NY, USA) and Python (ver-
sion 3.8.0). Continuous variables were evaluated with 
the Mann–Whitney U test, and categorical data were 
assessed with the chi-square test. The performance of the 
segmentation models was evaluated using the Dice simi-
larity coefficient (DSC), precision, and recall. The perfor-
mance of the classification model was measured using 
the area under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, specificity, positive predic-
tive value (PPV), negative predictive value (NPV), and 
Cohen’s κ value. The DSC and accuracy were compared 
between radiologists without and with model assistance 
using the Wilcoxon signed rank test or the chi-square 
test, as appropriate. The bootstrap technique was used 
to calculate 95% confidence intervals (CI). Two-sided 
p < 0.05 was considered significant.

Results
Patient characteristics
A total of 706 patients (median age 28 years, interquar-
tile range 23–34  years; 519 (73.5%) males) were finally 
included for analysis. For the segmentation task, there 
was a significant difference with a p value of < 0.05 in CRP 
concentration among the total data set, training, and 
external test sets, but others were not (Table 1). For the 
classification task, all clinical characteristics except for 
ESR and CRP concentration were not statistically differ-
ent between patients among the total data set, training, 
validation, internal test, and external test sets (all p > 0.05) 
(Supplementary Materials I: Appendix Table 3).

Performance of the 2.5D‑AttentionUNet segmentation 
model
The 2D-UNet, 3D-UNet, ResUNet, UNETR, and Atten-
tionU-Net models achieved DSCs of 76.42–80.05% for 
segmentation of FM on internal cross-validation and 
57.81–67.40% on the external test set. Compared with 
those segmentation models, our novel 2.5D-Atten-
tionUNet model showed the best performance with 
DSCs of 81.86% ± 1.55% and 85.44% ± 6.09% on internal 

https://github.com/hust-linyi/2.5D-AttentionUNet
https://github.com/hust-linyi/2.5D-AttentionUNet
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cross-validation and the external test set (all p < 0.05, 
except for 3D-UNet model) (Table  2). On the external 
test set, there were only 2 cases where the DSC obtained 
by the model was below 80.00%, one of which was axSpA 
(DSC, 63.24%) and the other was non-axSpA (DSC, 
79.65%).

Clinical utility of the 2.5D‑AttentionUNet segmentation 
model
The performance of the 2.5D-AttentionUNet model was 
superior to that of the radiological resident (DSC, 85.44% 
vs. 75.70%; p < 0.05) and comparable to that of the expert 
radiologist (DSC, 85.44% vs. 85.03%; p > 0.05) on the 
external test set. With the assistance of the model, the 
segmentation performance was improved for the radio-
logical resident (DSC, 82.87%, p < 0.05; precision, 76.18%) 
and expert radiologist (DSC, 85.74%, p > 0.05; precision, 
81.59%) (Table 3). DSCs below 60.00% were obtained in 

three cases for the radiological resident and a case for the 
expert radiologist. With the model assistance, radiolo-
gists obtained good segmentation performance with DSC 
higher than 60.00% of all cases. Figures 3 and 4 illustrate 
representative examples of the excellent and poor seg-
mentation performance of the model and radiologists 
without and with model assistance.

Performance of the deep learning classification model
Based on the automatic segmentation results, the 
classification model achieved AUCs of 0.876 (95% CI: 
0.811–0.942) and 0.799 (95% CI: 0.696–0.902) to dif-
ferentiate axSpA and non-axSpA, with a satisfactory 
accuracy of 81.25% (95% CI: 73.44–89.06%) and 77.59% 
(95% CI: 66.85–88.32%) and sensitivity of 88.52% 
(95% CI: 82.15–94.89%) and 91.89% (95% CI: 84.87–
98.92%) on the internal and external test sets, respec-
tively (Table  4). However, the specificity of the model 

Table 1 Patient characteristics for the segmentation task

Categorical variables are presented as numbers with percentages in parentheses, and continuous variables are shown as medians with interquartile in parentheses

HLA-B27 human leukocyte antigen-B27, ESR erythrocyte sedimentation rate, CRP C-reactive protein, mm/H millimeter per hour, mg/L milligram per liter, n number

Clinical characteristics All
(n = 123)

Training set
(n = 103)

Test set
(n = 20)

p value

Age (years) 26.0 (23.0, 32.0) 27.0 (24.0, 32.0) 23.0 (19.3, 30.8) 0.190

Disease duration (months) 24.00 (7.0, 72.0) 24.00 (8.0, 72.0) 13 (1.0, 75.0) 0.038

Sex 0.797

 Male 89 (72.36) 75 (72.82) 14 (70.0)

 Female 34 (27.64) 28 (27.18) 6 (30.0)

HLA-B27 0.653

  ( +) 80 (65.0) 70 (67.9) 10 (50.0)

  ( −) 25 (20.3) 21 (20.4) 4 (20.0)

Missing 18 (14.7) 12 (11.7) 6 (30.0)

ESR (mm/H) 20.0 (10.0, 40.0) 20.0 (9.0, 35.0) 43.5 (17.3, 62.0) 0.027

CRP (mg/L) 7.0 (2.7, 22.1) 6.9 (2.2, 19.1) 24.7 (4.9, 40.7) 0.158

Table 2 Performance of deep learning segmentation models

DSC is presented as an average percentage with a standard deviation. Precision and recall are shown as percentages with 95% confidential intervals. Paired t-tests are 
performed to determine the statistical significance of differences between the 2.5D-AttentionUNet and other models

DSC Dice similarity coefficient
* represents p value < 0.05
** represents p value < 0.001

Models Internal cross‑validation External test set

DSC (%) Precision (%) Recall (%) DSC (%) Precision (%) Recall (%)

2.5D-AttentionUNet (ours) 81.86 ± 1.55 80.49 (80.16–80.82) 85.5 (85.34–85.66) 85.44 ± 6.09 85.83 (82.62–89.04) 86.43 (81.10–91.76)

2D-UNet 76.97 ± 2.11** 78.5 (78.25–78.75) 78.24 (77.84–78.64) 66.53 ± 19.37** 69.14 (62.20–74.04) 68.09 (59.71–76.50)

3D-UNet 80.05 ± 1.57 80.18 (79.71–81.55) 82.4 (82.00–82.80) 67.40 ± 20.84** 85.12 (80.31–89.37) 62.87 (52.46–71.26)

ResUNet 76.42 ± 1.92 ** 76.49 (76.15–76.83) 79.56 (79.31–79.81) 66.41 ± 17.60** 75.74 (69.66–79.58) 65.66 (57.32–72.96)

UNETR 73.94 ± 2.68 ** 79.64 (79.12–80.16) 72.93 (72.51–73.35) 57.81 ± 21.58** 68.83 (61.45–77.27) 55.26 (46.22–67.42)

Attention U-Net 79.73 ± 1.65 * 79.95 (79.59–80.31) 82.47 (82.12–82.82) 65.54 ± 24.25* 72.29 (63.05–76.22) 67.95 (56.84–76.66)
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was moderate, with values of 68.57% (95% CI: 59.28–
77.86%) and 52.38% (95% CI: 39.53–65.23%). The 
Grad-CAM heatmap indicated that the most signifi-
cant area was activated among multiple FM lesions in 
SIJs, indicating that the classification model correctly 
recognized the target area. Supplementary Materials 
I:  Appendix Figure  1 illustrates representative exam-
ples of the model’s performance in classifying FM on 
SIJ MRI.

Clinical utility of the deep learning classification model
The accuracy, sensitivity, and specificity of the classifi-
cation model were superior to those of the radiological 
resident and the expert radiologist (accuracy, 70.69% and 
79.31%; sensitivity, 78.38% and 89.19%; specificity, 57.14% 
and 61.90%, respectively). With the model assistance, the 
classification performance was improved for the radio-
logical resident and expert radiologist (accuracy, 77.51% 
and 82.55%; sensitivity, 89.22% and 94.85%; specificity, 
57.20% and 61.51%, respectively; p > 0.05) (Table  5 and 
Fig. 5). Misclassified cases were corrected in five cases for 
radiological residents and in two cases for expert radiolo-
gists with the model assistance.

Discussion
This study developed a novel 2.5D-AttentionUNet-based 
segmentation to accurately segment FM on SIJ MR 
images. The models’ performance was validated in two 
different institutions (internal test: DSC, 81.86%; and 
external test: DSC, 85.44%) and comparable or even supe-
rior to manual segmentation by a radiological resident 

and an expert radiologist. Based on the segmentation 
model, a developed DL classification model achieved per-
formance not inferior to that of the two radiologists in 
distinguishing axSpA from non-axSpA. The effectiveness 
of the proposed segmentation model was also confirmed 
as it assisted the two radiologists in achieving better seg-
mentation performance. These results implied that the 
DL segmentation model could be an effective tool for 
automatic FM segmentation and be integrated into the 
automatic analysis workflow for FM on SIJ MRI.

The segmentation of FM is a crucial step in the quanti-
tative analysis of FM (e.g., lesion location, size, and inten-
sity) and helps to understand the association between FM 
and disease progression [5–7]. However, manual segmen-
tation of FM by radiologists is tedious, time-consuming, 
and prone to intra- and inter-reader variations [29], 
which is impractical in daily radiological workflow. Com-
pared to manual segmentation, automatic segmentation 
has added value that it is very fast and always provide 
the same results for the same input data. The certainty of 
automatic tools means that less variability might be intro-
duced than manual methods when monitoring the same 
patient for disease progression. Our developed automatic 
tool built a bridge for future quantitative analysis of FM, 
which is promising to improve patient diagnosis and 
prognosis and caters to the current trend of personalized 
medicine.

The histopathology of FM is unknown, however, a 
recent review reported that macrophage infiltration is 
common in SIJs of axSpA [30]. The hyperintensity of 
lesions on SIJ T1WI obviously suggests the presence of 
lipid. We speculated that the formation of FM in SIJ is 

Table 3 Performance of the segmentation deep learning model, radiologists without and with model assistance on the external test 
set

DSC is presented as an average percentage with a standard deviation. Precision and recall are shown as percentages with 95% confidential intervals. p values less than 
0.05 show statistical differences
a Data were compared between 2.5D-AttentionUNet model and radiologists
b Data were compared between radiologists and model-assisted radiologists. DSC Dice similarity coefficient

DSC (%) Precision (%) Recall (%)

2.5D-AttentionUNet model 85.44 ± 6.09 85.83 (82.62–89.04) 86.43 (81.10–91.76)

Radiologists

 Radiological resident 75.70 ± 10.87 66.18 (59.69–72.68) 91.13 (87.71–94.55)

 p  valuea 0.001 / /

 Expert radiologist 85.03 ± 9.72 80.32 (74.71–85.92) 91.11 (86.84–95.38)

 p  valuea 0.874 / /

Model-assisted radiologists

 Radiological resident 82.87 ± 6.88 76.18 (72.01–80.35) 92.05 (88.14–95.95)

 p  valueb  < 0.001 / /

 Expert radiologist 85.74 ± 8.08 81.59 (76.84–86.33) 91.39 (87.45–95.33)

 p  valueb 0.496 / /



Page 8 of 13Li et al. Insights into Imaging           (2024) 15:93 

due to the involvement of foamy macrophages, a group 
of cells formed by lipid accumulation and present in 
chronic inflammation [31, 32]. Compared with develop-
ing a segmentation model for normal fat tissue such as 
abdominal, subcutaneous, and intermuscular fat [33–
35], creating a segmentation model for pathological 

FM in SIJ is more challenging due to its large inter-
individual variability, such as irregular size, shape, and 
distribution. To ensure the validity of the ground-truth 
segmentation data, we adopted an interaction between 
the pre-trained model and two expert radiologists to 
repeatedly calibrate the segmentation masks of FM. 

Fig. 3 Representative examples of excellent segmentation of fat metaplasia on SIJ MRI by the 2.5D-AttentionUnet segmentation model 
and radiologists without and with model assistance. a A 23-year-old male with axSpA. b A 21-year-old female with non-axSpA (osteitis condensans 
ilii). axSpA axial spondyloarthritis; non-axSpA non-axial spondyloarthritis; T1WI T1-weighted images; DL deep learning; DSC Dice similarity coefficient
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This design more closely mimicked clinical routine, in 
which automated segmentation is first performed by 
the model and then approved or calibrated by radiolo-
gists. Apart from this, it was highly demanded to find 
a network architecture that was most suitable for FM 
segmentation task.

We investigated several medical image segmen-
tation networks derived from UNet [24], including 
2D-based CNNs (including 2D UNet, ResUNet, Atten-
tion UNet), 3D-based CNNs (including 3D UNet and a 
recent transformer-based UNETR [36]), and our pro-
posed 2.5D-AttentionUNet. These UNet-derived models 
demonstrated moderate to strong performance for FM 
segmentation (DSC, 57.81–85.44%) for external test-
ing, indicating that CNN-based automatic segmentation 

of FM in SIJs is feasible. However, the performance of 
2.5D-AttentionUNet was superior to that of 2D- and 
3D-based CNNs. This may be due to two reasons. First, 
2D-based CNNs effectively extracted in-plane features of 
FM in each MR slice, but ignored the spatial distribution 
information of FM in different MR slices. Second, using 
3D-based CNNs directly was limited because the differ-
ent in-plane and through-plane resolutions of MR images 
yield varying information densities. Our 2.5D-Attentio-
nUNet-based model fully leveraged in-plane and within-
slice features of MR slices, and was therefore well-suited 
for the FM segmentation task to provide accurate lesion 
segmentation.

Previous studies developed DL models to detect dif-
ferent types of inflammation or structural damage 

Fig. 4 Representative examples of wrong segmentation of fat metaplasia on SIJ MRI by the 2.5D-AttentionUnet segmentation model 
and radiologists. a In a 28-year-old female with axSpA, normal yellow bone marrow fat of the sacrum and normal intermuscular fat were incorrectly 
segmented by the model and radiological resident (white arrows). b In a 17-year-old male with axSpA, the model incorrectly segmented 
normal fat in the sacroiliac joint space (white arrow) rather than radiologists. c In a 27-year-old female with non-axSpA (non-specific sacroiliitis), 
the model and radiologists incorrectly segmented the normal yellow bone marrow of the sacrum and ilium (white arrows). d In a 39-year-old 
female with axSpA, small patchy FMs in the sacrum and ilium (white arrows) were missed by two radiologists, which are segmented by the model. 
axSpA axial spondyloarthritis; non-axSpA non-axial spondyloarthritis; T1WI T1-weighted images; DL deep learning; DSC Dice similarity coefficient

Table 4 Performance of the deep learning classification model on the internal and external test sets

All data in parentheses are 95% confidential intervals

AUC  area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value

Data sets AUC Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Cohen’s κ

Internal test set 0.876 (0.811–
0.942)

81.25 (73.44–
89.06)

88.52 (82.15–
94.89)

68.57 (59.28–
77.86)

83.08 (75.58–
90.58)

77.42 (69.06–
85.78)

0.504 
(0.335–0.673)

External test set 0.799 (0.696–
0.902)

77.59 (66.85–
88.32)

91.89 (84.87–
98.92)

52.38 (39.53–
65.23)

77.27 (66.49–
88.06)

78.57 (68.01–
89.13)

0.477 
(0.242–0.712)
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of axSpA, with AUCs of 0.76–0.98 for bone marrow 
edema on SIJ MRI [37, 38], 0.92 for erosion, and 0.91 
for ankylosis on SIJ CT [15]. Our experimental results 
demonstrated the effective application of DL methods 
in FM, filling a critical gap in the automatic identifica-
tion of SIJ changes reflecting axSpA progression (i.e., 

inflammation-erosion-FM-new bone formation) [39]. 
High value of DL models has been confirmed in identi-
fying inflammation and structural damage indicative of 
axSpA based on SIJ image analysis [38, 40]. However, the 
previous researchers did not independently analyze FM. 
In addition, none of the previous studies has evaluated 

Table 5 Performance of radiologists without and with model assistance on the external test set

All data in parentheses are 95% confidential intervals. p values less than 0.05 show statistical differences

AUC  an area under the receiver operating characteristic curve, PPV positive predictive value, NPV negative predictive value
a Data were compared between the radiological resident and model-assisted radiological resident
b Data were compared between the expert radiologist and model-assisted expert radiologist

Metrics Radiologists Model‑assisted radiologists

Radiological resident Expert radiologist Radiological resident p  valuea Expert radiologist P  valueb

Accuracy (%) 70.69
(58.18–81.82)

79.31
(69.09–89.14)

77.51
(67.27–87.32)

0.572 82.55
(70.91–90.91)

0.152

Sensitivity (%) 78.38
(63.89–91.18)

89.19
(76.92–97.30)

89.22
(78.79–97.44)

0.424 94.85
(85.71–100.00)

0.508

Specificity (%) 57.14
(33.33–78.58)

61.90
(40.72–83.33)

57.20
(34.99–78.57)

0.990 61.51
(40.00–82.36)

0.302

PPV (%) 76.32
(62.16–89.29)

80.49
(68.42–92.50)

78.27
(65.00–90.24)

/ 80.87
(68.18–92.50)

/

NPV (%) 60.00
(35.71–82.35)

76.47
(52.94–94.44)

75.34
(52.93–95.00)

/ 87.41
(66.67–100.00)

/

Cohen’s κ 0.359
(0.082–0.599)

0.533
(0.299–0.766)

0.484
(0.238–0.725)

/ 0.596
(0.369–0.802)

/

Fig. 5 ROC curves of the classification model and performance comparison between radiologists without and with model assistance 
on the external test set. DL deep learning; ROC receiver operating characteristic; AUC  area under the ROC curve; ACC  accuracy
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the clinical utility of DL models as an auxiliary tool to 
assist radiologists in interpreting SIJ changes on MRI.

We asked radiologists to interact with the automatic 
tool to simulate the process of shared decision-making 
and initially explore the application of automatic FM 
segmentation in assisting axSpA diagnosing. The model 
assistance added value to the identification of FM by 
reducing radiologists’ interpretation errors. For example, 
scattered and small FM lesions with poorly defined mar-
gins on SIJ MRI were incorrectly segmented by radiolo-
gists but accurately segmented by the DL model. These 
FM lesions were challenging to be identified by the naked 
eye [10, 11], but their representative features could be 
learned by the DL model through iterative optimization 
(Figs. 3 and 4d). However, radiologists and our classifica-
tion model all exhibited low specificity (52.38–61.90%) 
because they tend to misclassify non-axSpA as axSpA. 
This may be attributed to the lack of clinical indicators 
specific to disease diagnosis in the classification task, 
such as HLA-B27 status, age, and gender.

Unfortunately, incorrect results are still produced in some 
cases. A small part of normal fat in the sacral foramen, SIJ 
space, and intermuscular space was misidentified as FM. 
This fat can be identified by the expert radiologist, but was 
wrongly identified by the radiological resident (Fig. 4a and 
b). In addition, another segmentation error occurred when 
FM coexisted with multiple types of other SIJ changes 
(Fig.  4c). On T1WI, bone marrow edema decreases the 
intensity of FM, and erosion and sclerosis changed the 
shape of FM [1, 3]. On the contrary, experienced radiolo-
gists accurately segmented FM through observing over-
all SIJ MRI changes. These findings suggested that the DL 
model can assist physicians in interpreting FM, but cannot 
directly replace them in routine clinical settings.

Our study had some limitations. First, this retrospec-
tive study may lead to patient selection bias. Second, our 
segmentation and classification models were developed 
using axial T1WI only, which might limit the model’s 
generalization in different hospitals. In future studies, we 
will use images obtained from multiple MRI sequences 
and orientations to develop more robust models. Third, 
the reference standard for FM on SIJ MRI was deter-
mined by consensus among four radiologists without 
pathological confirmation, because pathological biopsy is 
usually unnecessary in such patients. It might introduce 
noise into annotations of FM and compromise the mod-
el’s performance. Fourth, we did not include healthy pop-
ulations or patients with non-rheumatic diseases (such 
as herniated discs and infection) for model development, 
which might reduce the applicability of our models in 
real-world practice. In the future, we will enroll patients 
with various diseases and healthy populations to opti-
mize DL models to meet clinical needs better.

Conclusion
In conclusion, the novel 2.5D-AttentionUnet-based 
model automatically and effectively segmented FM on SIJ 
MRI. The model is promising to serve as an auxiliary tool 
for radiologists to quantitatively analyze FM on SIJ MRI, 
which has the potential to improve diagnosis and prog-
nosis for axSpA in routine clinical settings.
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