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Abstract 

Background Cerebrovascular diseases have emerged as significant threats to human life and health. Effectively seg-
menting brain blood vessels has become a crucial scientific challenge. We aimed to develop a fully automated deep 
learning workflow that achieves accurate 3D segmentation of cerebral blood vessels by incorporating classic convolu-
tional neural networks (CNNs) and transformer models.

Methods We used a public cerebrovascular segmentation dataset (CSD) containing 45 volumes of 1.5 T time-of-
flight magnetic resonance angiography images. We collected data from another private middle cerebral artery 
(MCA) with lenticulostriate artery (LSA) segmentation dataset (MLD), which encompassed 3.0 T three-dimensional 
T1-weighted sequences of volumetric isotropic turbo spin echo acquisition MRI images of 107 patients aged 62 ± 11 
years (42 females). The workflow includes data analysis, preprocessing, augmentation, model training with valida-
tion, and postprocessing techniques. Brain vessels were segmented using the U-Net, V-Net, UNETR, and SwinUNETR 
models. The model performances were evaluated using the dice similarity coefficient (DSC), average surface distance 
(ASD), precision (PRE), sensitivity (SEN), and specificity (SPE).

Results During 4-fold cross-validation, SwinUNETR obtained the highest DSC in each fold. On the CSD test set, Swi-
nUNETR achieved the best DSC (0.853), PRE (0.848), SEN (0.860), and SPE (0.9996), while V-Net achieved the best ASD 
(0.99). On the MLD test set, SwinUNETR demonstrated good MCA segmentation performance and had the best DSC, 
ASD, PRE, and SPE for segmenting the LSA.

Conclusions The workflow demonstrated excellent performance on different sequences of MRI images for vessels 
of varying sizes. This method allows doctors to visualize cerebrovascular structures.

Critical relevance statement A deep learning-based 3D cerebrovascular segmentation workflow is feasible 
and promising for visualizing cerebrovascular structures and monitoring cerebral small vessels, such as lenticulostriate 
arteries.
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Key points 

• The proposed deep learning-based workflow performs well in cerebrovascular segmentation tasks.

• Among comparison models, SwinUNETR achieved the best DSC, ASD, PRE, and SPE values in lenticulostriate artery 
segmentation.

• The proposed workflow can be used for different MR sequences, such as bright and black blood imaging.

Keywords Angiography, Black blood imaging, Cerebrovascular segmentation, Deep learning, Magnetic resonance

Graphical Abstract

Introduction
The incidence of cerebrovascular diseases, including cer-
ebral venous thrombosis [1], has been increasing annu-
ally, surpassing incidence expectations. Several studies 
[2, 3] have indicated that risk factors such as hyperten-
sion and hyperglycemia are crucial factors in cerebrovas-
cular diseases, including stroke. Due to lifestyle changes, 
patients are being diagnosed with these diseases at 
increasingly younger ages, underscoring the necessity of 
early screening and prevention for these conditions.

Magnetic resonance angiography (MRA) [4], a specific 
application of MRI, allows blood flow and both normal 
and diseased blood vessels to be visualized. MRA is nota-
bly noninvasive, making it a preferred early cerebrovas-
cular disease screening method. Time-of-flight MRA 
(TOF-MRA) [5] enables contrast-media-free visualiza-
tion of vascular morphology. Additionally, black blood 

imaging techniques [6], such as the three-dimensional 
T1-weighted sequence of volumetric isotropic turbo spin 
echo acquisition (3D T1 VISTA), exhibit high signal-to-
noise ratios, high contrast, and anisotropic resolutions, 
enabling more precise imaging of small blood vessels, 
such as the lenticulostriate artery (LSA) [7].

Directly interpretating images still requires medical 
professionals to have high skill levels. A more modern 
approach involves segmenting and reconstructing the 3D 
structure of cerebral blood vessels. 3D reconstructions 
complement the interpretations of radiologists, and seg-
mentation allows automated image analysis pipelines to be 
used. This enables doctors to directly observe lesions and 
vascular conditions and has numerous clinical applications 
such as identifying blood flow behavior, detecting tumors 
[8], aiding neurosurgical navigation [9], and designing and 
implementing cerebral vascular scaffolds [10]. Vascular 
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diseases, particularly in the middle cerebral artery (MCA) 
and LSA, play a significant role in dementia, being major 
causes of Alzheimer’s disease [11]. These diseases can 
greatly contribute to cognitive decline and dementia, espe-
cially in patients older than 60 years. The MCA supplies 
blood to brain areas responsible for motor, sensory, and 
language functions, while the LSA supplies blood to the 
basal ganglia, which is essential for motor learning and cog-
nitive functions [12]. Blockages in these arteries can lead to 
irreversible impairments and significantly affect quality of 
life. Therefore, precisely segmenting the MCA and LSA is 
key for effectively managing stroke and small vessel disease 
[13] and for improving patient neurological outcomes.

Over the past few decades, numerous experts have pro-
posed classic methods for cerebrovascular segmentation, 
including thresholding-based [14], active contour model-
based [15], and statistical model-based [16] segmentation 
methods. While these traditional techniques can yield 
good cerebrovascular segmentation results, they rely 
heavily on texture features in the image, sometimes even 
necessitating manual and delicate feature extraction. 
Moreover, with the increasing abundance of multimodal 
medical images, these traditional methods have become 
less competitive in image processing tasks.

Owing to the rapid development of deep learning tech-
nology, particularly in the computer vision field, various 
cerebrovascular segmentation methods based on deep 
learning have been proposed. Phellan et al. [17] pioneered 
deep convolutional neural networks for the cerebrovascu-
lar segmentation task. Shelhamer et  al. [18] introduced a 
fully connected network that paved the way for end-to-end 
image segmentation. In the medical field, Ronneberger et al. 
proposed U-Net [19]. U-Net has since become a pivotal 
backbone network for end-to-end medical image segmenta-
tion tasks due to its symmetric lightweight encoder-decoder 
structure. Subsequently, several researchers [20, 21] have 
enhanced the U-Net’s design to achieve superior cerebro-
vascular segmentation. Moreover, Transformer [22], a deep 
learning model based on the self-attention mechanism, 
initially found extensive applications in natural language 
processing tasks such as machine translation and language 
modeling. Due to its powerful modeling capabilities, the 
transformer mechanism, including the Vision Transformer 
(ViT), has also achieved remarkable success in the computer 
vision field [23]. As a result, transformer-based cerebrovas-
cular segmentation models [24, 25] have emerged. Although 
these models have been shown to be effective for TOF-
MRA, they have never been validated on 3D T1 VISTA 
sequences. The methods have been focused on whole-brain 
vascular segmentation rather than smaller specific vascular 
segments, such as lenticulostriate arteries.

In this study, we aim to create a fully automated 
deep learning workflow that achieves accurate 3D 

segmentation of cerebral blood vessels. This is accom-
plished by combining classic CNN and transformer 
models and implementing standard data analysis, pre-
processing, enhancement, modeling, and postprocessing 
techniques. Ultimately, we aim to adaptively reconstruct 
vascular structures in multisequence MR brain images.

Materials and methods
The institutional review board approved this study 
(approval number 2021110623007), which was conducted 
according to the Helsinki Declaration. The researchers 
clearly informed the subjects about the experimental 
procedures. Their consent to voluntarily participate in 
the project was obtained, and signed informed consent 
forms were collected.

Dataset
Cerebrovascular Segmentation Dataset (CSD)
Chen et al. [26] curated a cerebrovascular segmentation 
dataset, which is accessible at xzbai.buaa.edu.cn/datasets.
html. The dataset comprises 45 volumes of TOF-MRA 
data obtained through 1.5 T GE MRI from the IXI data-
set [27]. For accurate ground truth annotation, multiple 
radiologists, each with more than 3 years of clinical expe-
rience, meticulously labeled each volume with voxels. All 
the volumes were 1024 × 1024 × 92 in size, with a spatial 
resolution of 0.264 mm × 0.264 mm × 0.8 mm.

MCA M1 segment with LSA dataset (MLD)
We collected data from 107 patients, including outpatients 
and inpatients, at our hospital between 2014 and 2018. All 
3D T1 VISTA images were 480 × 480 × 140 in size, with a 
spatial resolution of 0.4 mm × 0.4 mm × 0.4 mm. Voxel-level 
labeling of the image data was performed by a radiologist 
with more than three years of experience using ITK-SNAP. 
Additionally, the labeled MCA and LSA were thoroughly 
reviewed by another radiologist with more than ten years 
of experience. Physicians that processed the data were not 
aware of the clinical status of the patients to avoid bias.

Table 1 shows the details of the different datasets. N/A 
means not provided; note that 16 individuals did not pro-
vide sex information in the CSD.

Deep learning‑based segmentation workflow
The workflow encompasses five sequential steps: data-
set analysis, data preprocessing, model training, model 
validation, and postprocessing with analysis. The overall 
flowchart is illustrated in Fig. 1.

Dataset analysis
First, we thoroughly analyzed the dataset, focusing on 
assessing its overall size and the distributions of key 
variables. This analysis includes examining demographic 
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distributions (such as age and sex), clinical characteris-
tics (such as disease types and stages, scanning devices 
or protocols), and image feature diversity (such as size, 
shape, contrast, and intensity distribution). This analy-
sis is conducted to gauge the dataset’s representative-
ness, detect biases or imbalances, and confirm the 
robustness and relevance of the findings to the target 
population or condition. We then evaluate factors such 
as image clarity, noise level, and the presence of arti-
facts. This involves assessing images against predefined 

criteria: for strong image clarity, images must exhibit 
sharp, well-defined edges and structures; for low noise 
levels, images must exhibit minimal random variations 
or “graininess”; finally, any distortions or anomalies that 
could interfere with accurate interpretation are defined 
as artifacts. Images failing to meet these standards, such 
as those with excessive noise or significant artifacts such 
as motion blur or ghosting, are excluded from the analy-
sis to maintain the integrity and reliability of our data-
set. Additionally, we verify the accuracy and consistency 
of the labels to ensure the cerebrovascular structures 
of interest are correctly labeled. Evaluating the data-
set from these perspectives provides comprehensive 
insights into the characteristics, quality, and feasibility 
of the dataset. This process is designed to yield detailed 
statistical information about the dataset, guiding experi-
menters in critical aspects of cerebrovascular segmenta-
tion. Specifically, this information can be used to analyze 
the variabilities of thein vessel size, shape, and branching 
patterns, which are crucial for accurate segmentation. 
Experimenters should consider the distributions of any 
pathologies within the dataset, such as areas of stenosis 
or aneurysms, as these features may require specialized 
segmentation approaches. The statistical data also assist 
in assessing the heterogeneity of the patient popula-
tion, ensuring that the segmentation method is robust 
across diverse patients. This thorough analysis is vital for 

Table 1 Details of different datasets. N/A means not provided; 
note that 16 individuals did not provide gender in the CSD

CSD Cerebrovascular segmentation dataset, MLD Middle cerebral artery M1 
segment with lenticulostriate artery segmentation dataset, TOF Time-of-flight, 
3D T1 VISTA Three-dimensional T1-weighted sequence of volumetric isotropic 
turbo spin echo acquisition

Information CSD MLD

Scanner 1.5 T GE 3.0 T Philips

Modality TOF 3D T1 VISTA

TR/TE (ms) 26/4.2 400/19

Age (mean ± SD) N/A 62 ± 11

Sex (F/M/NA) 20/9/16 42/65

Sum/Train/Val/Test 45/27/9/9 107/64/21/22

Resolution  (mm3) 0.264 × 0.264 × 0.8 0.4 × 0.4 × 0.4

Volume size 1024 × 1024 × 92 480 × 480 × 140

Fig. 1 3D deep learning-based cerebrovascular segmentation workflow
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refining and validating the segmentation method, yield-
ing more reliable and clinically applicable results.

Data preprocessing and augmentation
The preprocessing stage involves several essential steps: 
denoising, smoothing, resampling, and contrast enhance-
ment. Denoising techniques, such as median filtering, are 
employed to reduce the image noise, minimize interfer-
ence from low-quality images during segmentation, and 
improve the algorithm’s performance. Smoothing opera-
tions, such as Gaussian smoothing, eliminate discontinu-
ous edges in the image and yield more continuous and 
recognizable blood vessel structures. Resampling ensures 
a standardized spatial resolution across images, reduc-
ing generalization errors caused by sampling device dis-
parities and providing a consistent size and resolution 
for model learning and inference. Contrast enhancement 
techniques, such as histogram equalization or adaptive 
histogram equalization, improve the visibility of vas-
cular structures in images. Specifically, we used mean 
filtering (kernel size: 3 × 3), Gaussian smoothing (stand-
ard deviation: 1, kernel size: 3 × 3), intensity normali-
zation (Z-score), and adaptive histogram equalization 
(block sizes: 8 × 8, clip limit: 0.1) for preprocessing. In 
addition, since images in the same dataset had the same 
resolution (MLD: 0.264 mm × 0.264 mm × 0.8 mm, CSD: 
0.4 mm × 0.4 mm × 0.4 mm), no resampling operation is 
performed.

Another critical step in the workflow is data augmen-
tation. The dataset is expanded by applying various geo-
metric transformations. These techniques, including 
image rotation, flipping, and intensity changes, increase 
the diversity and robustness of the data. In our experi-
ments, we augment the data by flipping and rotating the 
images and adjusting their intensity to 0.9–1.1 times that 
of the original images. These transformations were intro-
duced with a probability of 0.1 for each image during the 
training process.

Model training
We implemented fourfold cross-validation at this stage. 
Specifically, we partitioned the data into training and 
test sets at an 8:2 ratio. The training set was divided into 
four equal subsets, with three subsets used as training 
data and one as validation data, for model training and 
validation. This process was repeated four times, employ-
ing different subsets as validation data in each iteration 
to encompass the entire training set. By using cross-val-
idation, we can effectively utilize the limited dataset for 
training and validation, mitigating the risk of overfitting 
the model to a specific data distribution. Specifically, 
CSD encompassed 45 volumes; 36 were used for cross-
validation (27 for the training set and 9 for the validation 

set), and 9 were used for testing. MLD encompassed 107 
volumes; 85 were used for cross-validation (64 for the 
training set and 21 for the validation set), and 22 were 
used for testing. In this phase, we selected four network 
models for comparison training: U-Net [28], V-Net [29], 
UNETR [30], and SwinUNETR [31]. U-Net is a classic 
convolutional neural network that enhances segmenta-
tion accuracy through its encoder-decoder structure and 
skip connections. V-Net utilizes a residual network and 
multiscale residual module to capture fine details and 
contextual information. UNETR is a transformer-based 
model that leverages self-attention mechanisms to model 
pixel relationships effectively. SwinUNETR combines 
the Swin Transformer [32] and UNETR, where the Swin 
Transformer is a variant of the Transformer mechanism 
based on a local perceptual window. All the models used 
were three-dimensional segmentation models. During 
training, in the preprocessing process, a 192 × 192 × 64 
sized image patch was cropped from the entire volume of 
3D data for use as input to the models.

Due to the small proportion of cerebral vessels in the 
image, the foreground and background pixels are signifi-
cantly imbalanced. We use a weighted combined variant 
of dice loss and focal loss [33] to address this imbalance 
and enhance cerebrovascular segmentation. The dice 
loss effectively handles the foreground–background 
pixel imbalance, while the focal loss focuses on hard-to-
classify pixels by adjusting sample weights. By modifying 
the weights of the dice loss and focal loss and combining 
them using a weighted summation to form the final loss 
function, we balance their contributions to the segmenta-
tion results, leading to improved accuracy and robustness 
in cerebrovascular segmentation.

We utilized a workstation with 6 RTX 3090 GPUs, 2 
Intel(R) Xeon(R) Silver 4310 CPUs, and 256 GB of RAM 
for model training and testing. The training process 
employed the AdamW optimizer with an initial learning 
rate of 0.0001 for 400 training epochs, utilizing a batch 
size of 1. To expedite model convergence and reduce 
training time, we also implemented a warmup strategy.

Model validation
We evaluated the model using the validation set after 
every five rounds of each cross-validation fold. The 
entire image was predicted using a sliding window of 
size 192 × 192 × 64, and the dice similarity coefficient 
(DSC) was calculated as an internal performance metric. 
We then adjusted the model’s hyperparameters, such as 
the learning rate, network structure, or regularization 
parameters, based on the performance of the model on 
the validation set. We tested different combinations of 
hyperparameters and selected the model with the best 
performance on the validation set, i.e., the highest DSC.
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We comprehensively compared the U-Net, VNet, 
UNETR, and SwinUNETR models using the CSD and 
MLD datasets and evaluated their performances based 
on several metrics: DSC, average surface distance (ASD), 
precision (PRE), sensitivity (SEN), and specificity (SPE).

Postprocessing and analysis
Postprocessing was conducted to enhance the accu-
racy and quality of the image segmentation results. We 
employed operations such as edge smoothing, region 
merging, splitting, and filtering on every image in the 
validation set and test set. These operations fill voids 
and connect disjointed edges, merge small neighboring 
regions into more comprehensive areas, improve seg-
mentation consistency and connectivity, and eliminate 
artifacts, isolated points, or mislabeling in the segmenta-
tion results. Specifically, we first performed mean filter-
ing on the entire image and then removed regions smaller 
than 50 pixels and spliced neighboring regions that were 
no more than 10 pixels away from each other. Finally, we 
quantitatively and qualitatively evaluated the segmenta-
tion results by calculating various evaluation metrics 
on the test set and comparing them with the physician’s 
criteria for manual segmentation. The segmentation out-
comes were visualized in three dimensions, enabling the 
feasibility and accuracy of the segmentation results to be 
observed.

Statistical analysis
First, we calculated the performance metrics for each 
model and performed a Shapiro–Wilk test on the DSC, 
ASD, PRE, SEN, and SPE of the four models on the two 
test sets. If the p value exceeded 0.05, the data were nor-
mally distributed; if the p value was less than or equal to 
0.05, we examined the quantile–quantile plot; and if the 
data were distributed around a straight line, we assumed 
that the data were normally distributed. Otherwise, the 
data were assumed to not follow a normal distribution. 
We then used one-way ANOVA to compare the perfor-
mances of the different models. We calculated the F-sta-
tistic and the corresponding p value. A p value less than 
0.05 was considered to indicate a statistically significant 
difference between the performances of the models. All 
analyses were performed using the IBM SPSS statistical 
software (version 27).

Results
Model performance
Table  2 presents the mean DSC metrics for the CSD 
and MLD validation sets. The variations in the DSC 
metrics of the four models in each fold validation were 

insignificant, suggesting that the data distribution does 
not strongly influence the segmentation workflow.

Figure  2 illustrates that SwinUNETR achieved the 
highest DSC in each fold validation, highlighting the 
significant potential of the Transformer structure for 
cerebrovascular segmentation tasks.

We recorded the results in Table 3 and 4 to illustrate 
the quantitative analyses these models on the two test 
sets. On the CSD test set, SwinUNETR outperformed 
the other models in the DSC, PRE, SEN, and SPE met-
rics, while V-Net exhibited the best performance in the 
ASD metric. On the MLD test set, SwinUNETR dem-
onstrated an outstanding ability to segment cerebral 
vessels of different sizes despite not achieving the best 
MCA segmentation results. The proposed algorithm 
still excelled in the DSC, ASD, PRE, and SPE metrics 
for LSA segmentation. This finding indicates that Swi-
nUNETR is capable of effectively handling diverse ves-
sel sizes. Of course, V-Net also performed strongly, 
indicating that traditional CNNs still possess advan-
tages in this task. Moreover, through statistical tests, 
we found that the models’ performance metrics on the 
test set conformed to a normal distribution. The per-
formance metrics of the models significantly differed 
(p < 0.05) for all metrics except the  DSCM (p = 0.225), 
 PREM (p = 0.325), and  SPEM (p = 0.063).

To further visualize the performance metrics of these 
models on the two test sets, the results are depicted 
in Fig. 3 for better observation. These results illustrate 
that V-Net achieves a relatively low ASD index, indicat-
ing its proficiency in capturing the edge information 
of cerebrovascular images. Furthermore, UNETR and 
SwinUNETR performed well in DSC, suggesting that 
the attention mechanism of the Transformer structure 
effectively captures contextual information and helps 

Table 2 Mean DSC metrics for the CSD and MLD validation 
set, with the best models in the four-fold cross-validation set 
highlighted in bold

CSD Cerebrovascular segmentation dataset, MLD Middle cerebral artery M1 
segment with lenticulostriate artery segmentation dataset

Dataset Fold U‑Net V‑Net UNETR SwinUNETR

CSD Fold 0 0.688 0.826 0.825 0.860

Fold 1 0.686 0.817 0.825 0.864
Fold 2 0.679 0.819 0.816 0.857

Fold 3 0.704 0.826 0.832 0.848

MLD Fold 0 0.574 0.628 0.612 0.657

Fold 1 0.597 0.641 0.629 0.684
Fold 2 0.589 0.637 0.607 0.654

Fold 3 0.603 0.622 0.625 0.664
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restore the cerebrovascular structure in the deep learn-
ing model.

Segmentation visualization
To facilitate visual comparison of the segmentation 
effects of each model on the cerebral vasculature, we ran-
domly selected one patient from each of the two test sets. 
Figure  4 visualizes the ground truth and segmentation 

results of the four models, encompassing the entire cer-
ebral vasculature of the patient in CSD and the MCA M1 
with the LSA of the other patient in MLD. Notably, Swi-
nUNETR more accurately identified vessel areas, achiev-
ing significantly smaller areas of omission (blue) and 
misclassification (green).

Discussion
The cerebrovascular segmentation task is challenging 
due to low contrast and presence of noise in medical 
images, coupled with complex vascular structures, data 
inhomogeneity, and labeling difficulties. While many 
articles have explored the potential of deep learning 
for cerebrovascular segmentation, they often concen-
trate on improving the accuracy or segmenting specific 
data sequences [34], neglecting the performance of 
the model on different datasets and vessels of different 
sizes. Therefore, we aimed to develop a deep learning 
cerebrovascular 3D segmentation workflow capable of 
handling multimodal clinical datasets, yielding accurate 
cerebrovascular structural segmentation results. Since 

Fig. 2 Mean DSC metrics for different models on two fourfold cross-validation sets

Table 3 Evaluation results of the four best validation models on 
the CSD test set; the best metrics are highlighted in bold

CSD Cerebrovascular segmentation dataset, MLD Middle cerebral artery M1 
segment with lenticulostriate artery segmentation dataset, DSC Dice similarity 
coefficient, ASD Average surface distance, PRE Precision, SEN Sensitivity, SPE 
Specificity

CSD DSC ASD PRE (%) SEN (%) SPE (%)

U-Net 0.705 61.69 65.5 76.8 99.905

V-Net 0.817 0.99 80.7 82.9 99.953

UNETR 0.822 3.68 80.9 83.8 99.953

SwinUNETR 0.853 2.67 84.8 86.0 99.963

Table 4 Evaluation results of the four best validation models on the MLD test set; the best metrics are highlighted in bold

CSD Cerebrovascular segmentation dataset, MLD Middle cerebral artery M1 segment with lenticulostriate artery segmentation dataset, DSC Dice similarity coefficient, 
ASD Average surface distance, PRE Precision, SEN Sensitivity, SPE Specificity, *M Metrics of middle cerebral artery M1, *L Metrics of lenticulostriate artery

MLD DSCM DSCL ASDM ASDL PREM (%) PREL (%) SENM (%) SENL (%) SPEM (%) SPEL (%)

U-Net 0.724 0.468 11.35 5.64 68.5 49.0 79.9 46.2 99.9906 99.9958

V-Net 0.766 0.482 2.38 4.34 73.6 39.2 83.1 67.2 99.9925 99.9902

UNETR 0.727 0.497 3.70 7.59 77.0 48.9 71.4 52.1 99.9946 99.9952

SwinUNETR 0.761 0.562 5.86 3.45 74.1 56.0 80.8 58.3 99.9928 99.9960
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this segmentation workflow can integrate different 
CNN and transformer models, for different multimodal 
sequence datasets, the workflow can use more targeted 
segmentation models to obtain better performance 

indicators. Our proposed workflow significantly boosts 
cerebrovascular segmentation accuracy, with SwinU-
NETR demonstrating superior performance across 
4-fold cross-validation, achieving high DSC, precision, 

Fig. 3 Distributions of the evaluation results of the four best-validated models on the test sets. The first row shows the results for CSD, 
and the second and third rows show the results for MLD

Fig. 4 Visualizations of the ground truth and four model segmentation results. Red indicates true positives, green indicates false positives, and blue 
indicates false negatives. The first row shows the entire brain vessel in CSD, and the second and third rows show the middle cerebral artery (MCA 
M1) and the lenticulostriate artery (LSA) in MLD
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sensitivity, and specificity. Its impressive results on 
both the CSD and MLD test sets underscore the work-
flow’s practical value. This integrated approach pro-
vides a robust and reliable solution for cerebrovascular 
segmentation tasks.

This study specifically focused on validating the abil-
ity of the segmentation workflow across diverse clinical 
datasets. We used a public TOF-MRA dataset to achieve 
this goal and constructed a black blood sequence dataset 
of cerebrovascular images. In addition, we were among 
the first to segment the black blood sequence on MRI. 
We thoroughly explored the workflow’s performance 
and generalization capabilities under different scenarios 
through comprehensive experimental evaluations of both 
datasets.

We conducted a comparative analysis of various mod-
els and observed that deep learning-based workflows 
for 3D cerebrovascular segmentation yielded favorable 
results. The following indicators were used in the pro-
cess: the DSC measures the degree of overlap between 
the segmentation results and the reference standard, with 
values ranging from 0 to 1; values closer to 1 indicate 
greater similarity between the segmentation results and 
the reference standard. The ASD calculates the average 
distance between the segmentation result and the refer-
ence standard, assessing the proximity between the result 
and the actual vessel boundary. Smaller ASD values 
indicate a closer approximation to the vessel boundary. 
Additionally, the PRE represents the ratio of the correctly 
classified positive samples in the segmentation result to 
the total number of samples classified as positive. Higher 
precision values imply that the model accurately identi-
fies more vessel structures in the segmentation results. 
The SEN measures the ratio of correctly classified posi-
tive samples in the reference standard to the total num-
ber of positive samples. A higher recall rate indicates a 
stronger ability to effectively capture vascular structures. 
Finally, SPE evaluates the ratio of correctly classified neg-
ative samples to the reference standard’s total number of 
negative examples. A high specificity value indicates that 
the model can accurately exclude nonvascular regions. 
The results demonstrate that the models achieved differ-
ent levels of performance according to the metrics used. 
Notably, V-Net excels in the ASD metric, indicating a 
strong ability to capture structural information about 
blood vessel edges. SwinUNETR, in contrast, exhibits 
strong performance in the DSC metric. These results 
highlight the distinct advantages and suitable scenarios 
of each model, emphasizing the importance of choosing 
the appropriate model considering the specific require-
ments of the situation. Furthermore, our workflow can 
seamlessly incorporate many deep learning models to 
address complex and dynamic clinical scenarios.

During the workflow evaluation, we observed that the 
deep learning models had relatively weaker segmentation 
ability for smaller vascular structures. While the CNN 
and Transformer models excel in capturing the spatial 
relationships and subtle features of cerebral blood vessels, 
thus enhancing the segmentation accuracy and detail 
retention of these models, their performance declines 
as the number of vascular structures is decreased. For 
instance, the DSC metric of the deep learning model for 
MCA M1 segmentation approaches 0.8. However, the 
DSC decreases to less than 0.6 on finer LSA segmenta-
tions. This phenomenon suggests that the segmentation 
capabilities of existing deep learning models for delicate 
structures can be improved.

Furthermore, we compare our results with the results 
of other studies. Wu et  al. [24] proposed a weakly 
supervised cerebrovascular segmentation network that 
achieved a DSC of 0.831 in a public TOF-MRA dataset 
from the MIDAS data platform. Chen et al. [25] demon-
strated the generative consistency of TOF-MRA-based 
semi-supervised cerebrovascular segmentation; their 
model’s best DSC was 0.788. Chen et  al. [26] generated 
the publicly available CSD dataset and proposed a 3D 
adversarial network model called A-SegAN; this model 
achieved a DSC of 0.864 for cerebral vessel segmenta-
tion in TOF-MRA volumes. Our approach primarily 
differs from these methods because our approach has 
been validated on TOF-MRA and incorporates 3D T1 
VISTA sequences; moreover, our approach considers 
the segmentation of both the entire cerebral vasculature 
and smaller specific vascular segments, such as the len-
ticulostriate arteries. On the CSD test set, our method 
obtained a DSC value of 0.853, which is slightly lower 
than the 0.864 of the A-SegAN [26]. This may be because 
they used only 5 data points for the test set, while we 
used 9. On the MLD test set, the DSC is 0.766 for MCA 
and 0.562 for LSA (surpassing the 0.34 achieved by Ma 
et  al. using HighRes3DNet [35] because our approach 
uses a more advanced Transformer structure).

These findings reveal promising avenues and chal-
lenges for future research. First, enhancing workflow 
performance requires improving the network architec-
ture. Although traditional network architectures have 
shown success, they still have untapped potential. Future 
research can explore novel model architectures or incor-
porate multiple models to improve the segmentation of 
fine-grained structures. For example, introducing an 
attention mechanism, increasing network depth and 
width, employing unconventional convolutional ker-
nels, and incorporating generative adversarial network 
mechanisms [36] could all improve the network archi-
tecture. Second, the dataset must be expanded. Pub-
licly available cerebrovascular datasets are limited due 
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to confidentiality and the difficulty of accessing medical 
data. To address this, future research can focus on con-
structing larger publicly available cerebrovascular data-
sets by fostering multicenter cooperation, data sharing, 
and data synthesis. Finally, evaluation metrics and pro-
cesses must be standardized. This standardization will 
aid in comparing and benchmarking various approaches.

Limitations
This study has several limitations that should be acknowl-
edged. First, the dataset used in this study may be limited in 
size and diversity. Although we attempted to utilize publicly 
available datasets, these datasets might only partially repre-
sent the vast variability of clinical scenarios and image qual-
ities encountered in real-world situations. Second, while we 
employed standard evaluation metrics, these metrics may 
not fully encompass all aspects of segmentation perfor-
mance. Additional metrics or criteria (e.g., manual scoring 
of segmentation quality) could provide a more compre-
hensive assessment. We did not include these metrics due 
to cost and efficiency issues and a more comprehensive 
assessment could be pursued in subsequent studies. Third, 
this study was primarily focused on MRI data and inves-
tigating the performances of the models on different MRI 
sequences. However, the performances of other imaging 
modalities (e.g., CTA) still need to be explored. Fourth, 
specific models (U-Net, V-Net, UNETR, and SwinUN-
ETR) were compared in this study. While these models per-
formed well, other state-of-the-art models may be worth 
investigating to potentially improve the proposed model. 
Finally, although the models exhibited good segmentation 
results, clinical validation through expert radiologist assess-
ments or direct comparisons with ground truth manual 
segmentation results could provide additional insights into 
the reliability and accuracy of the models.

Conclusion
In conclusion, we are the first researchers to segment 
black blood sequence MRI cerebrovascular images and 
explore the feasibility of deep learning for segmenta-
tion of the smallest cerebral vessels. Our proposed 
deep learning cerebrovascular 3D segmentation work-
flow accomplishes whole cerebrovascular segmentation 
on CSD. In addition, we compare MCA and LSA seg-
mentation on MLD and investigate the performances 
of four deep learning models across bright and black 
blood MRA sequences as well as their abilities to seg-
ment cerebral vessels of varying sizes. The results dem-
onstrate that the integrated workflow combining the 
CNN and Transformer models exhibits outstanding 

performance and capabilities, providing physicians 
with a powerful tool for visualizing vascular structures. 
This workflow contributes to the enhancement and 
applicability of cerebrovascular segmentation and fos-
ters the application and development of deep learning 
in the cerebrovascular segmentation field.
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