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Abstract 

Objective To develop and validate a deep learning model based on multi‑lesion and time series CT images in pre‑
dicting overall survival (OS) in patients with stage IV gastric cancer (GC) receiving anti‑HER2 targeted therapy.

Methods A total of 207 patients were enrolled in this multicenter study, with 137 patients for retrospective train‑
ing and internal validation, 33 patients for prospective validation, and 37 patients for external validation. All patients 
received anti‑HER2 targeted therapy and underwent pre‑ and post‑treatment CT scans (baseline and at least one 
follow‑up). The proposed deep learning model evaluated the multiple lesions in time series CT images to predict risk 
probabilities. We further evaluated and validated the risk score of the nomogram combining a two‑follow‑up lesion‑
based deep learning model (LDLM‑2F), tumor markers, and clinical information for predicting the benefits from treat‑
ment (Nomo‑LDLM‑2F).

Results In the internal validation and prospective cohorts, the one‑year AUCs for Nomo‑LDLM‑2F using the time 
series medical images and tumor markers were 0.894 (0.728–1.000) and 0.809 (0.561–1.000), respectively. In the exter‑
nal validation cohort, the one‑year AUC of Nomo‑LDLM‑2F without tumor markers was 0.771 (0.510–1.000). Patients 
with a low Nomo‑LDLM‑2F score derived survival benefits from anti‑HER2 targeted therapy significantly compared 
to those with a high Nomo‑LDLM‑2F score (all p < 0.05).

Conclusion The Nomo‑LDLM‑2F score derived from multi‑lesion and time series CT images holds promise 
for the effective readout of OS probability in patients with HER2‑positive stage IV GC receiving anti‑HER2 therapy.

Critical relevance statement The deep learning model using baseline and early follow‑up CT images aims 
to predict OS in patients with stage IV gastric cancer receiving anti‑HER2 targeted therapy. This model highlights 
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the spatiotemporal heterogeneity of stage IV GC, assisting clinicians in the early evaluation of the efficacy of anti‑HER2 
therapy.

Key points 

• Multi‑lesion and time series model revealed the spatiotemporal heterogeneity in anti‑HER2 therapy.

• The Nomo‑LDLM‑2F score was a valuable prognostic marker for anti‑HER2 therapy.

• CT‑based deep learning model incorporating time‑series tumor markers improved performance.

Keywords Human epidermal growth factor receptor 2, Deep learning, Gastric cancer, Computed tomography (X‑ray), 
Treatment outcome

Graphical Abstract

Introduction
Gastric cancer (GC) is globally the fifth most prevalent 
and third leading cause of cancer-related mortality [1]. 
Human epidermal growth factor receptor 2 (HER2) over-
expression has been detected in 17–30.5% of patients 
with GC [2, 3]. Anti-HER2 targeted therapy has proven 
to be a practical treatment approach for GC [4]. In the 
Trastuzumab for Gastric Cancer (ToGA) study, trastu-
zumab combined with chemotherapy extended overall 
survival (OS) to 16 months for patients with HER2-pos-
itive advanced GC. However, the ToGA study reported 
a modest objective response rate of 47.3% [5]. Therefore, 
identifying the patients who have the potential to benefit 
from anti-HER2 targeted therapy has long been overdue.

GC is distinguished by high spatiotemporal hetero-
geneity, which plays a crucial role in resistance to anti-
HER2 therapy [6]. The temporal heterogeneity exhibits 
a change in the HER2 status before and after treatment, 
while the spatial heterogeneity manifests as discord-
ant HER2 expression between primary and metastatic 
lesions [7]. The methods to evaluate the spatiotempo-
ral heterogeneity of stage IV GC are lacking in clinical 
practice. Multi-spot sampling under gastroscopy can 
only represent a static snapshot of primary tumors at 
a particular time point, which does not reflect the het-
erogeneous features of various metastases to targeted 
therapy over time. Therefore, it is imperative to develop 
a model that can predict the long-term prognosis of 
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anti-HER2 targeted therapy in both temporal and spa-
tial dimensions so that personalized therapeutics can 
be managed.

Clinicians mainly use tumor markers and radiographic 
images to track dynamic tumor changes [8]. RECIST 
v1.1 is generally used to estimate the therapeutic efficacy 
in advanced GC, focusing exclusively on the unidimen-
sional measurement of lesions rather than considering 
the overall landscape. However, the primary tumor can-
not be identified as the target lesion due to the hollow 
nature of the stomach. In contrast, evidence supports the 
notion that artificial intelligence can reveal longitudinal 
heterogeneity during treatment [9–12]. The deep learn-
ing model developed by Xu et  al. utilized baseline and 
follow-up CT images at months 1, 3, and 6 to predict sur-
vival and cancer-specific outcomes for chemoradiation-
treated non-small cell lung cancer [8]. Lu et  al. used an 
unlimited number of time series CT images to train the 
deep learning model and used baseline and two-month 
follow-up images to predict OS in patients with meta-
static colon cancer [9]. No study has used deep learning 
models based on time series CT images to screen out 
patients who benefit from anti-HER2 targeted therapy 
in GC as of yet. We believed that the early radiological 
changes were worth mining, because they demonstrated 
the tumor’s responsiveness or resistance to targeted ther-
apy in a temporal dimension.

Multi-lesion and time series images collected in this 
study could better reflect the spatiotemporal heteroge-
neity of stage IV GC. We constructed an attention-based 

deep learning framework that automatically discerns fea-
tures from multiple lesions of different time points for 
OS prediction in anti-HER2 targeted therapy. We applied 
this framework to time series CT images and tumor 
markers to introduce the lesion-based deep learning 
model (LDLM) and the tumor marker–based deep learn-
ing model (TDLM). Furthermore, we built a nomogram 
(Nomo-LDLM) by combining the deep learning models 
with clinical information to achieve accurate early pre-
diction of OS probability.

Methods
Data collection
We retrospectively enrolled patients with HER2-positive 
advanced GC treated with trastuzumab from four centers 
between November 2011 and November 2019 and pro-
spectively enrolled patients at center 1 between Decem-
ber 2019 and December 2020. The ethics committee of 
Peking University Cancer Hospital (PUCH) approved this 
study (No. 2020KT08). OS was defined as the duration 
from the initiation of anti-HER2 therapy to death from 
any cause or to the most recent follow-up.

The details of patient recruitment are shown in Fig. 1 
and Text S1. A total of 375 patients diagnosed as HER2-
positive advanced GC were enrolled, of whom 207 
patients meeting the criteria were included in the analy-
sis. The retrospectively collected 137 patients from center 
1 were randomly split into the training and internal 
validation cohort in a 2:1 ratio (n = 91 and 46, respec-
tively), and the prospectively collected 33 patients were 

Fig. 1 Study participants
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included in the prospective cohort. The external valida-
tion cohort included 37 patients from centers 2–4 (25 
from The First Affiliated Hospital of Zhengzhou Uni-
versity, 10 from Nanjing Drum Tower Hospital of Nan-
jing University Medical School, 2 from Ruijin Hospital 
of Shanghai Jiao Tong University). We included baseline 
and post-treatment CT images up to four follow-ups in 
the training cohort for model construction and validated 
its performance of early prediction in other cohorts only 
using baseline and post-treatment CT images up to two 
follow-ups. Moreover, the baseline and post-treatment 
tumor markers up to two follow-ups were also recorded 
in center 1 for model improvement (tumor markers in 
center 2/3/4 were not included). A total of 680 CT scans 
and 703 times examination of tumor markers were col-
lected. Table S1 displays the protocol details of the CT 
scans.

Preprocessing data
The workflow is illustrated in the Graphical abstract. For 
CT images, two radiologists manually provided bound-
ing boxes at the maximum slice of the primary tumor and 
target lesions (M.H. and J.Y., both with two years of diag-
nostic experience) with ITK-SNAP (version 3.8). Accord-
ing to RECIST v1.1, for each patient, the radiologists 
selected up to five target lesions whose diameters were 
larger than 10 mm at baseline. Then, the radiologists used 
bounding boxes to mark each lesion and kept the size of 
the bounding boxes on the baseline and follow-up images 
consistent for maintaining scale information. The bound-
ing boxes were then reviewed by a senior radiologist 
(L.T., with 18  years of diagnostic expertise). All readers 
were blinded to demographic information.

As shown in the Graphical abstract, the images were 
processed as follows before being fed into the network: (1) 
extracting 1.5-fold the annotated bounding box regions 
from CT slices as the regions of interest (ROIs) of the 
lesions; (2) symmetrically padding rectangular ROIs to 
its minimum circumscribed square to generate image 
patches and then resampling them to 224 × 224 resolu-
tion; (3) normalizing the lung metastasis with the window 
level of -400 and the window width of 1500, and abdomi-
nal lesions with the window level of 50 and the window 
width of 350; and (4) augmenting images by random rota-
tion of -30 to 30° to cope with the uncertainty in clinical 
settings. We applied the same operations to the upper 
and lower layers of the annotated lesions and obtained a 
3-channel image (224 × 224 × 3) to provide richer contex-
tual information (Fig. S1, S2, Text S2, and Table S2). For 
tumor markers, we normalized all data with the mean and 
variance in the training cohort (Table S3).

Models based on deep learning
We constructed a two-level attention-based deep learn-
ing framework using Transformer architecture [13–15]. 
The first level was the temporal heterogeneity Trans-
former (TH-former), which modeled the feature changes 
in lesions or tumor markers over time. The second level, 
the object heterogeneity Transformer (OH-former), 
modeled the interactions between the features of multi-
ple lesions or tumor markers and generated a descriptive 
signature of features for each patient. This framework 
was instantiated as the LDLM for the lesions and the 
TDLM for the tumor markers (Fig. S4, Texts S3 and S4). 
When training LDLM, the CT images put into the model 
contained a baseline and up to four follow-ups, which 
improved the robustness of the model by reducing time-
dependent signal noise [10, 16]. Then, the CT images 
obtained at baseline and up to two follow-up visits were 
incorporated into the model in the validation cohorts for 
early on-treatment prediction.

For multiple ROIs of a patient, the features were firstly 
extracted by a feature extractor and then were combined 
using attention weighting. Figure S5 examples a visu-
alization of feature fusion. We first defined a learnable 
aggregation vector; then through the attention weight-
ing module of Transformer, the importance of time-serial 
inter-lesion heterogeneity was passed onto this vec-
tor. With this aggregation, each patient would have only 
one outcome vector, regardless of the number of target 
lesions. Finally, we used a multi-layer perceptron with 
softmax layer to generate the predicted OS probability, 
a continuous variable ranging from 0 to 1, with low val-
ues indicating poor OS (< 12  months) and high values 
indicating good OS (> 12  months). In addition, we used 
masking operations to deal with the missing data in the 
clinical settings (Text S5). The code can be found on 
GitHub https:// anony mous. 4open. scien ce/r/ HER2/.

Models based on RECIST v1.1 and tumor burden
We established two prognostic models based on RECIST 
v1.1 and measurements of tumor burden (TB-delta 
model). For the RECIST model, we assessed the relative 
changes in diameter between the baseline and the sec-
ond follow-up based on RECIST criteria. TB-delta was 
measured on the percentage change of the summed area 
of target lesions between baseline and the second follow-
up. If the patient only had baseline and the first follow-up 
CT images, the result of RECIST and TB-delta were cal-
culated based on these two examinations.

Overall model using the nomogram
The deep networks paid much attention to higher-
order features [17]. In contrast, the size-based RECIST 

https://anonymous.4open.science/r/HER2/
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focused on first-order features, providing a good com-
plement to the deep networks. We constructed a nomo-
gram, called Nomo-LDLM, based on multiple variables 
(LDLM score, TDLM score, RECIST, and clinical infor-
mation) through Cox regression to achieve comple-
mentary advantages. We also constructed a nomogram 
without the TDLM score, Nomo-w/o TDLM, for per-
formance comparison in the external validation cohort 
without tumor markers.

Explanation of deep learning models
The core module of the Transformer blocks (TH-for-
mer and OH-former) modeled complex relationships 

between multiple components (time points and objects). 
We depicted the last layer of the Transformer as atten-
tion maps, which highlighted the contribution of dif-
ferent time points and distinguished the relationship 
between lesions from different organs in high- and low-
risk groups. In particular, we used Gradient-weighted 
Class Activation Mapping (GradCAM) algorithm to 
generate the heatmap visualization of the LDLM. The 
high-response regions in the heatmap represented that 
the model paid more attention to the part of lesions, indi-
cating a strong relationship between the lesions and risk 
probability at the pixel level [18].

Table 1 Characteristics of patients, lesions, and tumor markers

FISH Fluorescence in situ hybridization
# ANOVA test
* Chi’s square test or Fisher’s test

Training cohort 
(n = 91)

Internal validation cohort 
(n = 46)

External validation 
cohort (n = 37)

Prospective cohort 
(n = 33)

p value

Patients
 Age (mean ± SD) 60.8 ± 10.7 60.0 ± 12.8 63.8 ± 10.5 67.0 ± 19.5 0.217#

 Sex (n (%))

  Male 70 (76.92) 37 (80.43) 31 (83.78) 25 (75.76) 0.802*

  Female 21 (23.08) 9 (19.57) 6 (16.22) 8 (24.24)

 HER2 expression (n (%))

  HER2 2 + /FISH + 21 (23.08) 8 (17.39) 14 (37.84) 8 (24.24) 0.180*

  HER2 3 + 70 (76.92) 38 (82.61) 23 (62.16) 24 (72.73)

 No. line of therapy (n (%))

  1 76 36 31 23 0.319*

  2 13 9 5 6

  3 or more 2 1 1 4

Lesions
 Total number 331 161 146 127

 Anatomic position (n (%))

  Stomach 91 (27.49) 46 (28.57) 37 (25.34) 33 (25.98) 0.930*

  Lymph node 120 (36.25) 57 (35.40) 50 (34.25) 40 (31.50)

  Liver 91 (27.49) 45 (27.95) 50 (34.25) 40 (31.50)

  Adrenal gland 9 (2.72) 3 (1.86) 3 (2.05) 2 (1.57)

  Spleen 1 (0.30) 1 (0.79)

  Peritoneum 7 (2.11) 4 (2.48) 3 (2.05) 4 (3.15)

  Soft tissue 2 (0.60) 1 (0.62)

  Bone 2 (0.60)

  Lung 8 (2.42) 4 (2.48) 3 (2.05) 5 (3.94)

  Other 1 (0.62) 2 (1.57)

Bounding boxes
 Total number (n (%)) 2125 728 682 569

  Baseline (BL) 561 (26.40) 271 (37.23) 239 (35.04) 207 (36.38)

  First follow‑up (1F) 559 (26.31) 265 (36.40) 232 (34.02) 203 (35.68)

  Second follow‑up (2F) 462 (21.74) 192 (26.37) 211 (30.94) 159 (27.94)

  Third follow‑up (3F) 333 (15.67)

  Fourth follow‑up (4F) 210 (9.88)
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Statistical analysis
Data were described as means with standard deviation. 
The Kruskal–Wallis test was used for quantitative vari-
ables, and the Wilcoxon signed-rank test was used for 
correlated samples. Pearson’s chi-square and Fisher’s test 
were used for qualitative variables. Concordance index 
(C-index) and one-year AUC were used to compare the 
performance of the models in predicting OS. The Youden 

index was used to select the best cutoff value in the train-
ing cohort and stratified patients into the low- or high-
risk group in other cohorts. Kaplan–Meier analysis and 
log-rank test were performed for OS comparison in the 
two groups. The calibration curve and Hosmer–Leme-
show test were performed to analyze the predictive abili-
ties of the nomogram. Statistical analyses were conducted 

Fig. 2 Overall survival Kaplan–Meier analysis was performed with the cutoff value derived from the training cohort by the Youden index. Internal 
validation, external validation, and prospective cohorts were stratified into high‑ and low‑risk groups by LDLM with no follow‑up to two follow‑ups 
(p < 0.05, log‑rank test)
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using R 4.1.3 and Python 3.7. A p < 0.05 indicated a statis-
tically significant difference.

Results
Clinical characteristics
This study finally included 207 patients with HER2-
positive stage IV GC from 4 centers  (Table  1). Kaplan–
Meier analysis in different centers and cohorts revealed 
no significant difference in survival (p = 0.22 and 0.064, 
respectively, Fig. S6). A total of 680 CT scans were used 
in the study, and 765 lesions (207 primary and 558 tar-
get lesions, average 3.70 ± 1.23 per patient) involving 
10 anatomical sites were examined. Only 17 individu-
als, accounting for 8% of the total, underwent just one 
follow-up CT examination, and other patients collected 
baseline and at least two follow-up CT images. A total 
of 4104 bounding boxes were delineated on the arterial 
and venous phases of the full-body CT (only the venous 
phase for liver metastases). No significant differences in 
the number and area of target lesions were found among 
the four cohorts (p > 0.0083, Bonferroni correction, 
Tables S1 and S4).

Development and validation of LDLMs
The model was trained with 2125 bounding boxes of 
331 lesions in the training cohort and then predicted the 
risk probability of the patients longitudinally over time. 
We found that the deep learning model based on two 
follow-ups was overall better than LDLM-BS and LDLM-
1F (baseline (BS); one follow-up (1F); two follow-ups 
(2F), Table 3), with the one-year AUC of internal valida-
tion, external validation, and prospective cohorts 0.844 
(0.673–0.971), 0.683 (0.350–0.957), and 0.690 (0.419–
0.962), respectively.

We selected the optimal cutoff value according to 
the Youden index on the training cohort. Patients with 
predicted risk probability greater than the cutoff value 

were classified as the high-risk group, and those with 
lower risk probability were classified as the low-risk 
group. Kaplan–Meier analysis was performed between 
the two groups to compare the prognostic stratifica-
tion ability of models based on the baseline with no 
follow-up or up to two follow-up CT scans (Fig.  2). 
We found that the LDLM-BS did not yield a statisti-
cal disparity in prognosis between high- and low-risk 
groups among the three cohorts (p > 0.05). With the 
addition of the follow-up CT scans, the stratification 
in OS between the high- and the low-risk groups grad-
ually became more separable (LDLM-2F: all p < 0.05, 
log-rank test).

Comparison between LDLM‑2F and other models
As shown in Table  2, we established eight prognos-
tic models of RECIST, TB-delta, LDLM-BS, LDLM-1F, 
LDLM-2F, TDLM, Nomo-LDLM-2F, and Nomo-w/o 
TDLM (Fig. S7). Figure  3 shows the Nomo-LDLM-2F 
and its one-year survival calibration curve. The predicted 
results of Nomo-LDLM-2F were in good agreement with 
the actual results (AUC of training = 0.891 (0.785–0.967), 
internal validation = 0.894 (0.728–1.000), and prospec-
tive = 0.809 (0.561–1.000)). In the external validation 
cohort, the Nomo-w/o TDLM also reached an AUC of 
0.771 (0.510–1.000) (Fig. 4A).

In terms of prognostic prediction, the RECIST per-
formed relatively well; however, it failed to stratify 
risk in all cohorts (Fig. S8). The Nomo-w/o TDLM or 
Nomo-LDLM-2F outperformed the other models in the 
four cohorts, suggesting that the addition of follow-up 
images provided additional information on temporal het-
erogeneity, enabling more precise prognostic stratifica-
tion. The nomogram with TDLM performed the best in 
the internal validation and prospective cohorts, indicat-
ing that the addition of tumor markers refined the multi-
dimensional model (Table 3, Fig. 4B, C).

Table 2 Descriptions for main models

BS Baseline, 1F One follow-up, 2F Two follow-ups, LDLM-2F Two-follow-up lesion-based deep learning model, Nomo-LDLM-2F Nomogram based on LDLM-2F, Nomo-
w/o TDLM Nomogram without TDLM, TB Tumor burden, TDLM Tumor marker–based deep learning model

Models CT images Tumor markers RECIST Clinical 
information

Descriptions

BS 1F 2F

RECIST √ √ √ Based on RECIST 1.1, treatment response is defined as PR, SD, and PD

TB‑Δ √ √ √ Change in percentage in tumor size

LDLM‑BS √ LDLM based on baseline CT scans

LDLM‑1F √ √ LDLM based on baseline and the first one follow‑up CT scans

LDLM‑2F √ √ √ LDLM based on baseline and the first two follow‑up CT scans

TDLM √ Based on serial tumor markers

Nomo‑w/o TDLM √ √ √ √ √ Nomogram integrated by LDLM, RECIST, and clinical information

Nomo‑LDLM‑2F √ √ √ √ √ √ Nomogram integrated by LDLM, TDLM, RECIST, and clinical information



Page 8 of 14He et al. Insights into Imaging           (2024) 15:59 

GradCAM for visualization of regions highlighted in LDLM
We used GradCAM to localize the saliency informa-
tion correlated to prognosis for clustering lesions where 
tumors or peripheral areas were activated. GradCAM 
identified the superiority of LDLM in revealing the spa-
tiotemporal differences between high- and low-risk 
groups. Figure  5  displays two patients, one from the 
low-risk group (I) HER2 3 + , assessed as SD at the sec-
ond follow-up (TB = -27.49%); the disease progressed 
after 25 cycles of treatment, and the OS was 34.1 months. 
GradCAM mapping focused on the primary tumor and 

the marginal part of the lymph node. Another patient in 
the high-risk group (II) was also HER2 3 + and diagnosed 
as SD at the second follow-up (TB = -11.34%); the dis-
ease progressed at the third follow-up, and the OS was 
10.97 months. In the GradCAM maps, LDLM paid great 
attention to the primary tumor and liver metastases. As 
shown in Fig. 6A, the lymph nodes had a strong synergis-
tic correlation with peritoneal metastases in the high-risk 
group. In general, the lymph nodes had a high correla-
tion with other metastases. We also observed the impor-
tance of attention patterns on different time points in the 

Fig. 3 Developed deep learning nomogram. The nomogram was built in the training cohort, incorporating the deep learning signature, RECIST, 
tumor markers, sex, and HER2 status (A). Calibration curve of the nomogram in the training, internal validation, and prospective cohorts (B)
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Fig. 4 A The ROC curves and areas under ROC (AUCs) of RECIST, TB‑delta, LDLM‑2F, and Nomo‑LDLM‑2F to predict one‑year survival in internal 
validation, external validation, and prospective cohort. B, C Distribution of the LDLM score and its corresponding prognostic risk group 
in the internal validation, external validation, and prospective cohorts
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high- and low-risk groups (Fig. 6B). LDLM focused more 
on the first follow-up in the high-risk group compared 
with the low-risk group, suggesting that patients with 
poor prognosis were more likely to occur drug resistance 
at an early stage.

Discussion
We established a nomogram built with clinical data 
and radiological signatures using multi-lesion and time 
series CT images from multiple centers, which could 
estimate the OS outcomes of patients with stage IV 
GC treated with anti-HER2 targeted therapy at an early 
stage.

The heterogeneity between primary and metastatic 
lesions is crucial for treatment evaluation and clinical 
decision-making. The high lesion-level heterogeneity 
of GC makes it difficult to accurately assess the overall 
treatment response from a single lesion [19, 20]. Most 
previous radiomics studies used only primary [9, 21] 
or target lesions [10] to predict prognosis. In our abla-
tion experiments, we found that using primary lesions 
alone was not effective while using target lesions alone 
achieved higher but unsatisfactory performance. Our 

model simultaneously considered primary and target 
lesions, achieving promising performance and suggest-
ing that the complementary information was useful 
(Table S5). We exploited GradCAM maps to visualize the 
importance of inter-tumor interactions in LDLM. The 
lesion interaction pattern of high-risk patients was more 
complex. It focused the most on the relationship between 
peritoneal metastases with primary tumors and lymph 
nodes, which might be related to the highly invasive bio-
logical behavior.

Furthermore, tracking tumor evolution is essential 
to predict the prognosis of targeted therapies. Previous 
radiomics studies focused on pre-treatment images at 
a single time point. In this study, we provided explicit 
temporal information by introducing temporal position, 
enabling the model to distinguish baseline from follow-
up scans. Embedding without temporal position would 
weaken the model’s performance because it focused only 
on the overall characteristics of a patient at multiple time 
points rather than sequential information (Table S6). The 
follow-up CT scans are a routine part of antitumor treat-
ment practice. Our model provided additional dynamic 
information over time without extra invasive examina-
tions, helping clinicians assess patients’ suitability for 
anti-HER2 targeted therapy.

Further, previous studies used only the cross-entropy 
loss function [22, 23] or survival loss [24, 25] for train-
ing the prognostic model. However, Table S7 shows that 
using “ lce + lsurv ” outperformed using either alone. The 
cross-entropy loss paid more attention to the discernible 
representations between different groups, and the sur-
vival loss was responsible for ordering the relationship 
between all samples, providing additional information for 
marginal samples. We verified through ablation experi-
ments that aggregating both losses improved the model’s 
performance (Text S6 and Tables S7 and S8).

This study had several limitations. We included 
patients from multiple centers; however, the sample size 
was still limited. Hence, we collected up to four follow-up 
CT images in the training cohort to reduce time-depend-
ent signal noise. We also set multiple random seeds to 
ensure reproducibility (Text S7 and Table S9). Further-
more, although we used the bounding boxes to reduce 
workload, the radiologists still manually segmented the 
ROIs. Moreover, this was a single imaging modality pre-
diction model. We hope to incorporate other modali-
ties such as magnetic resonance imaging or pathological 
images to make it more reliable and robust. We have 
developed in-house software at our center (Additional 
file  2: video), experienced fellows quickly annotated the 
ROIs for risk probability calculations, and combine clini-
cal information and RECIST evaluation results to assess 
patients’ long-term prognosis. Thus, data from larger 

Table 3 Performance comparisons of different models in 
predicting overall survival and AUCs in predicting one‑year 
survival in four cohorts

AUC  Area under the curve, C-index Concordance index, HR Hazard ratio

Models C‑index (95% CI) HR (p value) AUC (95% CI)

Training cohort (n = 91)

 RECIST 0.648 (0.572–0.717) < 0.0001 0.753 (0.628–0.860)

 TB‑Δ 0.613 (0.482–0.696) 0.0447 0.675 (0.514–0.788)

 LDLM‑2F 0.775 (0.712–0.829) < 0.0001 0.879 (0.775–0.961)

 TDLM 0.717 (0.641–0.793) < 0.0001 0.780 (0.658–0.885)

 Nomo‑LDLM‑2F 0.807 (0.743–0.865) < 0.0001 0.891 (0.785–0.967)

Internal validation cohort (n = 46)

 RECIST 0.652 (0.523–0.771) 0.0133 0.759 (0.572–0.937)

 TB‑Δ 0.594 (0.483–0.724) 0.0456 0.651 (0.437–0.862)

 LDLM‑2F 0.725 (0.601–0.836) 0.0002 0.844 (0.673–0.971)

 TDLM 0.718 (0.589–0.829) 0.0029 0.867 (0.739–0.961)

 Nomo‑LDLM‑2F 0.752 (0.635–0.871) < 0.0001 0.894 (0.728–1.000)

External validation cohort (n = 37)

 RECIST 0.627 (0.516–0.753) 0.0166 0.653 (0.396–0.930)

 TB‑Δ 0.527 (0.407–0.788) 0.7578 0.516 (0.342–0.896)

 LDLM‑2F 0.669 (0.503–0.836) 0.0865 0.683 (0.350–0.957)

 Nomo‑w/o TDLM 0.709 (0.562–0.855) 0.0106 0.771 (0.510–1.000)

Prospective cohort (n = 33)

 RECIST 0.644 (0.440–0.783) 0.1710 0.770 (0.547–0.959)

 TB‑Δ 0.630 (0.446–0.768) 0.0226 0.738 (0.427–0.965)

 LDLM‑2F 0.726 (0.566–0.877) 0.0052 0.690 (0.419–0.962)

 TDLM 0.595 (0.475–0.743) 0.3411 0.678 (0.440–0.915)

 Nomo‑LDLM‑2F 0.741 (0.570–0.882) 0.0095 0.809 (0.561–1.000)
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Fig. 5  Visualization of the LDLM model using the GradCAM method. Attention maps for two patients with stage IV GC are shown in this figure. 
They were both assessed as SD at the second follow‑up and had varying survival times. The LDLM model paid more attention to the strong 
response areas valuable for OS prediction. LDLM, lesion‑based deep learning model
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patient populations, preferably more comprehensive data 
collected prospectively, containing multimodal informa-
tion and comorbid factors, are required for validating its 
generalization and accuracy.

In conclusion, this study demonstrated, based on 
baseline and early follow-up CT images, that deep 
learning models could predict the OS in patients with 
stage IV GC receiving anti-HER2 targeted therapy. The 
analysis of multi-lesion and time series CT images can 
simultaneously focus on the spatiotemporal heteroge-
neity of stage IV GC, which may help clinicians make 
early treatment decisions.
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