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CT-based pancreatic radiomics predicts 
secondary loss of response to infliximab 
in biologically naïve patients with Crohn’s 
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Abstract 

Objectives Predicting secondary loss of response (SLR) to infliximab (IFX) is paramount for tailoring personalized 
management regimens. Concurrent pancreatic manifestations in patients with Crohn’s disease (CD) may correlate 
with SLR to anti-tumor necrosis factor treatment. This work aimed to evaluate the potential of pancreatic radiomics 
to predict SLR to IFX in biologic-naive individuals with CD.

Methods Three models were developed by logistic regression analyses to identify high-risk subgroup prone to SLR. 
The area under the curve (AUC), calibration curve, decision curve analysis (DCA), and integrated discrimination 
improvement (IDI) were applied for the verification of model performance. A quantitative nomogram was proposed 
based on the optimal prediction model, and its reliability was substantiated by 10-fold cross-validation.

Results In total, 184 CD patients were enrolled in the period January 2016 to February 2022. The clinical model 
incorporated age of onset, disease duration, disease location, and disease behavior, whereas the radiomics model 
consisted of five texture features. These clinical parameters and the radiomics score calculated by selected texture 
features were applied to build the combined model. Compared to other two models, combined model achieved 
favorable, significantly improved discrimination power (AUC combined vs clinical 0.851 vs 0.694, p = 0.02; AUC combined vs 

radiomics 0.851 vs 0.740, p = 0.04) and superior clinical usefulness, which was further converted into reliable nomogram 
with an accuracy of 0.860 and AUC of 0.872.

Conclusions The first proposed pancreatic-related nomogram represents a credible, noninvasive predictive instru-
ment to assist clinicians in accurately identifying SLR and non-SLR in CD patients.

Critical relevance statement This study first built a visual nomogram incorporating pancreatic texture features 
and clinical factors, which could facilitate clinicians to make personalized treatment decisions and optimize cost-
effectiveness ratio for patients with CD.
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Key points 

• The first proposed pancreatic-related model predicts secondary loss of response for infliximab in Crohn’s 
disease.

• The model achieved satisfactory predictive accuracy, calibration ability, and clinical value.

• The model-based nomogram has the potential to identify long-term failure in advance and tailor personalized man-
agement regimens.

Keywords Crohn’s disease, Pancreas, Radiomics, Secondary loss of response, Computed tomography enterography

Graphical Abstract

Introduction
Crohn’s disease (CD) is a chronic and relapsing intesti-
nal disorder with numerous extraintestinal manifesta-
tions (EIMs) including dysfunctions in the eyes, joints, 
skin, and pancreas [1]. The increasing global incidence 
of this disease is bringing a heavy healthcare burden, 
predominantly caused by drugs like anti-tumor necro-
sis factor (anti-TNF) biologics [2, 3]. Anti-TNF anti-
bodies have been recognized as a revolutionary therapy 
for CD, facilitating mucosal healing, reducing the need 
for surgeries and hospitalizations, and raising patient’s 
quality of life [4, 5]. However, studies have concluded 
that up to half of individuals demonstrate secondary 
loss of response (SLR) to infliximab (IFX) [6]. In addi-
tion, some patients may experience unpredictable fatal 
side effects due to individual variation in drug response. 

Given the advent of selective, novel biological agents, 
such as JAK and α4β7 integrin inhibitors, the identifi-
cation of SLR to IFX in advance is essential for deter-
mining appropriate treatment protocols and optimizing 
the cost-effectiveness ratio.

Multiple studies have verified that patient-related fac-
tors, disease characteristics, and serological indicators 
can predict the occurrence of SLR to IFX in CD. These 
factors include body mass index [7], non-stricturing 
and non-penetrating disease [8], and C-reactive protein 
(CRP) [9]. However, only scant studies have explored 
the latent association between coexisting conditions 
and treatment failure in patients with CD. Accumulated 
research has revealed pancreatic involvement in indi-
viduals with CD, including acute and chronic pancrea-
titis, pancreatic exocrine insufficiency, autoimmune 
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pancreatitis (AIP), asymptomatic pancreatic enzyme 
elevations, and silent imaging abnormalities [10–12]. 
The heterogeneous group of pancreatic conditions 
is recognized as EIMs of inflammatory bowel dis-
ease (IBD) or IBD therapeutic consequence, but can 
also exist as a comorbidity [13]. To date, the linkage 
between pancreatic entities and IBD activity remains 
controversial given the inconclusive data. Individuals 
with active CD seem to confer risk for pancreatitis and 
AIP [14–16]. A cross-sectional work has suggested that 
elevated levels of pancreatic enzymes in IBD population 
hold relevance to a more active disease phenotype and 
mucosal histological activity [17]. Nevertheless, other 
research has not discovered the degree of enzymes 
elevation and activity of CD is correlated [18]. Several 
studies regarding autoimmune diseases have demon-
strated that individuals with comorbidities have a lower 
likelihood to benefit from biologics than individuals 
without [19, 20]. Considering the present evidence, it 
is plausible that pancreatic diseases in individuals with 
CD might play an essential role in predicting treatment 
failure to IFX. Indeed, research has shown that hepato-
pancreato-biliary conditions are closely correlated with 
the primary loss of response to anti-TNF treatments in 
patients with IBD [21].

Texture analysis (TA) is an image analysis technique 
that extracts and quantifies subtle lesion features by ana-
lyzing the gray-scale values of regions of interest (ROI), 
especially in substantive organs, serving as a promising 
predictive tool for postoperative complications, thera-
peutic outcomes, disease prognosis, and other applica-
tions [22–24]. Computed tomography enterography 
(CTE) is widely used to monitor inflammatory lesions 

and make a transluminal diagnosis of CD in clinic [25]. 
Based on recently published research, a subgroup of CD 
individuals with a higher probability of SLR has been 
identified by TA of intestinal lesions in CTE images [26]. 
Furthermore, the indicators of substantive organs are 
more stable compared to hollow organs. Thus, our work 
attempted to elucidate the underlying predictive values of 
CTE pancreatic texture parameters for identifying SLR to 
IFX in patients with CD and to compare the performance 
of the combined model and the single feature model to 
discriminate between SLR and non-SLR. Ultimately, a 
nomogram with visualization based on the most valuable 
model was formulated, which may provide a convenient 
means to guide personalized treatment options for indi-
viduals with CD.

Methods
Patient selection
This work was permitted by the Ethics Committee of 
Renji Hospital and the demand for obtaining informed 
consent was exempted given the retrospective property 
of this research. We retrospectively analyzed the medical 
data of individuals with CD who had received IFX treat-
ment between January 2016 and February 2022 in our 
Hospital. Diagnosis of CD was made depending upon the 
guidelines of the European Crohn’s and Colitis Organiza-
tion [27]. We recruited patients who were managed with 
IFX with a dosage of 5–10 mg/kg every 8 weeks during 
maintenance treatment. Exclusion criteria were as fol-
lows: patients with prior administration of IFX; untreated 
with a dose of 5–10 mg/kg during the induction and/or 
maintenance period; patients who did not receive CTE 

Fig. 1 The flowchart of patient recruitment
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within 2  weeks ahead of IFX treatment; and patients 
who discontinued IFX therapy, had inadequate data, and 
had pancreatic dysfunctions because of drugs or prior to 
intestinal symptoms. Clinical baseline characteristics and 
CTE images were obtained from the medical record data-
base and the imaging system at our institution. A detailed 
patient enrollment process is illustrated in Fig. 1.

Outcomes and definitions
At present, a consensus has not been reached on what 
SLR means, but the recurrence of clinical symptoms after 
an excellent induction response is considered a rational 
criterion [28]. In this study, SLR was defined by a mul-
tidisciplinary specialists group as a loss of responsive-
ness during week 14 to week 54 after therapy initiation, 
involving total Harvey Bradshaw indices (HBI) > 5 or an 
increase in the HBI ≥ 3 points, dose escalation, interval 
shortening, need for immunosuppressive therapy, cor-
ticosteroids or surgery related to CD, switching to other 
biological agents, and/or mucosal recurrence (a reduc-
tion from baseline in simple endoscopic score for CD 
(SES-CD) < 50% or SES-CD ≥ 3).

CTE image acquisition and analysis
CTE examinations were conducted within 2  weeks 
prior to IFX treatment following the standard protocol. 
The patients fasted before examination and respectively 
administered with 500 mL of polyethylene glycol solution 
(Wanghe Pharma, Shenzhen, China) at 45 min, 30 min, 
and 15 min prior to the scan. CT scans were performed 
from the diaphragm to the perineum and completed in a 
period of a single breath hold adopting two 64-detector 
CT scanners adopting two 64-detector CT scanners (GE 
DISCOVERY CT750HD, Milwaukee, WI, USA; UNITED 
IMAGING, uCT760, Shanghai, China), when patients 
were in a supine position. Contrast-enhanced scanning 
was conducted after the intravenous injection of con-
trast agent (Lopamiro 370, Bracco Sine, Shanghai, China; 
1.5  mL/kg) through the dorsal hand vein at the rate of 
3  mL/s. The scanning parameters of the GE scanner 
were as detailed below: tube current, 228 mAs; voltage, 
120  kV; collimation, 40  mm; pitch, 1.375:1. The param-
eters of the UI scanner were as follows: tube current, 206 
mAs; voltage, 120 kV; collimation, 80 mm; pitch, 0.994:1. 
The reconstruction thickness was 1.0 mm. CT images of 
the enteric phase were attained 70 s after injection of the 
intravenous contrast agent and retrieved for extracting 
texture feature.

To measure the pancreas, three ROIs of 100  mm2 were 
placed in the head, body, and tail of the pancreas by two 
experienced radiologists, surrounded by pancreatic tis-
sue not only in the imaging plane, but also in the adjacent 

upper and lower planes to minimize the interference of 
extrapancreatic fat tissue on the volume average [29–33]. 
In addition, obvious pancreatic lesions, blood vessels, 
and bile ducts were avoided as much as possible to pre-
vent interference with the texture analysis of pancreatic 
parenchyma. The head of the pancreas was referred to as 
the pancreatic region to the right side of the left border 
of the superior mesenteric vein. The body was referred 
to the pancreatic parenchyma between the left edge 
of the superior mesenteric vein and the left edge of the 
aorta, and the tail was referred to as the remanent pan-
creatic areas between the left border of the aorta and 
the splenic hilum [34]. The mean of all three ROIs in the 
pancreas determined the overall pancreatic parameters 
[31–33]. The consistency and reproducibility of judge-
ment between different researchers were estimated using 
two-way random single measures intraclass correlation 
coefficient (ICC) on 30 randomly selected CT image sets, 
which achieved a value of 0.876 (p < 0.001).

CTE images with the DICOM format were directly 
imported into Local Image Features Extraction (LIFEx) 
version 5.10 software (http:// www. lifex soft. org) to imple-
ment TA analysis (Image Biomarker Standardization 
Initiative standard-compliant) [35, 36]. Before feature 
extraction, we applied voxel resampling and gray-levels 
absolute discretization to increase consistency between 
images. Images were resampled to an isotropic 1  mm3 
voxel size. Intensity discretization was performed in 
absolute scale bounds between -1000 and 3000 HU with 
400 bins (bin-width 10 HU). Then, two well-experienced 
radiologists used 2D partitioning technique to manually 
delineate ROIs, which were automatically processed by 
the software to compute pancreatic features [37]. A total 
of 44 radiomics features were obtained, consisting of con-
ventional and histogram-founded parameters and sec-
ond- and higher-order texture indices, as listed in detail 
in Additional file 1 (supplementary material).

Model construction
To establish the clinical model, univariate analysis was 
performed to screen potential variables. Those with a 
p < 0.2 were utilized for further screening [38]. Backward 
stepwise multivariate logistic regression was conducted 
to determine the best combination of clinical variables 
with the minimal Akaike information criterion (AIC).

To construct the radiomics model, the z-score method, 
suitable for normalizing radiomics parameters with dif-
ferent magnitude orders, was adopted to improve the 
homogeneity of all radiomics features [39], among which 
variables with ICC > 0.8 were used to screen further. The 
least absolute shrinkage and selection operator (LASSO) 
with 10-fold cross-validation was conducted for deter-
mining the subset of features with the best λ, and then 

http://www.lifexsoft.org
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building the radiomics model by backward stepwise mul-
tivariate logistic regression.

In order to comprehensively consider clinical and radi-
omics features, the radiomics score (rad_score) was for-
mulated with the selected texture features weighted by 
their respective coefficients. Finally, the combined model 
incorporating clinical factors and the rad_score was built 
by logistic regression.

Model comparison and nomogram development
Comparison of models was mainly based on the valida-
tion set. The receiver operating characteristic (ROC) 
curve and calibration curve was generated to estimate the 
discriminatory performance and prediction consistence. 
The area under the ROC curve (AUC) and AIC values of 
the different models were also calculated. Integrated dis-
crimination improvement (IDI) and Decision curve anal-
ysis (DCA) was performed to reflect the improvement 
and clinical significance of models. Rest on the optimal 
model, and user-friendly nomogram were formulated for 
differentiating patients with SLR from those without it 
(non-SLR), and its reliability was corroborated by 10-fold 
cross-validation.

Statistical analysis
The data analysis was conducted by Stata 15.0 and R ver-
sion 4.0.5. Categorical variables are denoted by number 
or percentage, and continuous variables are denoted by 
medians (interquartile ranges). The Fisher’s exact test and 
Wilcoxon rank-sum tests were respectively applied for 
categorical and continuous variable comparisons. Reliabil-
ity analysis was performed using the ICC with a two-way 
random model. Discrepancies in the AUC values between 
models were evaluated using DeLong analysis. A two-sided 
p value less than 0.05 was regarded as statistically different.

Results
Baseline characteristics
A total of 184 biologic-naïve CD patients treated with IFX 
were recruited, and subsequently were randomly allocated 
into training set and validation set, among which 54 (39.4%) 
and 16 (34.0%) patients did not get sufficient remission 
from IFX, respectively. There were no statistical differences 
between two datasets in any of the presented clinical char-
acteristics in Table 1 (all p > 0.05).

Development of the clinical model, pancreatic radiomics 
and combined model
Univariate analysis identified disease duration, age of onset 
(A), disease location (L), upper gastrointestinal involve-
ment, disease behavior (B), white blood cell, CRP, and 
erythrocyte sedimentation rate as potential risk factors for 
SLR to IFX. After multivariate analysis, disease duration, A, 

L, and B were chosen as independent predictive factors in 
the clinical model, as demonstrated in Table 2.

After applying LASSO selection, the pancreatic fea-
tures with ICC over 0.8 were reduced to ten variables 
(Fig.  2), which were further simplified into five to con-
struct the pancreatic radiomics model by backward step-
wise multivariate logistic regression.

For integrating clinical parameters and radiom-
ics features, the rad_score was formulated by the 
equation: rad_score =  -0.803 + (-3.061)*CONVEN-
T I O N A L _ Hu m a x  +  2 . 1 8 1 * C O N V E N T I O N A L _
Hustd +  (-1.615)*HISTO_Energy + 1.624*GLRLM_
GLNU + (-3.120)*GLZLM_LGZE. Finally, the combined 
model was built by logistic analysis for differentiating distinct 
treatment responsiveness (Table 3).

Model comparison and nomogram building
Model comparisons were conducted in the validation 
cohorts. The combined model showed the lowest AIC 
value compared with the clinical model and pancreatic 
radiomics individually (AIC: 127.69 vs 169.56 vs 151.31) 
and was defined as the optimal model. It also demon-
strated satisfactory discrimination for differentiating SLR 
from non-SLR, with an AUC of 0.851 (95% confidence 
interval [CI] 0.692–1.000), compared with the clinical 
model (AUC = 0.694, 95% CI 0.517–0.870) and radiom-
ics model (AUC = 0.740, 95% CI 0.573–0.907) (Table 4). 
The DeLong test implied that the combined one was sta-
tistically excellent than the clinical model (p = 0.02) and 
pancreatic radiomics (p = 0.04). In addition, IDI analysis 
also demonstrated significant improvement in discrimi-
nation efficiency of combined models relative to the 
other models (IDI clinical model: 0.145, p < 0.001; IDI radiomics 

model 0.357, p < 0.001). The ROC plots and DCA curves 
of three models were presented in Fig. 3a and b, which 
suggested that the combined one excelled other model 
and provided more clinical net benefit in 20–100% risk 
thresholds. Additionally, the combined model illus-
trated great consistency between the prediction findings 
and the actual probabilities in both datasets, as dem-
onstrated in Fig.  3c and d. Founded on the combined 
model, we constructed a visualized nomogram for sim-
plified application in clinical practice (Figs.  4 and 5). 
Furthermore, 10-fold cross-validation was conducted to 
substantiate the robustness of the nomogram, with aver-
age AUC, specificity, sensitivity, and accuracy values of 
0.872, 0.862, 0.867, and 0.860, respectively (Additional 
file 2, supplementary material).

Discussion
Pancreatic involvement in patients with CD has been sug-
gested to be tightly related to disease activity and non-
responsiveness to anti-TNF drugs. Increasing evidence 
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has suggested that TA can be used to assess the risk of 
treatment failure. Therefore, we established and com-
pared prediction models using clinical baseline character-
istics and pancreatic CTE texture features. The combined 
model was found to be superior to other models, as cor-
roborated by the ROC analysis, IDI, calibration power, 
and clinical usage. Moreover, as far as we are aware, this is 
the first attempt to establish a nomogram integrating pan-
creatic texture features and clinical features to assess the 
possibility of treatment failure in CD individuals receiving 

IFX therapy in order to help clinicians offer personalized 
decision-making.

Using logistic regression analyses, four clinical candi-
date variables were considered to predict SLR. In our 
study, individuals with older age at disease diagnosis 
were found to have poor treatment outcomes, which 
was not surprising as some studies have substantiated 
the linkage between age at IFX onset and long-term 
outcomes [40, 41]. Of particular note, Vermeire et  al. 
demonstrated that older age at disease initiation could 
be utilized to predict primary loss of response to IFX 

Table 1 Baseline characteristics of CD patients

GI gastrointestinal, Alb albumin, IQR interquartile range, WBC white blood cell, Hb hemoglobin, PLT platelet count, CRP C-reactive protein, ESR erythrocyte 
sedimentation rate
a The threshold value for ESR level is 20 mm/L in female and 15 mm/L in male

Characteristics Training Validation p value

Gender (male/female) 106/31 33/14 0.33

Disease duration ≥ 2 years 65/72 18/29 0.31

BMI (kg/m2) 0.13

  < 18.5 49 (35.8%) 19 (40.4%)

 18.5–24.9 77 (56.2%) 20 (42.6%)

  ≥ 24.9 11 (8.0%) 8 (17.0%)

Age of onset (A, year) 0.60

 A1 13 (9.5%) 2 (4.3%)

 A2 100 (73.0%) 36 (76.6%)

 A3 24 (17.5%) 9 (19.1%)

Disease location, L 0.96

 L1 47 (34.3%) 17 (36.2%)

 L2 8 (5.8%) 3 (6.4%)

 L3 82 (59.9%) 27 (57.4%)

Upper GI involvement (yes/no) 11/126 4/43 1.00

Perianal disease (P, yes/no) 87/50 37/10 0.07

Disease behavior, B 0.16

 B1 70 (51.1%) 31 (66.0%)

 B2 42 (30.7%) 12 (25.5%)

 B3 25 (18.2%) 4 (8.5%)

Surgery (yes/no) 77/60 25/22 0.74

Alb, median (IQR), g/L 40.8 (36.0, 45.0) 42.1 (37.6, 45.2) 0.34

WBC, 10^9/L 0.23

  < 3.97 6 (4.4%) 5 (10.6%)

 3.97–9.15 109 (79.6%) 37 (78.7%)

  > 9.15 22 (16.1%) 5 (10.6%)

Hb, median (IQR), g/L 131.0 (112.0, 142.0) 124.0 (108.0, 139.0) 0.19

PLT, median (IQR), 10^9/L 275.0 (221.0, 333.0) 304.0 (230.0, 392.0) 0.17

CRP, mg/L 0.33

  ≤ 8 99 (72.3%) 38 (80.9%)

  > 8 38 (27.7%) 9 (19.1%)

ESRa, mm/L 1.00

  ≤ 20 or ≤ 15 75 (54.7%) 26 (55.3%)

  > 20 or > 15 62 (45.3%) 21 (44.7%)
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therapy in CD patients [42]. Researchers speculated 
that late-onset IBD patients exhibited adverse respon-
siveness to IFX possibly due to age-related immune 
system changes caused by alterations in immune cells 
and gut flora composition, leading to different dis-
ease pathogenesis [43]. However, these speculative 
mechanisms require further verification. Our study 
also identified that individuals with isolated ileitis dis-
ease (Montreal Classification L1) were more likely to 

benefit from IFX treatment compared to those with 
colonic involvement. Similarly, a meta-analysis demon-
strated that patients with colon involvement had higher 
loss of response incidence that those without [44]. In 
concordance, some studies substantiated that patients 
with isolated colonic disease (Montreal Classification 
L2) were at a higher risk of treatment failure, possibly 
due to a larger proportion of fecal IFX loss [44, 45]. 
In addition, as with other research, our study showed 

Table 2 Univariate and multivariable analysis for SLR to IFX in the training datasets

GI gastrointestinal, Alb albumin, WBC white blood cell, Hb hemoglobin, PLT platelet count, CRP C-reactive protein, ESR erythrocyte sedimentation rate
a The threshold value for ESR level is 20 mm/L in female and 15 mm/L in male

Characteristics Univariate analysis Multivariable analysis

OR 95% CI p OR 95% CI p

Gender 0.621 0.276–1.400 0.25

Disease duration ≥ 2 years 3.254 1.608–6.762 0.001 3.244 1.425–7.383 0.01

BMI, kg/m2

  < 18.5 1.000

 18.5–24.9 0.762 0.366–1.589 0.47

  ≥ 24.9 1.111 0.286–4.179 0.88

Age of onset (A, year)

 A1 1.000 1.000

 A2 2.222 0.634–10.366 0.25 3.508 0.671–18.333 0.14

 A3 2.821 0.664–15.008 0.18 7.121 1.035–49.007 0.046

Disease location, L

 L1 1.000 1.000

 L2 18.308 2.873–360.211 0.01 35.751 3.337–382.986 0.003

 L3 1.853 0.866–1.290 0.12 2.671 0.996–7.165 0.051

Upper GI involvement 0.316 0.047–1.290 0.15

Perianal disease, P 1.098 0.540–2.263 0.80

Disease behavior, B

 B1 1.000 1.000

 B2 1.390 0.626–3.075 0.42 1.494 0.571–3.910 0.41

 B3 2.601 1.029–6.751 0.04 3.404 1.123–10.311 0.03

Surgery 0.660 0.329–1.317 0.24

Alb, g/L 0.970 0.920–1.021 0.25

WBC, 10^9/L

  < 3.97 1.000 1.000

 3.97–9.15 3.015 0.465–58.836 0.32 2.182 0.224–21.231 0.50

  > 9.15 6.000 0.793–125.285 0.13 7.030 0.603–81.971 0.12

Hb, g/L 0.989 0.972–1.006 0.20

PLT, × 10^9/L 1.002 0.998–1.006 0.23

CRP, mg/L

  ≤ 8 1.000 1.000

  > 8 1.829 0.856–3.924 0.12 2.095 0.821–5.341 0.12

ESRa mm/L

  ≤ 20 or ≤ 15 1.000

  > 20 or > 15 1.758 0.882–3.536 0.11
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that patients with non-stricturing and non-penetrating 
diseases (Montreal Classification B1) tended to have a 
more beneficial response to anti-TNF agents than ste-
nosing disease (B2) or fistulizing disease (B3) [8, 46, 
47]. Especially, patients with fibrostenotic phenotype 
might be more appropriate to receive endoscopic or 
surgical treatment [48]. In addition, individuals with 
a disease duration longer than 48  months had dimin-
ished responsiveness to anti-TNF drugs compared to 
those with a shorter disease course. This is consistent 

with the findings of other groups [49, 50], which could 
be attributed to several factors, such as altered mucosal 
cytokine profiles [51] and advanced fibrosing organ 
damage [48].

Compared with previous studies that focused on 
identifying clinical factors related to SLR to IFX, our 
research not only explored clinical characteristics, but 
also attempted to mine CTE texture features. Chen 
et al. demonstrated that CTE texture features could be 
used to predict SLR in patients with CD administered 

Fig. 2 Radiological texture features selection utilizing the least absolute shrinkage and selection operator (LASSO) algorithm and 10-fold 
cross-validation. a Optimal parameter (λ) selection in LASSO model used cross-validation via minimum criteria. Dotted vertical lines were drawn 
at the optimal values by using the minimum criteria and 1 standard error of the minimum criteria (the 1-SE criteria). A λ of 0.016 with log (λ) =  -4.135 
was chosen. b LASSO coefficient profiles of the 37 radiomics features with ICC > 0.8. A coefficient profile plot was generated versus the selected 
log(λ) value, where 10 features with nonzero coefficients were chosen
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IFX [26]. Taking the underlying associations between 
pancreatic involvements and treatment failure, five 
radiomics features were selected, including CON-
VENTIONAL_Humax, CONVENTIONAL_Hustd, 
HISTO_Energy, GLRLM_GLNU, and GLZLM_LGZE. 
CONVENTIONAL indices measure the mean, mini-
mum, maximum, and standard deviation value in the 
ROIs. Higher CONVENTIONAL_Hustd and Lower 
CONVENTIONAL_Humax confer risk for adverse 
response to anti-TNF agents, which may be due to 
high lesion heterogeneity and more extensive and 
severe pancreatic destruction, separately. In addition, 
HISTO_Energy, GLRLM_GLNU, and GLZLM_LGZE 
respectively reflect the uniformity of the distribution, 
the similarity of image grayscale values, and the distri-
bution of the low grey-level zones [52]. In this study, 
GLRLM_GLNU were higher, HISTO_Energy and 
GLZLM_LGZE were lower in non-responders than in 
responders, which may indicate that the higher het-
erogeneity and impaired homogeneity in CTE image, 
the higher risk of loss of response (Additional file  3, 
supplementary material). Loss of heterogeneity and 

improving homogeneity on the treatment/follow-up 
CT are known indicators of neoadjuvant chemotherapy 
response in primary esophageal cancer [53]. Then we 
constructed a pancreatic radiomics model and com-
bined model incorporating clinical and radiomics fea-
ture, and compared these models with clinical model to 
explore the utility of pancreatic TA in predicting long-
term treatment outcomes of IFX. We found that the 
combined model was better in terms of AUC analysis 
(0.851 vs. 0.694), IDI analysis, calibration ability, and 
clinical practical value. As a result, we propose a com-
bined nomogram to extrapolate to the clinic for assist-
ing clinicians in making personalized decisions, which 
illustrated that the rad_score plays an indispensable 
part in assessing therapy effectiveness, highlighting the 
significance of pancreatic texture analysis.

Certain limitations of our study should be acknowl-
edged. The single-center retrospective study design 
limited the clinical practicality of the nomogram and 
qualitative assessment of pancreatic condition (EIMs 
or complication). Further multicenter prospective 
external validation is required to avoid selection bias, 

Table 3 Multivariate regression analyses of the combined model

OR odds ratio, CI confidence interval, A age of onset, L disease location, B disease behavior, Rad_score radiomics score

Intercept and variables β OR (95% CI) p value

Intercept -2.651 0.01

Disease duration 1.303 3.682 (1.377, 9.843) 0.01

A2 0.280 1.324 (0.211, 8.303) 0.76

A3 1.482 4.401 (0.515, 37.595) 0.18

L2 4.740 114.442 (4.441–2949.029) 0.004

L3 1.515 4.549 (1.372, 15.082) 0.01

B2 0.550 1.733 (0.556, 5.404) 0.34

B3 1.484 4.410 (1.128, 17.238) 0.03

Rad_score 1.108 3.028 (1.943, 4.719)  < 0.001

Table 4 Accuracy and predictive value among three models

AUC  area under the curve, CI confidence interval

AUC 95% CI Sensitivity Specificity Accuracy

Training cohort

 Clinical model 0.758 0.678–0.839 68.5% 74.7% 72.3%

 Radiomics model 0.817 0.745–0.888 85.2% 68.7% 75.2%

 Combined model 0.892 0.837–0.947 70.4% 94.0% 84.7%

Validation cohort

 Clinical model 0.694 0.517–0.870 75.0% 74.2% 74.5%

 Radiomics model 0.740 0.573–0.907 68.8% 83.9% 78.7%

 Combined model 0.851 0.692–1.000 87.5% 87.1% 87.2%
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verify the generalizability of the nomogram, and clar-
ify the causes of pancreatic manifestations in patients. 
However, it is worth noting that this study aims to 
explore the relationship between pancreatic manifes-
tations and IFX efficacy and does not limit pancreatic 

manifestations to EIMs or complications or other fac-
tors. Of course, further clarification of the causes of 
pancreatic conditions is beneficial to conduct in-depth 
research and refine conclusions. In addition, owing 
to the finite sample size, our conclusions may not be 
sufficiently convincing and require further optimiza-
tion and verification in larger cohorts. Meanwhile, a 
larger queue is conducive to further explore the cor-
relation between pancreatic clinical features and IFX 
responsiveness. In view of this, a post hoc analysis of 
sample size is performed, which finds that although 
the current sample size does not fully meet the crite-
ria proposed by Riley et  al. (n = 289; events per pre-
dictor parameter [EPP]: 14.45) [54], the EPP of the 
current model reaches 12.512. Furthermore, insta-
bility plot based on bootstrap model (b = 500 times) 
demonstrates that the existing model is relatively sta-
ble (mean absolute percentage error: 0.0585) [55, 56]. 
Additionally, the definition of the outcome in this 
study is not sufficiently objective. It is well established 
that endoscopic healing is regarded as the gold stand-
ard in clinical practice [57]. However, most individuals 

Fig. 3 a ROC curves for three models in the validation datasets. b DCAs for three models in the validation datasets. c Calibration plot for combined 
model in the training cohorts. d Calibration plot for combined model in the validation cohorts

Fig. 4 The developed nomogram for predicting secondary loss 
of response to infliximab in patients with Crohn’s disease
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do not routinely undergo endoscopy at 54  weeks of 
IFX treatment. Thus, studies evaluating treatment out-
comes through endoscopy should be conducted in the 
future.

In conclusions, this study has provided evidence that 
the clinical variables and pancreatic radiomics features 
extracted from CTE images can be utilized as non-inva-
sive markers for SLR risk prediction in individuals with 
CD. The nomogram demonstrated impressive predic-
tive ability with great discriminatory power and obvious 
clinical benefits. Thus, it could aid in selecting the most 
appropriate biological scheme for individual patients. 

Finally, we also indicated that coexisting conditions in 
CD patients might play a role in predicting responsive-
ness to biologic agents and ought to be taken into consid-
eration when customizing treatment.

Abbreviations
A  Age of onset
AIC  Akaike information criterion
AIP  Autoimmune pancreatitis
Anti-TNF  Anti-tumor necrosis factor
AUC   The area under the ROC curve
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Fig. 5 a Example of applying nomogram in the patient who benefit from IFX. b Example of applying nomogram in the patient who suffer from SLR 
to IFX
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