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Abstract 

Objectives Focal cortical dysplasia (FCD) represents one of the most common causes of refractory epilepsy in chil-
dren. Deep learning demonstrates great power in tissue discrimination by analyzing MRI data. A prediction model 
was built and verified using 3D full-resolution nnU-Net for automatic lesion detection and segmentation of children 
with FCD II.

Methods High-resolution brain MRI structure data from 65 patients, confirmed with FCD II by pathology, were 
retrospectively studied. Experienced neuroradiologists segmented and labeled the lesions as the ground truth. Also, 
we used 3D full-resolution nnU-Net to segment lesions automatically, generating detection maps. The algorithm 
was trained using fivefold cross-validation, with data partitioned into training (N = 200) and testing (N = 15). To evalu-
ate performance, detection maps were compared to expert manual labels. The Dice-Sørensen coefficient (DSC) 
and sensitivity were used to assess the algorithm performance.

Results The 3D nnU-Net showed a good performance for FCD lesion detection at the voxel level, with a sensitivity 
of 0.73. The best segmentation model achieved a mean DSC score of 0.57 on the testing dataset.

Conclusion This pilot study confirmed that 3D full-resolution nnU-Net can automatically segment FCD lesions 
with reliable outcomes. This provides a novel approach to FCD lesion detection.

Critical relevance statement Our fully automatic models could process the 3D T1-MPRAGE data and segment FCD 
II lesions with reliable outcomes.

Key points 

• Simplified image processing promotes the DL model implemented in clinical practice.

• The histopathological confirmed lesion masks enhance the clinical credibility of the AI model.

• The voxel-level evaluation metrics benefit lesion detection and clinical decisions.
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Graphical Abstract

Introduction
Focal cortical dysplasia (FCD) is defined as a localized 
malformation of cortical development caused by distur-
bances in neural cell proliferation, migration, and differ-
entiation [1]. It is the most common cause of refractory 
epilepsy in children, accounting for more than 30% [2]. In 
2011, the International League Against Epilepsy (ILAE) 
classified FCD into three types according to histopatho-
logical features. Among FCD patients treated with sur-
gical therapy, about 29–39% were type II [3]. The final 
strategy for drug-resistant focal epilepsy is surgical resec-
tion. The outcome is increasingly encouraging, with 70% 
of patients achieving seizure freedom [4].

Accurate pre-surgical lesion localization was the key 
impact factor for the outcome [5]. Three-dimension high-
resolution structure MRI has become mandatory. The 
detailed MRI signs include cortex thickening, gray-white 
matter blurring, transmantle sign, and signal intensity 
changes in both the gray and white matter [6]. The FCD 
II had typical MRI features (examples shown in Fig.  1). 
Ordinarily, experienced neuro-radiologists can make a 
correct diagnosis and portray the whole lesion accurately. 
However, the reality is that very minimal abnormalities 
are reflected in subtle MRI signal alteration, which is 

beyond the limitations of the human eye to detect. This 
discrepancy is the leading cause of postoperative seizure 
recurrence [6].

Artificial intelligence has entered a new era and scien-
tists have placed considerable effort into improving the 
detection of FCD lesions, establishing many computer-
assisted approaches [7]. Some semi-automated compu-
tational post-processing methods, such as voxel-based 
morphometry (VBM) [8] and surface-based morphom-
etry (SBM) [9], use statistical methods to find areas of 
the brain that differ from normal controls. Martin et al. 
[8] demonstrated the strengths and limitations of dif-
ferent VBM approaches in epilepsy imaging and found 
that VBM based on T2-FLAIR had the best specificity 
and junction map had the best sensitivity. Unfortunately, 
only 5% of their MRI-negative patients had a histopatho-
logical proven FCD result, meaning that the reliability of 
model performance in the FCD cohort was indeed to be 
improved.

Further, recent advances in convolutional neural net-
works are at the forefront of image detection and seg-
mentation tasks [10]. Neural network architectures 
designed for segmentation, such as U-Nets, attained 
remarkable achievements within the pertinent domains, 
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especially radiology [11] and pathology [12]. These algo-
rithms enable automated optimal feature extraction, 
which has paved the way for learning more essential fea-
tures than any manual feature extraction-based methods 
[13]. The new approaches based on machine learning 
(ML) and deep learning (DL) also dramatically influenced 
the field of automatic FCD detection in MRI-negative 
focal epilepsies [14–17].

There are still several challenges in translating com-
puter vision tools into clinical applications. First, the 
heterogeneity caused by differences in MRI scanners, 
sequences, and field strengths may affect the morpholog-
ical and intensity feature values. Second, the standard of 
predicted lesion clusters and the filtering criteria for false 
positives were inconsistent [9, 14], which hampers the 
widespread use of morphometric measurements. Third, 
the different levels (voxel-, vertex-, lesion-, or patient-
level) of lesion detection outputs restrict the model eval-
uation and comparison. Finally, the use of standard brain 
templates distorts the lesion and normalized processing 
limits the boundaries of abnormal brain regions as well.

To solve the above problems, we conduct a fully auto-
mated method for lesion detection and segmentation 
with the minimum input, routine clinical FCD II pre-
surgical 3D T1-weighted magnetization-prepared rapid 
gradient-echo (MPRAGE) images. We present a 3D full-
resolution nnU-Net architecture, the advance of which 
combined the U-Net architecture with data preprocess-
ing techniques to improve efficiency and simplify appli-
cation [18]. With the voxel-level lesion detection outputs, 

our networks could assist epilepsy surgeons in imple-
menting visible and effective preoperative evaluation.

Method
Patients
Clinical and radiology data of refractory epilepsy patients, 
confirmed with a pathological diagnosis of FCD II, were 
retrospectively reviewed and analyzed. All patients were 
from Shenzhen Children’s Hospital, which is a tertiary 
epilepsy center and the only pediatric center in southern 
China. These patients were hospitalized between January 
2016 and January 2023. Refractory epilepsy was defined 
as follows according to Clinical Diagnosis and Treatment 
Guidelines: Volume of Epilepsy (2015 Revised Edition). 
Refractory epilepsy is when the seizures are still not com-
pletely controlled after a sufficient amount and sufficient 
course of reasonable treatment with two or more antisei-
zure medications. The inclusion criteria included the fol-
lowing: (1) the age of the patient at the time of epilepsy 
surgery was between 2 and 18 years; (2) baseline clinical 
data were available and complete; (3) both the pre- and 
post-surgical brain three-dimensional high-resolution 
MRI data were collected. Exclusion criteria were unquali-
fied preoperative MRI images or combined with other 
developmental malformations (such as tuberous sclero-
sis, hemispherical dysplasia, and periventricular nodular 
heterotopia). Sixty-five cases were finally included in this 
study. This study was approved by the local institutional 
review board. Figure  2 shows the workflow for patient 
selection.

Fig. 1 Representative structure neuroimaging findings of FCD II. A1–D1 The imaging and histopathology data of a 12-year-old male patient who 
was diagnosed with FCD IIa. Preoperative 3D T1-MPRAGE imaging revealed localized cortical thickening and blurred gray-white matter boundary 
(encircled) in the left precentral gyrus. A2–D2 The imaging and histopathology data of a 15-year-old male patient who was diagnosed with FCD IIb. 
Preoperative FLAIR imaging demonstrated a hyperintense lesion extending into the lateral ventricle (transmantle sign, circled) in the left parietal 
lobe
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Image acquisition and labeling
MRI data of all patients were acquired before sur-
gery using a 3.0-T scanner (Skyra, Siemens, Germany). 
The 3D T1-MPRAGE [19] parameters were as follows: 
TR = 2000 ms, TE = 2.4 ms, slice thickness = 1 mm, slice 
spacing = 0, slice number = 176, matrix size = 256 × 256.

Referencing a successful experience for a relatively 
small size of dataset from Stanford Artificial Intelligence 
Lab, the rotation technique of data enhancement was 
employed before training the deep learning model [20]. 
The training dataset was augmented using an augmenta-
tion technique defined through a suitable function class 
named Volumentations 3D, which is implemented in 
Python. It is available via https:// github. com/ ZFTur bo/ 
volum entat ions. The dataset was divided into two sets for 
training and testing, containing 50 and 15 cases, respec-
tively. Using the data augmentation techniques, the num-
ber of training samples was increased to 200 cases.

The surgically resected area, including the histopatho-
logically confirmed FCD II lesion, was used as a gold 
standard to define the ground truth of FCD [21]. The 
mask was manually drawn using ITK-SNAP software 
(version 3.8.0) in collaboration between two experienced 
neuroradiologists, each with over three years of exper-
tise in epilepsy imaging, ensuring a singular representa-
tion of a lesion per subject. One rater created each lesion 
mask, subsequently reviewed by the other. In instances 
of uncertainty regarding the ROI extension, both clinical 
data and postoperative MRI were considered until a con-
sensus was reached by both reviewers. In complicated 
cases without agreement between the two neuroradiolo-
gists, a third senior pediatric neuroradiologist provided 

the final opinion to establish consensus. Manual labels 
served as target parameters for the training of the DL 
model.

Automatic detection framework
This study uses a segmentation-oriented approach for 
automatic FCD II detection and localization, where 
each voxel in the image is assigned either a lesional or 
non-lesional label. The models in the proposed pipeline 
were developed using the self-configuring framework 
for medical segmentation, nnU-Net [18]. The 3D archi-
tecture was generated by the nnU-Net with its default 
parameters. The 3D T1-MPRAGE images were then used 
as input channels to the network, together with the cor-
responding manual segmentation (MS). The training 
process of the nnU-Net was performed using a fivefold 
cross-validation. At the inference time, the trained net-
work was used to generate automated segmentations 
(AS) in the testing cohort. A schematic representation 
of the inference pipeline from the original image input to 
the final lesion segmentation is shown in Fig. 3.

Evaluation metrics
On a per-voxel basis, true-positive (TP), true-negative 
(TN), false-positive (FP), and false-negative (FN) val-
ues of the AS compared to the ground truth (MS) were 
assessed. The Dice similarity coefficient (DSC) was cal-
culated to measure the overlap between the manual and 
automated segmentation, as well as the AS sensitivity 
[22]. The sensitivity reflects the probability for a voxel to 
be included in the AS when present in the ground truth.

Fig. 2 Flowchart of patient selection

https://github.com/ZFTurbo/volumentations
https://github.com/ZFTurbo/volumentations
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Statistical analysis
SPSS 18.0 (IBM, New York, USA) statistical analysis 
software was used for data analysis. Continuous vari-
ables are described as means (standard deviation, SD) 
or medians (interquartile range, IQR) and categorical 
variables are presented as frequencies (%).

Results
Clinical characteristics
The demographic and clinical characteristics of the 
patients are summarized in Table 1. A total of 65 patients 
were included in the present study, including 36 males 
and 29 females. The mean age of the patients at epilepsy 
surgery was 6.38 years (SD, 4.77). Of the 65 patients who 
underwent epilepsy surgery, 44 had focal seizures, and 
30 had lesions located in the frontal lobe. According to 
the ILAE, 30 people with epilepsy (46%) were classified 
as FCD IIa and 35 (54%) as FCD IIb. MRI was considered 
negative in six patients (12%) in the training cohort vs. 
two patients (13%) in the testing cohort.

Model performances
The performances of the five different FCD II detection 
network configurations on the internal fivefold cross-
validation sets are shown in Table  2 and Fig.  4. Evalua-
tion against the testing dataset of the trained nnU-Net 
resulted in a median number of the detection lesions 
for each model was 5 (IQR = 2–6), 3 (IQR = 2–5), 3 
(IQR = 2–5), 5 (IQR = 3–6), and 6 (IQR = 4–7), respec-
tively. Regarding lesion segmentation performance, 
Model_3 achieved the best performance, with a mean 
DSC score of 0.57 and a mean sensitivity value of 0.73. 
The automated lesion segmentation visualization results 
of a patient in the test dataset are shown in Fig. 5 as an 
example.

Discussion
As we know, preoperative lesion detection is the key to 
the success of surgery, which is the major assignment 
of radiologists. Nevertheless, artificial intelligence is 
gradually revolutionizing this job [23]. Conventionally, 
for refractory epilepsy brain MRI, neuroradiologists 

Fig. 3 Flowchart of automatic detection network

Table 1 Clinical characteristics of the patients in two datasets

Training 
set (n = 50)

Testing set (n = 15)

Age at surgery (years), mean (SD) 6.3 (4.6) 6.7 (5.3)

Male sex, n (%) 30 (60) 6 (40)

Seizure types, n (%)

 Focal seizures 34 (68) 10 (67)

 Secondarily generalized seizures 16 (32) 5 (33)

Lesion location, n (%)

 Frontal lobe 24 (48) 6 (40)

 Non-frontal lobe 26 (52) 9 (60)

Histology, n (%)

 FCD IIa 23 (46) 7 (47)

 FCD IIb 27 (54) 8 (53)

 MRI-negative 6 (12) 2 (13)

Table 2 The performances of the five models

Mean DSC (SD) Mean sensitivity (SD)

Model 1 0.57 (0.11) 0.71 (0.14)

Model 2 0.56 (0.11) 0.72 (0.14)

Model 3 0.57 (0.13) 0.73 (0.14)

Model 4 0.47 (0.18) 0.62 (0.25)

Model 5 0.46 (0.22) 0.68 (0.18)
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inevitably miss subtle lesions which can be detected by 
neural networks. Efforts to enhance the detection of 
FCD primarily center around three key facets: sequence 
improvement, morphological analysis, and model 
optimization.

Many works only use T1WI sequences [24, 25] since 
this sequence allows for optimal evaluation of brain 
anatomy and morphology [19]. Due to the presence of 
local hyperintensities in some FCD cases, some detec-
tion models [14, 15] added FLAIR sequences to improve 

model performance. In addition, Flaus et  al. [26] pro-
posed a deep learning-based PET image enhancement 
method using simulated PET to improve lesion visualiza-
tion, from 38 to 75%, in a 37-case adult cohort. Although 
the combination of multiple imaging techniques would 
benefit the subtle FCD detection [27], we aim to sim-
plify input requirements. To make our approach more 
usable for children’s examination, we ensured a robust 
detection of FCD II using the simplest imaging modal-
ity, 3D T1-MPRAGE images, without requiring manual 

Fig. 4 Comparison across different models and input image modalities from 15 testing datasets based on Dice similarity coefficient (DSC) 
and sensitivity

Fig. 5 The example of inference results: images of a 9-year-old boy, who was diagnosed with FCD IIb. A The raw images as input. B The manual 
segmentation as labels. C The automated segmentation outcomes inference by Model_3. D The overlap zone of MS and AS. The mean DSC score 
and the mean sensitivity value of the patient were 0.69 and 0.72, respectively
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intervention due to error-prone preprocessing steps, 
such as cortical surface reconstruction. Moreover, cut-
ting down scan time could also help reduce the anxiety of 
children and parents, which can enhance image quality.

Cortical thickening is one of the typical FCD radio-
graphic features [6]; accordingly, morphometric tech-
nique was widely used for automatic segmentation. With 
seven years of clinical usage experience, Sepulveda et al. 
[25] demonstrated that applying FreeSurfer software (one 
of the semiautomated automated brain segmentation 
methods) could increase detection sensitivity, especially 
in cases with the absence of clear conventional MRI find-
ings. A recent multicenter, multinational study presented 
an interpretable, fully automated pipeline for surface-
based detection of FCD, which reached a sensitivity of 
67% in the test cohort [9]. Progress is also being made 
on automated volumetric MRI methods. Martin et al. [8] 
and Wang et al. [28] reported a detection rate of 65% for 
VBM postprocessing in the MRI-negative group, while 
Martin et al. [8] and Wagner et al. [29] showed a detec-
tion rate of 85% with morphometric analysis program 
in the MRI-positive patients. Nevertheless, the studies 
using the VBM method detected lesions at the patient 
level, which was insufficient to determine the lesion’s bor-
ders. Although the features obtained by the SBM method 
based on the multi-dimensional analysis of the lesion 
cortex were accurate to the lesion level, inconsistencies 
remained in the criteria for predicting lesion clusters and 
filtering out false positives [14, 15]. The evaluation met-
rics of our work were on a voxel level, which would ben-
efit lesion detection and clinical decisions. The sensitivity 
value of the best model to detect lesions in the test cohort 
was 0.73, which was comparable to the previous works.

In recent years, several neural networks have been 
proposed for detecting and segmenting FCDs using AI. 
Mo et  al. [30] extracted cortical surface features and 
then classified them with the artificial neural network. 
Thomas et al. [13] proposed a Multi-Res-Attention Unet, 
a hybrid skip connection-based convolutional neural 
network architecture for FCD segmentation. David et al. 
[24] created a feed-forward artificial neural network for 
FCD detection based on the morphometric output maps 
of MAP18. Feng et  al. [16, 17] used Bayesian classifiers 
trained on different numbers of feature maps to detect 
FCD in FLAIR-negative MRIs. Gill et  al. [14] provided 
a multicenter validation study of the detection of MRI-
negative FCD using an uncertainty-informed Bayesian 
deep learning algorithm as a measure of confidence for 
risk stratification. House et al. [15] developed a 3D con-
volutional neural network with autoencoder regulariza-
tion for FCD detection and segmentation and validated 
it prospectively on daily routine MRIs. The nnU-Net 
framework is a plug-and-play framework for deep 

learning-based biomedical segmentation that automati-
cally configures itself for each new task [18]. The nnU-
Net has been applied in various tumor segmentation, 
including pancreatic ductal adenocarcinoma [31], osteo-
sarcoma [32], breast cancer [33], and so on. We achieved 
broadly similar results concerning the Dice score with 
other studies [13–15], the mean DSC score of the best 
model to detect lesions in our testing cohort was 0.57.

This study has several potential limitations. First, it has 
limitations inherent in the single-center study design and 
the use of augmentation techniques. Second, given that 
FCD II is the most prevalent epileptogenic developmen-
tal brain malformation and a common cause of surgically 
treatable epilepsy, our study exclusively concentrates on 
this subtype. The FCD I datasets would be included in 
future research to enhance the clinical applicability of our 
models. Additionally, due to the inherent differences in 
neuroimaging features between FCD IIa and IIb, we con-
ducted the independent sample t-test to assess potential 
variations in the model’s lesion detection performance 
across these two subtypes. The results suggest that, con-
cerning the evaluation metrics of DCS and sensitivity, 
although the models exhibited superior performance in 
detecting lesions in group IIb compared to group IIa, the 
observed disparity between the two groups did not reach 
statistical significance. Further details can be found in 
Supplementary Table 1. Apart from that, age is a crucial 
factor influencing the quality of T1-MPRAGE images. 
To address this concern and account for ongoing myeli-
nation, we excluded children under 2  years old at the 
time of surgery. The acquisition of MRI data was meticu-
lously performed within the week preceding the surgery, 
aiming to minimize potential age-related interference 
with image quality. Finally, due to the lack of independ-
ent external validation datasets, the possibility of model 
overfitting cannot be ruled out. These issues need to be 
further explored in future work.

Conclusions
This pilot study confirmed that 3D full-resolution nnU-
Net can automatically segment FCD lesions with reliable 
outcomes. The proposed models achieve a maximum 
DSC score of 0.57 and the highest sensitivity value of 0.73 
in the testing datasets. These promising results inspire us 
to conduct additional validation with multi-center data-
sets as this technique progresses towards use in clinical 
practice.

Abbreviations
AS  Automated segmentations
DL  Deep learning
DSC  Dice-Sørensen coefficient
FCD  Focal cortical dysplasia
FN  False negative
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FP  False positive
ILAE  International League Against Epilepsy
IQR  Interquartile range
ML  Machine learning
MPRAGE  Magnetization-prepared rapid gradient-echo
MS  Manual segmentation
SBM  Surface-based morphometry
SD  Standard deviation
TN  True negative
TP  True positive
VBM  Voxel-based morphometry
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