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Abstract 

Objectives  To develop a multiparameter magnetic resonance imaging (MRI)-based radiomics approach that can 
accurately predict the tumor cell proliferation status of serous ovarian carcinoma (SOC).

Materials and methods  A total of 134 patients with SOC who met the inclusion and exclusion criteria were retro-
spectively screened from institution A, spanning from January 2016 to March 2022. Additionally, an external validation 
set comprising 42 SOC patients from institution B was also included. The region of interest was determined by draw-
ing each ovarian mass boundaries manually slice-by-slice on T2-weighted imaging fat-suppressed fast spin-echo 
(T2FSE) and T1 with contrast enhancement (T1CE) images using ITK-SNAP software. The handcrafted radiomic 
features were extracted, and then were selected using variance threshold algorithm, SelectKBest algorithm, and least 
absolute shrinkage and selection operator. The optimal radiomic scores and the clinical/radiological independent 
predictors were integrated as a combined model.

Results  Compared with the area under the curve (AUC) values of each radiomic signature of T2FSE and T1CE, 
respectively, the AUC value of the radiomic signature (T1CE-T2FSE) was the highest in the training set (0.999 vs. 0.965 
and 0.860). The homogeneous solid component of the ovarian mass was considered the only independent predic-
tor of tumor cell proliferation status among the clinical/radiological variables. The AUC of the radiomic–radiological 
model was 0.999.

Conclusions  The radiomic–radiological model combining radiomic scores and the homogeneous solid component 
of the ovarian mass can accurately predict tumor cell proliferation status of SOC which has high repeatability and may 
enable more targeted and effective treatment strategies.

Critical relevance statement  The proposed radiomic–radiological model combining radiomic scores 
and the homogeneous solid component of the ovarian mass can predict tumor cell proliferation status of SOC which 
has high repeatability and may guide individualized treatment programs.
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Key points 

• The radiomic–radiological nomogram may guide individualized treatment programs of SOC.

• This radiomic–radiological nomogram showed a favorable prediction ability.

• Homogeneous slightly higher signal intensity on T2FSE is vital for Ki-67.
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Graphical Abstract

Introduction
Epithelial ovarian carcinoma accounts for more than 
90% ovarian malignancies. Among them, serous ovarian 
carcinoma (SOC) has the highest incidence and is the 
most lethal gynecologic malignancy [1–4]. Currently, the 
standard treatment strategy for SOC is primary debulk-
ing surgery (PDS) or neoadjuvant chemotherapy (NACT) 
followed by interval debulking surgery. Regarding the 
aggressiveness and clinical behavior of SOC, tumor cell 
proliferation has important diagnostic and prognostic 
value. Hence, preoperative evaluation of the tumor pro-
liferation status is important [5–7].

Ki-67 antigen is considered a tumor proliferation sta-
tus index and has been extensively used both as a diag-
nostic and prognostic indicator of many malignancies, 
such as glioma, breast cancer, lung cancer, and liver 
cancer [8–11]. Ki-67 antigen is a DNA-binding protein 

that is expressed in all cells during the mitotic cycle. 
The higher its expression level, the more nuclear fission, 
indicating more active the cell proliferation. Excessive 
cell proliferation can easily contain physiological apop-
totic DNA or replication error DNA endlessly entering 
the cell cycle, eventually leading to cell carcinogenesis 
[12]. Ki-67 antigen is usually overexpressed in malig-
nant ovarian tumor compared with benign or borderline 
tumors. For ovarian carcinoma, the expression of Ki-67 
antigen is widely used to guide clinical management, 
such as tumor aggression, vascular invasion, tumor 
metastasis, reserved prognosis, and poor response to 
chemotherapy [3, 13–16]. At present, Ki-67 expres-
sion status is mainly assessed by immunohistochemi-
cal (IHC) examination of biopsy or surgery specimens. 
However, with the IHC sampling method, the evaluation 
of Ki-67 expression is unrepresentative of its expression 
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level in the entire tumor, which affects clinical decision-
making. Therefore, the establishment of models that can 
predict Ki-67 expression levels of the entire tumor is 
crucial to guide individualized treatment decision-mak-
ing and postoperative monitoring of patients with SOC.

SOC usually presents as ovarian cystic, cystic-solid, or 
solid masses on unilateral or bilateral ovaries on MRI, but 
how to determine the proliferative status of the masses by 
imaging methods? Wang et al. [17] used the parameters 
of apparent diffusion coefficient (ADC) histogram to 
distinguish the tumor stages of epithelial ovarian cancer 
and determine the lymph node status and correlations 
between ADC values and p53 and Ki-67 expressions. 
However, the histogram is only the extracted first-order 
features, which are used to describe the intensity distri-
bution of voxels of images but cannot reflect tumor het-
erogeneity and complexity.

Radiomics, a recently developed technique, can help 
predict tumor phenotype and heterogeneity and pro-
vide information about tumor biological behaviors 
and pathophysiology based on a large amount of high-
throughput data [18, 19]. At present, many researchers 
have applied radiomics to the diagnosis and differential 
diagnosis of diseases, efficacy evaluation, prediction, etc. 
[20–23]. However, too little work has focused on predict-
ing the expression of Ki-67 in patients with SOC based 
on machine learning or radiomic features extracted from 
magnetic resonance imaging (MRI).

In this study, we aimed integrated relevant clinical and 
radiological variables to establish a model based on MRI 
radiomics to predict tumor cell proliferation status, in 
which training, internal validation, and external validation 
sets were designed to test the robustness of the prediction 
model. If the model proves to be effective, our findings will 
play a pivotal role in clinical decision-making.

Materials and methods
Patients
In total, 3276 patients were initially enrolled in this ret-
rospective study from January 2016 to March 2022 (2779 
and 497 patients from institutions A and B, respectively). 
The two institutional ethics committees approved this 
study, and the requirement for informed consent was 
waived owing to the retrospective design.

The inclusion criteria were as follows: (1) developed 
ovarian mass, (2) underwent PDS in the two institutions, 
and (3) had enhanced abdominal-pelvic MRI before sur-
gery. The exclusion criteria were as follows: (1) absence 
of Ki-67 IHC in the two institutions, (2) poor image qual-
ity (e.g., artifact), (3) incomplete clinical data, (4) prior 
NACT, pharmacological treatment or other anticancer 
therapies before surgery, (5) an interval of >  1 month 
between MRI and subsequent pathological analysis, and 

(6) presence of other tumors in the same period. Finally, 
we screened 134 patients from institution A for the train-
ing and internal validation sets, and 42 patients from 
institution B for the external validation set. A total of 134 
patients from institution A were randomly divided into 
training and internal validation sets, with a ratio of 7:3. 
The flow diagram of this study is summarized in Fig. 1a.

MRI acquisition and data collection
All patients from institution A and B underwent 
abdominal pelvic MRI using 3.0 T (GE) and 1.5 T (GE) 
MRI systems, respectively. The detailed parameters of 
the imaging sequences protocol we chose are shown 
in Table  1. Both T2-weighted imaging fat-suppressed 
fast spin-echo (T2FSE) and T1 with contrast enhance-
ment (T1CE) are axial, and the contrast medium in both 
institutions A and B is gadopentetate dimeglumine (0.1 
mmol/kg body weight, Magnevist; Bayer Schering).

Two radiologists with >  10 years of experience in 
gynecologic MRI were blinded to the clinicopathologi-
cal information and independently evaluated preopera-
tive MR images of each patient carefully for distribution 
(unilateral/bilateral), size of the ovarian mass (maximum 
diameter), shape of the ovarian mass (lobulated/non-lob-
ulated), mass angiogenesis [24] (enlarged blood vessels 
supplying or draining the tumor observed around or in 
the center of the ovarian mass), homogeneous solid com-
ponent of the ovarian mass (solid part containing homo-
geneous slightly higher signal intensity area on T2FSE), 
peritoneum/mesentery nodules, metastases of distant 
parenchymal organs, retroperitoneal lymphadenopathy, 
and amount of ascites. The spread of ascites in the abdo-
men and pelvis was quantified as no/small (ascites con-
fined to the pelvic) and medium-to-large (ascites beyond 
the pelvis). If there was any disagreement, the MR image 
features were re-evaluated, and a consensus was reached.

The clinical and laboratory data associated with epithe-
lial ovarian carcinoma of all patients were recorded [25], 
including age, serum carbohydrate antigen 125, human 
epididymis protein 4, neutrophil-to-lymphocyte ratio, 
and the International Federation of Gynecology and 
Obstetrics (FIGO) stage.

Ki‑67 expression assessment
All specimens were fixed in 10% neutral formaldehyde 
solution, dehydrated conventionally, embedded in paraf-
fin, and cut into sections of 4-μm thick. Hematoxylin and 
eosin (HE) staining and immunostaining was evaluated 
qualitatively by two pathologists. The proliferative index 
(PI) of the lesion was estimated by Ki-67 Mindbomb E3 
ubiquitin protein ligase1 (MIB-1) of IHC and was quanti-
tatively expressed as the Ki-67 MIB-1 labeling index when 
the number of positively stained cells per 100 epithelial 
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cells after counting was at least 1000 in each case by high-
power objective of the microscope (×  400) [15, 16]. As 
there is no international consensus on the cutoff value for 
percentage of the Ki67 expression, the SOC lesions were 
divided into two groups according to several studies [15, 
16, 26, 27]: the high expression group (PI ≥ 50% immuno-
reactive cells are positive) and the low expression group 
(PI < 50% immunoreactive cells are positive).

Tumor segmentation and feature extraction
The overview of our modeling workflow is shown in 
Fig.  1b. The pathological changes of the tumor are 
reflected in T2FSE images, and the blood supply of the 
tumor is reflected in T1CE images. The region of inter-
est (ROI) was determined by two radiologists (with ≥ 10 
years of experience in gynecological MRI) by drawing 
each ovarian mass boundaries manually slice-by-slice 

Fig. 1  The flow diagram of this study. a Workflow of this study. b Five steps of our predictive model building: MR image acquisition, ROI 
segmentation, features extraction, features selection and model building and evaluation. ROI, the region of interest
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on T2FSE and T1CE images using ITK-SNAP software 
(version 3.8.0, http://​openi​conli​brary.​sourc​eforge.​net/), 
which is tumor segmentation. Any discrepancy was 
resolved by consensus. For patients with bilateral masses, 
the larger one was selected to delineate the ROI, which 
usually contained more comprehensive imaging fea-
tures. Before feature extraction, each MR image was pre-
processed as follows: (1) image standardization: a linear 
interpolation was used to resample the MR images to 1 
mm ×1 mm × 5 mm voxel size to ensure image stand-
ardization. (2) Z-score normalization was conducted to 
ensure the repeatability of the results and reduce poten-
tial effects associated with different sequence parameters 
and scanner manufacturers [28]. Subsequently, 1688 
handcrafted radiomic features from each sequence were 
extracted using the open-source Python package Pyra-
diomics (version 3.0.1; http://​www.​radio​mics.​io/​pyrad​
iomics.​html). The extracted radiomic features included 
four groups: morphologic features, intensity-based (first-
order), texture (second-order), and wavelet features 
formed based on these three feature categories. One 
month later, we repeatedly delineate the ROI in a sub-
set of the training set with 31 data to assess the repeat-
ability of feature extraction using intraclass correlation 
coefficients (ICC). In this study, an ICC value > 0.80 was 
considered robust, and 1686 and 1633 of the initial 1688 
image features remained on T2FSE and T1CE sequences, 
respectively.

Feature selection, radiomic signature construction, 
and evaluation
After the repeatability test, three feature selection 
methods (variance threshold algorithm, SelectKBest 
algorithm, and least absolute shrinkage and selec-
tion operator [LASSO] regression) were used in turn 
for dimension reduction of each sequence (T2FSE and 
T1CE) and combined sequences (T1CE–T2FSE). Then, 
the radiomic scores (Radscores) of each sequence and 
combined sequences were calculated from the final radi-
omic features and their respective coefficients. Then, the 
radiomic features of each sequence (T2FSE and T1CE) 
and combined sequences (T1CE–T2FSE) were used to 

establish models to predict Ki-67 expression levels. The 
receiver operating characteristic curve analysis was used 
to evaluate the predictive performance, and the DeLong 
test was performed to compare the differences between 
them. The optimal radiomic model was the radiomic 
model with the highest area under the curve (AUC).

Radiomic–clinical–radiological model construction 
and evaluation
The best cut-off values for age, CA-125, HE-4, and NLR 
were determined by univariate regression, respectively, 
and were converted into categorical variables. Univariate 
and multivariate analyses were used to obtain the inde-
pendent predictors of the model among the clinical and 
radiological variables. Then, the radiomic–clinical–radio-
logical model was obtained by integrating the optimal 
radiomic scores and the independent predictors using 
multivariable logistic regression. The predictive perfor-
mance of the radiomic–clinical–radiological model was 
assessed using AUC, accuracy, sensitivity, and specificity 
and validated in the internal or external validation set.

Statistical analysis
Statistical analyses were performed with the Python 
package scipy (version 1.7.3, https://​scipy.​org/), and the 
radiomic–clinical–radiological model and nomogram 
were developed using the R software (version 3.5.1, 
http://​www.r-​proje​ct.​org/). Student’s t-test and Wilcoxon 
test were used to assess the differences of continuous 
variables. Chi-square test was used to assess the differ-
ences of categorical variables. The DeLong test was used  
to assess the differences in the AUC of the models. p < 0.05 
was defined significant.

Results
Features of the study population
A total of 134 patients from institution A were screened 
based on the inclusion and exclusion criteria, and they 
were randomly allocated into training (n = 93) and 
internal validation (n = 41) sets, with a ratio of 7:3. 
From institution B, 42 patients were screened for the 
external validation set. The average age of 134 patients 

Table 1  The detailed parameters of the imaging sequences

T2FSE T2-weighted imaging fat-suppressed fast spin-echo, T1CE T1 with contrast enhancement, LAVA liver acquisition with volume acceleration 3D with fat saturation, 
TR time of repetition, TE time of echo; FOV, field of view

MRI scans T2FSE T1CE (LAVA)

TR (ms) TE (ms) Slice 
thickness 
(mm)

Gap (mm) FOV (cm) TR (ms) TE (ms) Slice 
thickness 
(mm)

Gap (mm) FOV (cm) Scan time (s)

3.0 T (GE) 4260 108.6 5 5 40 4 2 4 2 40 30, 60, 90, 120

1.5 T (GE) 2700 68 5 5 40 4 2 4 0 40 30, 60, 90, 120

http://openiconlibrary.sourceforge.net/
http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
https://scipy.org/
http://www.r-project.org/
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with SOC eligible from institution A was 54 years 
(range 27–80 years), and that of 42 patients with SOC 
eligible from institution B was 54 years (range 30–74 
years). As shown in Table  2, a significant difference 
was found only in the amount of ascites among the five 

clinical and nine radiological variables (p < 0.05), indi-
cating that the two data sets were from the same popu-
lation. After univariate logistic regression, the optimal 
cutoff values of the continuous variables were as fol-
lows: age (cutoff = 55, C-index = 0.652), CA-125 (cutoff 

Table 2  Equilibrium comparison between the training and internal validation sets, and the clinical/radiological characteristics in the 
external validation

FIGO the International Federation of Gynecology and Obstetrics, CA125 carbohydrate antigen 125, HE4 human epididymis protein 4, NLR neutrophil-to-lymphocyte 
ratio; Age is presented as means ± standard deviations; CA-125, HE-4, NLR and Size of ovarian mass are expressed as medians (interquartile ranges); other 
characteristics are expressed as absolute numbers and percentages
a Student’s t test
b  Wilcoxon test
c Chi-square test

Characteristics Equilibrium comparison External validation set, n = 42

Training set, n = 93 Internal validation set, n = 41 p value

Clinical characteristics

  Age 53.05 ± 10.83 54.24 ± 10.40 0.554a 54.31 ± 8.30

  FIGO 0.098c

    I–II 16 (17.2) 15 (36.6) 7 (16.7)

    III–IV 77 (82.8) 26 (63.4) 35 (83.4)

   CA125 830.50 (307.70, 1856.10) 593.00 (239.50, 2036.70) 0.327b 1000.50 (410.24, 2104.28)

   HE4 396.00 (153.00, 767.00) 224.00 (108.00, 597.00) 0.084b 572.55 (201.58, 960.12)

   NLR 2.87 (1.89, 5.43) 3.26 (2.04, 4.58) 0.186b 3.49 (2.57, 5.36)

Radiological characteristics

  Distribution 0.106c

    Unilateral 41 (44.1) 25 (61.0) 22 (52.4)

    Bilateral 52 (55.9) 16 (39.0) 20 (47.6)

  Lobulated ovarian mass 0.547c

    No 3 (3.2) 3 (7.3) 3 (7.1)

    Yes 90 (96.8) 38 (92.7) 39(92.9)

  Angiogenesis of ovarian mass 0.741c

    No 8 (8.6) 5 (12.2) 4 (9.5)

    Yes 85 (91.4) 36 (87.8) 38 (90.5)

    Size of ovarian mass (maximum diameter, 
cm)

8.20 (6.00, 12.00) 8.60 (6.80, 11.00) 0.835b 6.20 (4.82, 8.90)

  Homogeneous solid in ovarian mass 1c

    No 26 (28.0) 12 (29.3) 12 (28.6)

    Yes 67 (72.0) 29 (70.7) 30 (71.4)

  Peritoneum/mesentery nodules 0.837c

    No 24 (25.8) 12 (29.3) 9 (21.4)

    Yes 69 (74.2) 29 (70.7) 33 (78.6)

Metastases of distant parenchymal organs 1c

    No 79 (84.9) 35 (85.4) 35 (83.3)

    Yes 14 (15.1) 6 (14.6) 7 (16.7)

  Retro-peritoneal lymphadenopathy 0.106c

    No 73 (78.5) 26 (63.4) 35 (83.3)

    Yes 20 (21.5) 15 (36.6) 7 (16.7)

  Amount of ascites 0.013c

    No/small 38 (40.9) 27 (65.9) 20 (47.6)

    Medium-to-large 55 (59.1) 14 (34.1) 22 (52.4)
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= 1231, C-index = 0.559), HE-4 (cutoff = 418, C-index 
= 0.561), NLR (cutoff = 3.73, C-index = 0.614), and 
maximum diameter of the ovarian neoplasm (cutoff = 
7.4, C-index = 0.646).

Among 134 cases of SOC from hospital A, there were 
89 cases of high Ki-67 expression (PI ≥ 50%), account-
ing for 66.4%, whereas there were 45 cases of low Ki-67 
expression (PI < 50%), accounting for 33.6%. And among 
42 cases of SOC from hospital B, there were 31 cases of 
high Ki-67 expression, accounting for 73.8%, whereas 
there were 11 cases of low expression, accounting for 
26.2%.

In the training set, significant differences in variables 
of the homogeneous solid component of the ovarian 
mass and FIGO stage were found between the high and 
low Ki-67 expression groups on the univariate regres-
sion analysis (p < 0.05), whereas there was no significant 
difference in clinical variables between the high and low 
Ki-67 expression groups. On the multivariate regression 
analysis, only the homogeneous solid component of the 
ovarian mass was considered the independent predictor 
of the expression level of Ki-67 (Tables 3 and 4).

Construction and internal and external validation 
of the radiomic signature
Extracted from T2FSE and T1CE sequences, we included 
1688 radiomic features, both. After the elimination of 
redundancy using the variance threshold algorithm, 
SelectKBest algorithm, and LASSO, 20, 15, and 35 fea-
tures were left from the T2FSE, T1CE, and T1CE–T2FSE, 

respectively (Fig. 2). Subsequently, the radiomic signature 
of T2FSE, T1CE, and T1CE–T2FSE was constructed 
respectively. Compared with the AUC values of each 
radiomic signature, the AUC value of the radiomic sig-
nature (T1CE–T2FSE) was the highest in the training set 
(0.999 vs. 0.965 and 0.860). The DeLong test showed that 
the AUC value of the radiomic signature (T1CE–T2FSE) 
was significantly different from those of the other two 
radiomic signatures (p < 0.05). As a result, the radiomic 
signature (T1CE–T2FSE) was considered the optimal 
radiomic signature.

Establishment and internal and external validations 
of the radiomic–radiological model
By univariate and multivariate analyses, only the homo-
geneous solid component of the ovarian mass was con-
sidered the independent predictor (Fig. 3) among the five 
clinical and nine radiological variables. Thus, we devel-
oped a radiological model instead of a clinical–radiologi-
cal model using the only independent predictor. Likewise, 
we integrated the optimal radiomic scores and the only 
independent predictor to establish a radiomic–radio-
logical model instead of radiomic–clinical–radiological 
model (Fig.  4). Compared with the AUC values of the 
radiomic signature, radiological model, and radiomic–
radiological model, the radiomic–radiological model had 
the best AUC of the training set of 0.999, internal valida-
tion set of 0.974, and external validation set of 0.894. The 
DeLong test showed a significant difference between the 

Table 3  Univariate and multivariate regression analysis of the clinical features

Chi-square test FIGO the International Federation of Gynecology and Obstetrics, CA-125 carbohydrate antigen 125, HE4 human epididymis protein 4, NLR neutrophil-
to-lymphocyte ratio, OR odds ratio, 95% CI 95% confidence interval

Characteristics Univariate regression analysis Multivariate regression analysis

OR 95% CI p value OR 95% CI p value

Age

  ≤ 55 1

  > 55 0.987 0.962–1.044 0.924 N/A N/A N/A

FIGO

  I – II 1 1

  III–IV 2.08 1.061–4.395 0.040 1.64 0.68–3.99 0.27

CA-125

  ≤ 1231 1

  > 1231 0.497 0.19–1.22 0.137 N/A N/A N/A

HE4

  ≤ 418 1

  > 418 0.483 0.194–1.116 0.109 N/A N/A N/A

NLR

  ≤ 3.73 1

  >3.73 0.513 0.968–1.643 0.111 N/A N/A N/A
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radiological model and the radiomic–radiological model 
and between the radiomic signature and the radiological 
model (p < 0.05). Moreover, no significant difference was 
found between the radiomic signature and the radiomic–
radiological model (p = 0.480) in the training set, whereas 
the difference was significant in the external validation 
set (p < 0.05). Figure 5 shows the calibration curves of the 
radiomic–radiological model in the three sets.

Discussion
In this study, we developed a radiomic–radiological 
model to predict the Ki-67 expression level of the tumor 
by extracting features from preoperative or pretreatment 
MRI of patients with SOC, integrating clinical and radio-
logical variables probably related to tumor proliferation, 
which was verified in the external validation set. This 
model demonstrated excellent performance in predicting 
Ki-67 expression. To our knowledge, this is the first study 

to establish a radiomic–radiological model to predict 
the Ki-67 expression levels of SOC using MRI data. The 
robustness and generalizability of the model were further 
verified by external validation of the calibration curve.

Before feature extraction, we conducted standardized 
preprocessing of image data (including voxel size resam-
pling and Z-score normalization) according to previous 
research methods [28] to significantly reduce the differ-
ences among scanners and imaging parameters. Wang 
et  al. [17] used the ADC histogram parameters to dis-
tinguish different tumor stages of epithelial ovarian can-
cer and determine lymph node status and correlations 
between ADC values and Ki-67 expression. Li et al. [29] 
used ADC histogram parameters to differentiate high-
grade SOC from low-grade SOC and correlate those 
parameters with the Ki-67 proliferation index. These 
studies indicate that we can use first-order statistics to 
study the correlation between tumors and IHC indicators 

Table 4  Univariate and multivariate regression analysis of the radiological features

Chi-square test FIGO the International Federation of Gynecology and Obstetrics, CA-125 carbohydrate antigen 125, HE4 human epididymis protein 4, NLR neutrophil-
to-lymphocyte ratio, OR odds ratio, 95% CI 95% confidence interval

Characteristics Univariate regression analysis Multivariate regression analysis

OR 95% CI p Value OR 95% CI p Value

Distribution

  Unilateral 1

  Bilateral 0.719 0.293–1.717 0.461 N/A N/A N/A

Lobulated ovarian mass

  NO 1

  Yes 0.967 0.045–10.845 1 N/A N/A N/A

Angiogenesis of ovarian mass

  No 1

  Yes 1.22 0.237–5.344 0.794 N/A N/A N/A

Size of ovarian mass (cm)

  ≤ 7.4 1

  > 7.4 0.906 0.802–1.019 0.104 N/A N/A N/A

Homogeneous solid in ovarian mass

  No 1 1

  Yes 23.94 7.859–86.448 < 0.01 22.15 6.7–73.21 < 0.01

Peritoneum/mesentery nodules

  No 1

  Yes 2.07 0.790–5.430 0.135 N/A N/A N/A

Metastases of distant parenchymal organs

  No 1

  Yes 2.01 0.572–9.443 0.312 N/A N/A N/A

Retro-peritoneal lymphadenopathy

  No 1

  Yes 1.66 0.570–5.569 0.375 N/A N/A N/A

Amount of ascites

  None/ small 1

  Middle/large 1.30 0.541–3.129 0.551 N/A N/A N/A
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of SOC. However, first-order statistics usually describe 
the voxel intensity distribution of images. Relative to the 
first- and second-order statistics (texture analysis), radi-
omics is a high-order statistic using image filter feature 
transform to reduce noise and enhance edge detection. 
It can help reveal tumor characteristics that cannot be 
observed in the original image by naked eyes [30] and 
play an important role in predicting pathological status 

[31, 32]. In this study, the radiomic model was estab-
lished using the 35 most discriminative features extracted 
(including 3 morphologic, 15 intensity-based [first-
order], and 17 texture [second-order] features), on the 
basis of which 12 wavelet features were formed (Fig. 2).

In our study, the radiomic signature of T1CE–T2FSE 
had the highest AUC value among the three radiomic 
signatures (0.999 vs. 0.965 and 0.860). It indicated that 

Fig. 2  Features retained after radiomics high-throughput feature dimension reduction. a MSE PATH, the dotted line represents the α value (1.9) 
with the smallest mean square error. b LASSO PATH, the radiomic features are determined according to the α value with the smallest mean square 
error. c Lasso coefficient of the features after radiomics high-throughput feature dimension reduction
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multiple sequences can provide more important infor-
mation than a single sequence, and the performance 
of the combined model of multiple sequences is higher 
[33–36]. Although no literature focused on predicting 
Ki-67 expression of SOC based on radiomics, the result 
of our study was consistent with that of using radiom-
ics to predict Ki67 of hepatocellular carcinoma [37] and 
lung cancer [38].

During the study, if the SOC masses were classified 
according to the traditional method (cystic, cystic-solid, 
and solid components), the Ki-67 expression of cystic 
masses might be high (Fig.  3a–c), whereas that of solid 
masses might be low (Fig.  3d–i). We hypothesized that 
the expression level of Ki-67 might not significantly 
correlate with the proportion of the cystic/solid com-
ponent of the mass. After repeated careful observa-
tions, we found that some of the solid masses with low 
Ki-67 expression were either polycystic or spongiform 

(Fig.  3d–f), and they did not contain areas of slightly 
hyperintense T2FSE homogeneity. In our study cohort, 
we found that the expression level of Ki-67 was mostly 
higher if the solid part of the ovarian mass contained a 
homogeneous slightly hyperintense T2FSE area, and 
lower if not. As a result, we tried to divide the charac-
teristics of the ovarian masses into a new category 
according to the degree of signal uniformity in the solid 
component: including homogeneous slightly higher sig-
nal intensity area or not on T2FSE. This is a new clas-
sification of the ovarian mass, which is independent of 
the presence or absence of a cystic component of the 
mass or the percentage of cystic/solid component of the 
mass. In our study, the ovarian mass has higher expres-
sion levels of Ki-67 if the solid part contains homoge-
neous slightly higher signal intensity area on T2FSE. By 
univariate and multivariate analyses, a significant differ-
ence in this mass feature was found between the high and 

Fig. 3  The radiological features on MR images and corresponding HE and Ki-67 of IHC. The radiological features on MR images and corresponding 
HE (hematoxylin-eosin staining, × 400) and Ki-67 of IHC (Immunohistochemistry], × 400). a–c A 70-year-old woman with high-grade serous 
papillary cystadenocarcinoma. a An axial T2FSE (T2-weighted imaging fat-suppressed fast spin-echo) image shows a cystic mass with solid nodules 
in the left ovary (red line) which contains homogeneous slightly higher signal intensity area (red arrow). b HE of high-grade serous papillary 
cystadenocarcinoma. c IHC of high-grade serous papillary cystadenocarcinoma displaying high Ki-67 PI (proliferative index) (80%). d–f A 64-year-old 
woman with high-grade serous cystadenocarcinoma. d An axial T2FSE image shows a fused cystic-solid mass (red line) from bilateral ovaries 
which looks like sponge and contains no homogeneous slightly higher signal intensity area. e HE of high-grade serous cystadenocarcinoma. f 
IHC of high-grade serous cystadenocarcinoma displaying low Ki-67 PI (40%). g–i A 32-year-old woman with non-invasive micropapillary serous 
carcinoma. g An axial T2FSE image shows a solid mass in the left ovary (red line) which contains no homogeneous slightly higher signal intensity 
area. h HE of non-invasive micropapillary serous carcinoma. i IHC of non-invasive micropapillary serous carcinoma low Ki-67 PI (10%)
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Fig. 4  The radiomic-radiological model and its performance. a The radiomic-radiological model for the training set. b–d The confusion matrix 
of the training, internal validation, and external validation sets, respectively. e The ROC curves of the radiomic, radiological, and radiomic-radiological 
models for the internal validation set. f The ROC curves of radiomic-clinical-radiological model for the three sets. ROC, receiver operating characteristic
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low Ki-67 expression groups compared with other vari-
ables. In other words, homogeneous slightly higher signal 
intensity area on T2FSE indicates the presence of densely 
packed cells in the mass, which may be related to the 
higher degree of tumor proliferation.

In addition to radiomic signature, we included a 
total of five clinical and nine radiological factors that 
may have significance for tumor proliferation status, 
including FIGO stage, serum tumor markers, tumor 
maximum diameter, homogeneous solid component 
of the ovarian mass, lobulation, tumor angiogenesis, 
and peritoneal metastases. However, by univariate 
and multivariate analyses, only the homogeneous solid 
component of the ovarian mass was confirmed to be 
the independent predictor. According to our analysis, 
because SOC is highly malignant and often has a large 
volume when it is found, there is a large amount of 
ascites with peritoneal metastasis. The lobulation sign 
and tumor angiogenesis are also malignant characteris-
tics of ovarian tumors. However, the cases in our study 
were all SOC. Therefore, this may be the reason why 
there were no significant differences between the high 
and low expression groups of Ki-67 among other clini-
cal and radiological characteristics in this study.

Wang et  al. [17] demonstrated there was a nega-
tive correlation between apparent diffusion coefficient 
parameters and Ki-67 labeling index values using ADC 
histogram analysis. To develop a nomogram predicting 
the expression of Ki-67, which is more intuitive com-
pared to the result of Wang et  al. [17], we integrated 
the optimal radiomic scores and the radiological inde-
pendent predictor determined by univariate and multi-
variate analyses. The AUC of the radiomic–radiological 
model is significantly higher than that of the optimal 
radiomic signature or the radiological model in the 
internal validation set (0.974 vs. 0.937 and 0.897) and 
external validation set (0.894 vs. 0.725 and 0.867). The 
AUC of our radiomic–radiological model was signifi-
cantly higher than that of ADC histogram analysis by Li 
et al. [29] (0.717–0.807).

This study has several limitations. First, a potential 
selection bias exists in terms of the inclusion of patients 
owing to the retrospective design. Second, the sample 
size can still be considered relatively small for the devel-
opment of prognostic models. Third, although some 
studies support the use of 50% as the cut-off value [15, 
16, 26, 27], there is no clear consensus on the Ki-67 
expression level in SOC. Fourth, through the DeLong 
test, we found no significant difference between the per-
formance of the radiomic–radiological and the radiomic 
models in the training set, whereas a significant differ-
ence was found in the external validation set. According 
to our analysis, the AUC of both models in the training 

Fig. 5  Calibration curves of the radiomic-radiological model 
in the training, internal validation, and external validation sets. a 
Training set. b Internal validation set. c External validation set
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set was 0.999; thus, the lack of a significant statistical dif-
ference between them was reasonable. Such a result may 
be related to the selection of our samples (all of them 
SOC) or sample size; however, it at least indicates that 
the radiomic model and radiomic–radiological model 
both have an excellent ability to identify the high and low 
expressions of ki-67 in SOC. In addition, the difference 
between the two models was significant in the external 
validation set, which also suggests a certain generaliz-
ability of the model. Fifth, clinical variables were rela-
tively few, such as patient comorbidities, family history, 
or other molecular biomarkers. Hence, in future studies, 
we will include multiple pathological subtypes of ovar-
ian carcinoma, expand the sample size, and include more 
relevant variables for prospective studies and prospec-
tively develop objective assessment criteria for the per-
centage determination of Ki-67.

Conclusion
We established a radiomic–radiological model to accu-
rately predict the expression level of Ki-67, which also 
demonstrated perfect performance in the external vali-
dation set. This method has high repeatability and may 
enable more targeted, effective treatment strategies and 
clinical monitoring of patients with SOC.
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