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Abstract 

Purpose To develop and evaluate machine learning models based on MRI to predict clinically significant prostate cancer 
(csPCa) and International Society of Urological Pathology (ISUP) grade group as well as explore the potential value of radiomics 
models for improving the performance of radiologists for Prostate Imaging Reporting and Data System (PI-RADS) assessment.

Material and methods A total of 1616 patients from 4 tertiary care medical centers were retrospectively enrolled. PI-
RADS assessments were performed by junior, senior, and expert-level radiologists. The radiomics models for predict-
ing csPCa were built using 4 machine-learning algorithms. The PI-RADS were adjusted by the radiomics model. The 
relationship between the Rad-score and ISUP was evaluated by Spearman analysis.

Results The radiomics models made using the random forest algorithm yielded areas under the receiver operat-
ing characteristic curves (AUCs) of 0.874, 0.876, and 0.893 in an internal testing cohort and external testing cohorts, 
respectively. The AUC of the adjusted_PI-RADS was improved, and the specificity was improved at a slight sacrifice 
of sensitivity. The participant-level correlation showed that the Rad-score was positively correlated with ISUP in all 
testing cohorts (r > 0.600 and p < 0.0001).

Conclusions This radiomics model resulted as a powerful, non-invasive auxiliary tool for accurately predicting pros-
tate cancer aggressiveness. The radiomics model could reduce unnecessary biopsies and help improve the diagnostic 
performance of radiologists’ PI-RADS. Yet, prospective studies are still needed to validate the radiomics models further.

Critical relevance statement The radiomics model with MRI may help to accurately screen out clinically significant 
prostate cancer, thereby assisting physicians in making individualized treatment plans.

Key points 

• The diagnostic performance of the radiomics model using the Random Forest algorithm is comparable to the Prostate 
Imaging Reporting and Data System (PI-RADS) obtained by radiologists.

*Correspondence:
Hailin Shen
hailinshen@163.com
Ximing Wang
wangximing1998@163.com
Chunhong Hu
sdfyyhch@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13244-024-01631-w&domain=pdf


Page 2 of 13Bao et al. Insights into Imaging           (2024) 15:68 

• The performance of the adjusted Prostate Imaging Reporting and Data System (PI-RADS) was improved, which 
implied that the radiomics model could be a potential radiological assessment tool.

• The radiomics model lowered the percentage of equivocal cases. Moreover, the Rad-scores can be used to character-
ize prostate cancer aggressiveness.

Keywords Neoplasms, Prostatic, Magnetic resonance imaging, Random forest, Retrospective study

Graphical Abstract

Background
Prostate cancer (PCa) is among the most common can-
cers affecting the male population, whose incidence has 
been increasing every year [1]. The International Society 
of Urological Pathology (ISUP) grade groups is currently 
considered the best prognostic factor for determining 
PCa aggressiveness and therapeutic schedule [2]. Digital 
rectal examination and prostate-specific antigen (PSA) 
tests, followed by transrectal ultrasound (TRUS) guided 
biopsy, are widely used diagnostic approaches for PCa; 
yet, these methods have been associated with an elevated 
rate of overdiagnosis or under-diagnosis [3].

Multiparametric magnetic resonance imaging (mpMRI), 
including T2 weighted imaging (T2WI), diffusion-
weighted imaging (DWI), and apparent diffusion coef-
ficient (ADC) maps derived from DWI and dynamic 
contrast-enhanced (DCE), are being increasingly used for 
the detection of PCa [4, 5]. Prostate Imaging Reporting 

and Data System (PI-RADS) has been designed to stand-
ardize image acquisition techniques and interpretation of 
prostate MRI [6]; however, despite the widespread appli-
cation in clinical practice, PI-RADS is a semi-quantitative 
assessment affected by the subjectivity and variability of 
a radiologist, with only moderate to good interobserver 
agreement [7]. A five-point scale PI-RADS lacks objec-
tive distinction between inflammatory and tumor lesions. 
It is also not able to assess the aggressiveness of prostate 
cancer. Subsequently, numerous studies have validated 
PI-RADS but have also shown some limitations, such as 
several specific assessment criteria requiring clarification 
or adjustment [6, 8]. The vocabulary and subjective assess-
ments of different radiologists are of significant impor-
tance for the validity of the report. While lesions scored 
1 or 2 indicate that clinically significant cancer is unlikely 
and lesions scored 4 or 5 indicate that clinically significant 
cancer is likely present, lesions scored 3 are intermediate 
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or equivocal lesions that pose a significant challenge to 
clinical management [6, 9].

With the rapid development of artificial intelligence, 
the radiomics features include high-dim features and 
some identifiable by the naked eye [10]. Radiomics is a 
non-invasive quantitative method used to evaluate tumor 
heterogeneity and complexity [11]. Previous studies have 
applied radiomics to stratify risk categories of histological 
Gleason grade and predict extracapsular extension, lymph 
node metastasis, and recurrence-free survival in the pros-
tate [12–15]. The potential value of radiomics for diagnos-
ing and predicting PCa using MRI has also been reported. 
For example, recent single-center studies [16, 17] have 
employed radiomics analysis of MRI for the detection of 
clinically significant prostate cancer (csPCa); however, 
the high variation of pathological characteristics of PCa 
and the imbalance in single-center data can easily lead to 
overfitting, hindering the generalization of the radiomics 
model. In particular, identifying the obstacles to predict-
ing csPCa would more effectively overcome the lack of a 
universally validated radiomic tool and the endpoint of 
screening out csPCa. Indeed, it is necessary to develop 
an alternative and robust tool using multi-center data to 
quantify the accuracy and generalizability of the new tool 
in assessing PCa characteristics more effectively.

This study aimed to develop and validate robust and 
generalizable machine learning models using multicenter 
data for the diagnosis of csPCa and evaluate the auxiliary 
diagnostic role in improving the diagnostic performance 
of different radiologists, attempting to expand the poten-
tial value in decreasing unnecessary biopsies for spe-
cific PI-RADS category 3 patients. Moreover, we further 
evaluated the correlation with radiomics scores and the 
histopathologic ISUP grade groups to assess the ability of 
pathological characteristics using multicenter MRI data 
to evaluate PCa aggressiveness.

Materials and methods
A total of 1616 patients with biopsy-proven PCa were 
reviewed from databases of 4 collaborating centers (i.e., 
center 1, center 2, center 3, and center 4) between Janu-
ary 2015 and December 2021. Inclusion criteria of this 
study were as follows: (1) biopsy-naive men who under-
went standard prostate 3.0-T MRI within 4 weeks before 
biopsy and (2) biopsy-naive men who underwent stand-
ard transrectal ultrasonography (TRUS)/MRI fusion or 
cognitive fusion targeted biopsy and systematic biopsy. 
Exclusion criteria were as follows: (1) absence of prostate 
biopsy or radical prostatectomy (RP) results; (2) incom-
plete MRI sequence or poor image quality (displace-
ment, gas, or motion artifacts) that cannot be used for 
diagnosis; (3) previous history of biopsy or surgery or 
treatment for PCa.

Finally, 539 patients from center 1, 550 from center 2, 
279 from center 3, and 248 from center 4 were included. 
The final cohort comprised 1616 patients with clinical 
indications of prostate MRI; the study flow diagram is 
shown in Fig. 1.

MRI acquisition and PI‑RADS assessment
All mpMRI exams were performed using 3.0-T MRI 
scanners with pelvic phased array coils. The mpMRI 
included T2WI in three planes: DWI, ADC maps in the 
axial plane, and DCE. The details of the institutional 
mpMRI protocols are shown in Table S1.

This multi-center study set up a PI-RADS assessment 
team to score the enrolled patients. PI-RADS assessment 
was divided into three steps: first, according to PI-RADS 
version 2.1 [6], the PI-RADS were assessed by two radiolo-
gists from center 1 and center 3 (reader 1 and reader 2 with 
3 and 6  years of experience in prostate imaging, respec-
tively) evaluating index lesions based on T2WI, DWI/ADC, 
and DCE imaging, namely PI-RADSjunior. The other steps of 
the assessment are described in Supplement Section 1.

The entire three-dimensional volume of interest (VOI) 
of the lesion was segmented on consecutive T2WI axial 
slices using ITK-SNAP (open-source software, v3.8.0; 
www. itksn ap. org) based on histopathologic-imaging 
matching. The details of the manual segmentations are 
summarized in Supplement Section 2.

Histopathology
As a standard part of patient management, patients who 
scored PI-RADS ≥ 3 underwent targeted standard tran-
srectal ultrasonography (TRUS)/MRI fusion or cognitive 
fusion targeted biopsy in conjunction with systematic 
biopsy. Uropathologists reviewed the histopathological 
slides using the 2014 ISUP standard [18]. The ISUP ≤ 2 
group was designated as the non-csPCa group, with 
ISUP > 2 as the csPCa group; the remaining details of the 
histopathology findings are summarized in Supplement 
Section 3.

Radiomics feature extraction
Radiomics features were extracted with FeatureExplorer 
(v0.5.2) [19], open-source software for radiomics study 
based on PyRadiomics (v3.0). The details of this proce-
dure were declared in Supplement Section  4. Finally, a 
total of 292 features were extracted from three sequences. 
ComBat was used to alleviate the differences in feature 
distributions among different centers [20].

Feature selection and radiomics model development
We randomly split the data of center 1 and center 2 at the 
patient level into a training cohort (n = 762) and an inter-
nal testing (n = 327) cohort in a 7:3 ratio. The data from 

http://www.itksnap.org
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center 3 (n = 279) and center 4 (n = 248) were used as two 
separate external testing cohorts.

In order to remove the imbalance from the training 
data set, we performed up-sampling by repeating ran-
dom cases to equal the number of positive/negative sam-
ples. The z-score was used to normalize each feature by 
subtracting the mean value and dividing it by the stand-
ard deviation. The dimension reduction was applied to 
the normalized feature. Pearson correlation coefficient 
(PCC) was calculated for each pair of two features, one 
of which was dropped if the PCC value was > 0.99. Analy-
sis of variance (ANOVA) was used for feature selection, 
and the F-value of each feature was calculated based on 
the labels in the training cohort. The selected features 
for predicting csPCa are summarized in Table S2. Finally, 
the random forest (RF), support vector machine (SVM), 
logistic regression (LR), and linear discriminant analy-
sis (LDA) models were trained on the selected features 

to build the radiomics model separately. We used 5-fold 
cross-validation on the training cohort to determine the 
hyper-parameters of the pipeline, including the num-
ber of selected features, the kernel, or the regulariza-
tion parameter of the four classifications, after which the 
hyper-parameters that achieved the highest cross-valida-
tion performance were used to train the final model on 
the whole training cohort. The details of the pipeline of 
the machine models are shown in Figure S1. The predic-
tion of the final model was used as the radiomics score 
(Rad-score) in the subsequent analysis.

First, the radiomics models for predicting csPCa were 
compared with the discrimination performance of PI-
RADSjunior, PI-RADSsenior, and PI-RADSexpert of radi-
ologists. Second, each patient in testing cohorts had a 
Rad-score; when the Rad-score was higher than the cut-
off value, the patient’s assessment was deemed as posi-
tive. Conversely, the patient’s assessment was deemed 

Fig. 1 The study flow chart. Notes: Center 1, SUH1st, the First Affiliated Hospital of Soochow University; center 2, SUH2nd, the Second Affiliated 
Hospital of Soochow University; center 3, CSH, Changshu NO.1 People’s Hospital; center 4, TZH, People’s Hospital of Taizhou; PCa, prostate cancer



Page 5 of 13Bao et al. Insights into Imaging           (2024) 15:68  

negative when the Rad-score was smaller than the cut-off 
value. Indeed, the PI-RADSjunior, PI-RADSsenior, and PI-
RADSexpert were upgraded when the radiomics models 
produced a positive assessment, except for the highest 
score of 5. Conversely, the three PI-RADS of radiologists 
were downgraded if the radiomics models produced a 
negative assessment, except for the lowest score of 1. The 
three adjusted PI-RADS were denominated as adjusted_
PI-RADSjunior, adjusted_PI-RADSsenior, and adjusted_
PI-RADSexpert, respectively. Third, we compared the 
Rad-score distribution among the sub-groups with dif-
ferent ISUP. The flowchart of the data processing, includ-
ing data annotation, feature extraction and selection, and 
model building and comparison, is shown in Fig. 2.

Statistical analysis
Variables were expressed as median and range, or mean and 
standard deviation according to the normality test. An inde-
pendent t-test was used to compare the normally distrib-
uted continuous variables. The Shapiro–Wilk test was used 
to test for normality. The Mann–Whitney test was used to 
compare non-normally distrusted continuous variables.

All models were evaluated by the receiver operating 
characteristic (ROC) curves. The area under the ROC 
curve (AUC) was also calculated. The cut-off was deter-
mined according to the maximum Youden index on the 
training cohort, and the corresponding confusion matrix 
was calculated to estimate the sensitivity, specificity, pos-
itive predictive value (PPV), and negative predictive value 
(NPV). The DeLong test was used to compare the ROC 
curve of the models. Spearman analysis was used to eval-
uate the correlation between the Rad-score and ISUP. The 

summary receiver operating characteristic (SROC) curve 
has been recommended to represent the performance 
of a diagnostic test based on data from a meta-analysis; 
therefore, we used the SROC to evaluate the diagnosis 
performance. Decision curve analysis (DCA) was used to 
estimate the risk threshold for the net benefits; a radiom-
ics quality score checklist was used to evaluate the quality 
of this study (Supplement Section 5).

The statistical analysis was conducted with Python 
(version 3.8.3), R Studio (version 1.4), and MedCalc soft-
ware (version 19.6.4). A two-sided p < 0.05 was consid-
ered statistically significant.

Results
Study characteristics
A total of 1616 patients from four centers were enrolled 
in this study. The selected patients from center 1 and 
center 2 were merged and then randomly divided into a 
training cohort (n = 762, 243 (31.9%) csPCa, 135 (17.7%) 
ciPCa, and 384 (50.4%) benign) and an internal test 
cohort (n = 327, 104 (31.8%) csPCa, 58 (17.7%) ciPCa, 
and 165 (50.5%) benign). The patients from center 3 and 
center 4 were collected for external test cohorts (center 
3: n = 279, 65 (23.3%) PCa, 49 (17.6%) ciPCa, and 165 
(59.1%) BPH; center 4: n = 248, 120 (48.4%) PCa, 24 
(9.7%) ciPCa, and 104 (41.9%) BPH). Random re-splitting 
showed no significant differences between the training 
cohort and internal test cohort in terms of age, PSA, D_
max, position of lesions, seminal vesicle invasion (SVI), 
extracapsular extension (ECE), and lymph node inva-
sion (LNI) (all p > 0.05). The clinical characteristics of the 
patients from the four centers are shown in Table 1.

Fig. 2 The workflow of the development and testing of the radiomics models. First, the index lesion was manually segmented on axial T2WI 
for radiomics analysis. Second, radiomics features were extracted from T2WI, DWI, and ADC. Third, the random forest (RF), support vector machine 
(SVM), logistic regression (LR), and linear discriminant analysis (LDA) were trained on the selected features to build the radiomics model separately, 
and the corresponding radiomics scores (Rad-score) were acquired by the logistic regression model. Fourth, in the process of testing, the models 
were tested with an internal testing cohort and two external testing cohorts. ROC, receiver operating characteristics; DCA, decision curve analysis; 
PI-RADS, Prostate Imaging Reporting and Data System
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Table 1 The baseline characteristics of training cohort and internal and external testing cohorts

Unless indicated otherwise, data are numbers of patients with percentage in parentheses. p value was evaluated by two-tailed t-test with unequal variance. Gleason 
grade (GG) is according to the 2014 International Society of Urological Pathology (ISUP) standards

Notes: PCa Prostate cancer, ciPCa Clinically insignificant prostate cancer, csPCa Clinically significant prostate cancer, PI-RADS Prostate Imaging Reporting and Data 
System, PZ Peripheral zone, TZ Transition zone, CZ Center zone, AFMS Anterior fibromuscular stroma, ECE Extracapsular extension, SVI Seminal vesicle infiltration, LNI 
Lymph node invasion, D-max Diameter in greatest dimension

Variable Training cohort Internal testing cohort External testing cohorts

SUH1st (center 1) and SUH2nd (center 
2) (n = 1089)

p CSH (center 3, n = 279) TZH (center 4, n = 248)

No. of subjects 762 327 279 248

Age (years), median (IQR) 69 (64–75) 69 (64–75) 0.828 70 (65–75) 73 (68–78)

PSA level, median (IQR) 11.0 (7.3–21.0) 11.6 (7.2–22.6) 0.344 12.3 (7.5–23.0) 15.5 (6.3–71.9)

 0–10 ng/mL, n (%) 334 (43.8%) 132 (40.4%) 109 (39.1%) 99 (39.9%)

 10–20 ng/mL, n (%) 230 (30.2%) 106 (32.4%) 88 (31.5%) 30 (12.1%)

 > 20 ng/mL, n (%) 198 (25.9%) 89 (27.2%) 82 (29.4%) 119 (47.9%)

D-max (mm), median (IQR) 20.2 (15.5–28.0) 21.4 (15.8–29.4) 0.344 17.0 (12.5–27.3) 40.9 (28.3–52.0)

Prostate zone, n 0.719

 PZ, n (%) 279 (36.6%) 127 (38.8%) 69 (24.7%) 50 (20.2%)

 TZ, n (%) 353 (46.3%) 143 (43.7%) 174 (62.4%) 121 (48.8%)

 PZ, TZ and AFMS, n (%) 130 (17.1%) 57 (17.4%) 36 (12.9%) 77 (31.1%)

MRI index lesion per patient, n (%) 0.780

 PI-RADS 1–2 243 (31.9%) 108 (33.0%) 50 (17.9%) 65 (26.2%)

 PI-RADS 3 178 (23.4%) 73 (22.3%) 78 (28.0%) 64 (25.8%)

 PI-RADS 4 134 (17.6%) 50 (15.3%) 72 (25.8%) 23 (9.3%)

 PI-RADS 5 207 (27.2%) 96 (29.4%) 79 (28.3%) 96 (38.7%)

Biopsy ISUP grade, n (%) 759 327 0.378 272 246

 ISUP 0 (benign) 387 (51.0%) 166 (50.8%) 165 (60.7%) 103 (41.9%)

 ISUP 1 70 (9.2%) 32 (9.8%) 7 (2.6%) 8 (3.3%)

 ISUP 2 76 (10.0%) 32 (9.8%) 39 (14.3%) 16 (6.5%)

 ISUP 3 83 (10.9%) 27 (8.3%) 17 (6.3%) 30 (12.2%)

 ISUP 4 66 (8.7%) 24 (7.3%) 33 (12.1%) 46 (18.7%)

 ISUP 5 77 (10.1%) 46 (14.1%) 11 (4.0%) 43 (17.5%)

Surgical ISUP grade, n (%) 259 117 0.051 7 26

 ISUP 1 43 (16.6%) 22 (18.8%) 0 (0.0%) 0 (0.0%)

 ISUP 2 55 (21.2%) 27 (23.1%) 3 (42.9%) 6 (23.1%)

 ISUP 3 79 (30.5%) 19 (16.2%) 2 (28.6%) 3 (11.5%)

 ISUP 4 26 (10.0%) 18 (15.4%) 1 (14.3%) 6 (23.1%)

 ISUP 5 56 (21.6%) 31 (26.5%) 1 (14.3%) 11 (42.3%)

Label, n (%) 762 327 1.000 279 248

 Benign lesion 384 (50.4%) 165 (50.5%) 165 (59.1%) 104 (41.9%)

 ciPCa 135 (17.7%) 58 (17.7%) 49 (17.6%) 24 (9.7%)

 csPCa 243 (31.9%) 104 (31.8%) 65 (23.3%) 120 (48.4%)

ECE, n (%) 239 110 0.925 7 26

 Present 90 (37.7%) 42 (38.2%) 1 (14.3%) 12 (46.2%)

 Absent 149 (62.3%) 68 (61.8%) 6 (85.7%) 14 (53.9%)

SVI, n (%) 255 114 0.828 7 26

 Present 38 (14.9%) 16 (14.0%) 0 (0.0%) 5 (19.2%)

 Absent 217 (85.1%) 98 (86.0%) 7 (100.0%) 21 (80.8%)

LNI, n (%) 123 62 0.695 3 1

 Present 8 (6.5%) 5 (8.1%) 0 (0.0%) 0 (0.0%)

 Absent 115 (93.5%) 57 (91.9%) 3 (100.0%) 1 (100.0%)
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Diagnosis performance of PI‑RADS of three radiologists
The performance of the PI-RADS in predicting csPCa 
is shown in Figure S2. For csPCa prediction, PI-RAD-
Sexpert achieved higher AUCs than PI-RADSjunior and 
PI-RADSsenior in internal and external testing cohorts 
(Figure S2). The difference between PI-RADSjunior (inter-
nal: AUC = 0.845 [0.796–0.894]; center 3: AUC = 0.823 
[0.765–0.882]) and PI-RADSexpert (internal: 0.892 [0.855–
0.929], center 3: 0.884 [0.838–0.930]) in an internal test-
ing cohort (p = 0.041) and external testing cohort of 
center 3 (p = 0.003) and the difference between PI-RAD-
Sjunior (AUC = 0.858 [0.808–0.908]) and PI-RADSsenior 
(AUC = 0.867 [0.818–0.916]) in external testing cohort of 
center 4 (p = 0.046) were statistically significant, while the 
remaining ones were insignificant (all p > 0.05).

Performance and clinical application of the radiomics 
model
The performance of the radiomics models using differ-
ent machine learning algorithms (i.e., RF, SVM, LR, and 
LDA) is summarized in Figure S3.  The cross-validation 
results in predicting csPCa of four algorithms are sum-
marized in Table S3. The radiomics model using the RF 
algorithm achieved the highest AUC compared with 
radiomics models based on the other three algorithms. 
Indeed, we selected the radiomics model using the RF 
algorithm in the following application. The radiomics 
model using the RF algorithm showed the highest pre-
dictive performance for csPCa prediction in the internal 
testing cohort (AUC = 0.874, [0.834–0.915]) (all p < 0.05), 

an external testing cohort of center 3 (AUC = 0.876 
[0.831–0.920]) (all p < 0.05), and an external testing 
cohort of center 4 (AUC = 0.893 [0.853–0.933]) (all 
p > 0.05) (Figure S3). The SEN in predicting csPCa was 
83.7% (87/104), 87.7% (57/65), and 90.0% (108/120) in 
the internal testing cohort and external testing cohorts 
of center 3 and center 4, and the SPE was 78% (174/223), 
77.6% (166/214), and 73.2% (94/128), respectively.

When three PI-RADS of radiologists were adjusted 
according to the prediction of the radiomics models, 
their diagnosis performance was improved (Table 2). It is 
worth mentioning that the SPE of the adjusted PI-RADS 
of three different level radiologists for csPCa prediction 
was substantially improved at a slight sacrifice of SEN. 
As shown in Fig. 3, all performances of three radiologists 
were improved in predicting csPCa; only the difference of 
junior radiologist in the internal testing cohort (p = 0.01) 
and  the difference of junior and senior radiologists in 
the external testing cohort of center 4 (p = 0.030 and 
p = 0.031)  were significant, while the remaining ones in 
three testing cohorts were insignificant (all p > 0.05).

To provide a comprehensive explanation, the independ-
ent and integrated effects of the PI-RADS of three dif-
ferent level radiologists, radiomics model, and adjusted 
PI-RADS of three different level radiologists were evalu-
ated in the internal testing cohort and an external test-
ing cohorts of center 3 and center 4 using SROC curves 
and forest plots with a Bayesian meta-analysis (Fig.  4). 
Furthermore, DCA results of predicting csPCa by radi-
omics models, PI-RADS assessed by three different level 

Fig. 3 The comparison of diagnosis performance of the adjusted PI-RADS and PI-RADS of three different radiologists in predicting csPCa 
in an internal testing cohort, an external testing cohort of center 3 and an external testing cohort of center 4. The AUC of adjusted PI-RADS 
was improved compared with PI-RADS in predicting csPCa; the statistical differences between PI-RADSjunior vs. adjusted_PI-RADSjunior (p = 0.010) 
in the internal testing cohort, PI-RADSjunior, vs. adjusted_PI-RADSjunior (p = 0.030), and PI-RADSsenior vs. adjusted_PI-RADSsenior (p = 0.031) in external 
testing cohort of center 4 were significant. Notes: ROC, receiver operating characteristics; AUC, area under ROC curve; center 3, CSH, Changshu NO.1 
People’s Hospital; center 4, TZH, People’s Hospital of Taizhou; csPCa, clinically significant prostate cancer
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radiologists, and adjusted PI-RADS of three different 
level radiologists are summarized in Fig. 5.

The relationship between Rad-scores produced by 
csPCa prediction models and ISUP was examined. The 
participant-level correlation showed that the Rad-score 
of the csPCa model was positively correlated with ISUP 
in the internal testing cohort (r = 0.690, p < 0.0001), the 
external testing cohort of center 3 (r = 0.700, p < 0.0001), 
and external testing cohort of center 4 (r = 0.688, 
p < 0.0001) (Fig. 6).

In the following steps, we further assessed the con-
tribution of Radiomics Model in Predicting csPCa in 
Reducing the Proportion of Equivocal PI-RADS Category 
3 Patients. PI-RADS lesions scored 3 are intermediate or 
equivocal lesions that pose a significant challenge to clin-
ical management [6]. In this study, we found that the pro-
portion of PI-RADS category 3 patients decreased in all 
three testing cohorts and overall participants (the overall 
decreased the percentage were 7.5%, 16.1%, and 2.1% of 
three different radiologists) (Figure S4) when assessed by 
radiologists with different levels of expertise who used 
radiomics model in predicting csPCa. The detailed pro-
portion of increase and decrease of PI-RADS patients 
testing cohorts are summarized in Supplement Section 6.

Discussion
Establishing a non-invasive precise diagnosis of csPCa 
and characterizing its pathologic properties are very 
important for predicting clinical outcomes and guid-
ing the management of prostate disease [21]. In this 
retrospective, multi-center study, we developed and 
validated the radiomics model using four different algo-
rithms to preoperatively predict csPCa and aggressive-
ness compared with PI-RADS obtained by radiologists 
with different experience levels. Our results obtained 
from a cohort of 1616 patients from 4 tertiary care med-
ical centers showed that this radiomics model might 
accurately predict csPCa and aggressiveness and fur-
ther help radiologists, especially junior doctors with less 
practical experience, improve their clinical diagnosis 
performance.

There are several innovations compared with previous 
studies. First, in our study, we applied ComBat for feature 
harmonization to alleviate the difference between the dis-
tribution of features among different centers and improve 

the performance of the models [20]. Second, we compared 
the diagnostic performance of radiologists with different 
clinical experiences using multi-center data, finding that 
the diagnosis performance of the radiomics model using 
the RF algorithm was comparable to PI-RADSexpert and 
PI-RADSsenior and superior to PI-RADSjunior. Third, after 
integrating the radiomics model into the PI-RADS, the 
performance of adjusted PI-RADS was improved, which 
implied that the radiomics model could be a potential 
radiological assessment tool for radiologists. Finally, the 
Rad-scores of csPCa prediction models were positively 
correlated with ISUP in three testing cohorts, indicating 
that the Rad-score based on radiomics features can be 
used to characterize prostate cancer aggressiveness.

Previous single-center studies have used radiomics in 
predicting PCa and csPCa using MRI. Gong et  al. [22] 
indicated that radiomics could non-invasively identify 
high-grade PCa. Chidozie and colleagues [16] showed 
that quantitative grey-level co-occurrence matrix 
(GLCM) texture analyses of MRI may be used as a non-
invasive imaging technique to predict clinically signifi-
cant cancer. Furthermore, Qi et  al. [23] proved that the 
radiomics model could predict PCa in men with 4–10 ng/mL 
PSA. Gugliandolo and his team [24] performed a pro-
spective trial and found that MRI-based radiomics is 
a promising tool for predicting PCa characteristics. 
Entirely consistent with the above research, our study 
further compared the diagnostic performance of radi-
omics models and radiologists and evaluated the role 
of radiomics in characterizing prostate cancer aggres-
siveness by predicting ISUP using multi-center data. It 
was found that this radiomics model could discriminate 
csPCa and even indicate the ISUP to characterize the 
aggressiveness of prostate cancer. In addition, in order 
to evaluate the generalization performance of the mod-
els, two independent external testing cohorts were used 
to test the ability and accuracy of the model in predicting 
csPCa. We found that the models achieved satisfactory 
predictions in both testing cohorts, implying the admira-
ble generalization and stability of the radiomics models. 
To the best of our knowledge, this is the first study that 
addressed the generalizability of the radiomics models in 
the context of the classification of csPCa and ISUP based 
on multi-centric data from multiple vendors.

(See figure on next page.)
Fig. 4 The sensitivity, specificity, and summary receiver operating characteristic (SROC) curves of the radiomics model, PI-RADS of three 
radiologists, and adjusted PI-RADS of three radiologists in predicting csPCa in the internal testing cohort (a), external testing cohort of center 
3 (b), and external testing cohort of center 4 (c). The plots show individual and combined sensitivity, specificity, and area under SROC curves 
of the different diagnostic methods using meta-regression analysis. Notes: ROC, receiver operating characteristics; AUC, area under ROC curve; 
SROC, summary receiver operating characteristic; SEN, sensitivity; SPE, specificity; center 3, CSH, Changshu NO.1 People’s Hospital; center 4, TZH, 
People’s Hospital of Taizhou; PI-RADS, Prostate Imaging Reporting and Data System
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Fig. 4 (See legend on previous page.)
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When the PI-RADS of radiologists were adjusted 
according to the radiomics predictions, the specificity 
was substantially increased while sensitivity was slightly 
decreased. The high sensitivity of PI-RADS by radi-
omics may lead to overdiagnosis and overtreatment in 
clinical practice [25]. On the other hand, the increase in 
specificity means that more patients could avoid imme-
diate biopsy or RP [26]. The PI-RADS adjusted by the 
radiomics model may provide a more all-around tool 
to recommend surveillance for patients who might not 
require an instant treatment and maintain a compara-
tively high sensitivity for patients with aggressive pros-
tate cancer. As revealed by DCA, the adjusted PI-RADS 

of different level radiologists showed greater net benefit 
than that based on PI-RADS assessment, which is to say 
the adjusting strategy by radiomics models can bring 
clinical benefits.

In clinical practice, the risk–benefit ratio of biopsy for 
PI-RADS category patients is still controversial. Tak-
ing PI-RADSexpert as an example, even though the PI-
RADS was assessed by an expert radiologist with rich 
diagnostic experience in prostatic MRI, there were still 
11.5% of patients with equivocal findings of csPCa, all 
of whom underwent painful biopsy, not to mention the 
PI-RADS assessed by junior or senior radiologists who 
had less experience in the diagnosis of prostate MRI. 

Fig. 5 Decision curve analysis (DCA) of clinical usefulness assessment of radiomics model, PI-RADS of three different level radiologists, and adjusted 
PI-RADS of three different level radiologists in predicting csPCa in the internal testing cohort and external testing cohorts of center 3 and center 4. 
Notes: center 3, CSH, Changshu NO.1 People’s Hospital; center 4, TZH, People’s Hospital of Taizhou; PI-RADS, Prostate Imaging Reporting and Data 
System

Fig. 6 Box plots show the relationship between the Rad-score in predicting csPCa and ISUP in the internal testing cohort, an external testing 
cohort of center 3, and an external testing cohort of center 4. The participant-level correlation showed that the Rad-scores in predicting csPCa were 
positively correlated with ISUP in the internal testing cohort and external testing cohorts of center 3 and center 4. Notes: ISUP, International Society 
of Urological Pathology; center 3, CSH, Changshu NO.1 People’s Hospital; center 4, TZH, People’s Hospital of Taizhou; PI-RADS, Prostate Imaging 
Reporting and Data System
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However, when the radiomics models were applied, 
the proportion of equivocal patients decreased to 9.4%, 
which implied that more patients could avoid unneces-
sary painful biopsies. Thus, the radiomics model can be 
used as an alternative way to predict csPCa in personal-
ized medicine, especially with demanding clinical tasks 
and a shortage of expert-level radiologists.

The present study also has some limitations. First, not 
all patients underwent RP treatment for different clini-
cal reasons; for some patients, biopsy pathology was 
used as a standard reference. In fact, some studies have 
reported that biopsy is a reliable way to detect PCa [27, 
28]. Second, the validation of the model should be per-
formed by future prospective multicenter studies. Third, 
although the diagnostic performance of the adjusted PI-
RADS was improved in three testing cohorts, it is diffi-
cult to observe all statistically significant improvements 
in the performances given by the integration of the PI-
RADS and radiomics model, probably due to the incon-
sistency of the multicenter dataset.

Conclusion
In this study, we evaluated the generalizability of radi-
omics models in predicting csPCa with a large inhomo-
geneous cohort from four centers. This radiomics model 
is a powerful, non-invasive auxiliary tool for predicting 
csPCa aggressiveness, reducing unnecessary biopsies, 
and improving the diagnostic performance of PI-RADS 
of radiologists with different clinical experience.
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