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Abstract 

Positron emission tomography/magnetic resonance imaging (PET/MRI) is a hybrid imaging technique that quan-
titatively combines the metabolic and functional data from positron emission tomography (PET) with anatomical 
and physiological information from MRI. As PET/MRI technology has advanced, its applications in cancer care have 
expanded. Recent studies have demonstrated that PET/MRI provides unique advantages in the field of radiother-
apy and has become invaluable in guiding precision radiotherapy techniques. This review discusses the rationale 
and clinical evidence supporting the use of PET/MRI for radiation positioning, target delineation, efficacy evaluation, 
and patient surveillance.

Critical relevance statement This article critically assesses the transformative role of PET/MRI in advancing precision 
radiotherapy, providing essential insights into improved radiation positioning, target delineation, efficacy evaluation, 
and patient surveillance in clinical radiology practice.

Key points
• The emergence of PET/MRI will be a key bridge for precise radiotherapy.

• PET/MRI has unique advantages in the whole process of radiotherapy.

• New tracers and nanoparticle probes will broaden the use of PET/MRI in radiation.

• PET/MRI will be utilized more frequently for radiotherapy.
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Graphical Abstract

Introduction
Radiotherapy is a standard component of care for 
many cancer patients. With the advancement of radi-
otherapy technology, three-dimensional conformal 
radiotherapy (3D-CRT), intensity modulated radiation 
therapy (IMRT), stereotactic radiotherapy (SRT), and 
tomotherapy have arisen and dramatically enhanced 
the prognosis of cancer patients [1, 2]. CT is widely 
used in radiation planning due to its ability to pro-
vide high-resolution anatomical information, while 
MRI is valued for its excellent soft tissue contrast [3, 
4]. Nevertheless, standard imaging techniques only 
reveal morphological alterations, which is insuffi-
cient for precise radiation planning. To overcome this 
limitation, researchers have been exploring the use 
of multimodal imaging to enhance its precision. One 
promising avenue is the integration of multi-paramet-
ric PET/MRI into one-stop-shop radiotherapy (RT) 
planning workflow (Fig. 1).

PET/MRI is a hybrid imaging technique that quanti-
tatively combines metabolic functional data from PET 
with anatomical and physiological information from 
MRI [5, 6]. Due to its high soft tissue contrast, PET/
MRI may be extremely accurate in T-staging of cancer, 
such as head and neck, abdominal, and pelvic tumors. 

Recent studies have begun to show that it is also valu-
able in treating lymphoma, liver, and breast cancer 
[7–9]. When it comes to finding lymph node metas-
tases and faraway metastases, PET/MRI is also supe-
rior to CT, MRI, and PET/CT, as PET/MRI can provide 
dynamic enhanced imaging, diffusion-weighted imag-
ing (DWI), and signal strength (SI) assessment that can 
display non-fluorodeoxyglucose (non-FDG) uptake 
lesions and avoid misdiagnosis of sites with physiologic 
FDG uptake, such as the adrenal glands and mucous 
membranes [10–13]. Thus, given the consideration of 
the advantages mentioned, the efficacy of PET/MRI 
in tumor diagnosis and staging has been the subject 
of extensive research [14–16]. Recently, increasing 
researches indicate that PET/MRI can also be utilized 
in radiotherapy and can further improve the accuracy 
of radiation therapy [17–21]. This review summarizes 
the available literature on the utilization of PET/MRI 
for radiation placement, target delineation, efficacy 
evaluation, and patient surveillance (Table 1).

Radiotherapy positioning
Accurate radiotherapy positioning is a critical compo-
nent of the pre-radiotherapy preparation process. The 
advent of 18F-fluorodeoxyglucose  ([18F]-FDG) PET/MRI 
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has provided clinicians with more precise and compre-
hensive imaging data, enhancing the effectiveness of 
patient positioning for radiotherapy. However, alongside 
this technology, specialized positioning devices have 
been developed and introduced which, while improving 
precision, also present new challenges in terms of inte-
gration and optimization.

Specific equipment and material
In addition to the standard diagnostic  [18F]-FDG PET/
MRI, the  [18F]-FDG PET/MRI used in radiotherapy 
incorporates specialized equipment and a method for 
external-internal reference point positioning (Table  2). 
The radiation equipment consists of a flat table and a 
patient positioning device. As for the treatment bed, 

unlike the curved one used in diagnostic MR, it is flat in 
 [18F]-FDG PET/MRI for radiotherapy. This is because, 
on the one hand,  [18F]-FDG PET/MRI images need to be 
aligned with CT images for accurate dose calculation. In 
CT, the bed used for treatment is flat. If a curved treat-
ment bed is still used, the image quality will be affected. 
On the other hand, patients need to be placed in the 
same way every time they get radiotherapy through fixed 
devices, which are often installed on a flat structure [22]. 
In reference point positioning systems, isocentric place-
ment is mostly done with the help of laser systems [21], 
where markers are made on patients’ skin to ensure accu-
rate repositioning. However, when the positioning fixture 
is included, the anterior receiver coil of the diagnostic 
machine is not compatible with the radiation equipment. 

Fig. 1 Comparison of PET/MRI for radiotherapy procedures with conventional radiotherapy procedures

Table 1 Comparison of PET/MRI and other conventional image-base modality in radiotherapy

CT MRI PET/CT PET/MRI

Radiotherapy planning Fused with other images for tar-
get delineation
Providing tissue electron density 
information directly for dose 
calculation

Fused with other images 
for target delineation
Co-registration with CT 
images or synthesis 
of pseudo-CT images 
for dose calculation

BTV provided by PET 
assist in GTV delineation
Providing tissue electron 
density information 
directly for dose calcula-
tion

BTV provided by PET assist 
in GTV delineation
Co-registration with CT images 
or synthesis of pseudo-CT 
images for dose calculation

Treatment evaluation Assessing the treatment effect 
from tumor morphology
Not available for pregnant 
women or children

Assessing the treatment 
effect from tumor morphol-
ogy and parameter changes
Not available for patients 
with metal implants, fer-
romagnetic objects

Assessing the treatment 
effect from anatomical 
and functional informa-
tion
Not available for preg-
nant women or children

Assessing the treatment effect 
from anatomical, functional 
information and parameter 
changes
Not available for patients 
with metal implants, ferromag-
netic objects

Patient surveillance Having ionizing radiation
Acquisition quickly

No-ionizing radiation
Long acquisition

Having ionizing radiation
Long acquisition

No-ionizing radiation
Long acquisition
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Thus, a radiotherapy-specific coil and coil holder were 
also introduced. In this way, the near-coil effect, that the 
signal increases as the distance from the coil decreases, 
was minimized [18]. However, due to technical restric-
tions, the whole-body coil holder may cause MR image 
distortion and truncation. To restore truncations, PET-
based and purely MR-based methods have been intro-
duced [21, 23, 24].

Materials in radiotherapy equipment are also critical 
as they directly impact the quality of imaging. Existing 
materials for flat tabletops are primarily composed of 
carbon fiber which offers minimal photon attenuation. 
However, the conductive nature of carbon fiber can gen-
erate surface eddy currents, leading to the production 
of image artifacts and signal voids, making it incom-
patible with MRI. Subsequently, flat tabletops made 
of glass fibers were introduced; however, glass fibers 
significantly attenuate the PET signal, leading to arti-
facts and increased quantization errors in PET images, 
rendering them incompatible with PET [25–27]. Based 
on this, materials combining a plastic sandwich with a 
foam core have been developed, which are designed to 
have reduced and homogeneous photon attenuation, 
making them compatible with both MRI and PET [21] 
(details shown in Fig.  2). For the MR coil, because the 
gamma-ray attenuation of materials is closely tied to the 
electron density distribution of those materials, the use 
of electron-dense materials is not an option [28]. Build-
ing on this principle, the use of thin plastic shells, thin 
copper wire coils, and lightweight coil technologies are 
being explored to reduce PET attenuation and enhance 
image quality [29, 30].

Effect on image quality
With the introduction of specific equipment and material 
for  [18F]-FDG PET/MRI, the image quality of  [18F]-FDG 
PET/MRI may be affected. The signal-to-noise ratio 
(SNR) is a critical metric for evaluating the image qual-
ity of MRI. Witoszynskyj et al. reported mean SNR values 
at the slice through the center of the phantom were 98.0 
± 27.1 with a flat table and 98.3 ± 27.0 without it, sug-
gesting that the flat table has a negligible effect on SNR 
[31]. In addition, as positioning devices increase the dis-
tance between the patient and the coil, the total SNR of 
MRI pictures was reduced by 25% compared with the 
usual setup [21]. Winter et al. observed a slight reduction 
in image SNR with the radiotherapy device compared to 
diagnostic  [18F]-FDG PET/MRI. However, the target vol-
ume remained consistent with that delineated by MRI, 
indicating that the reduction in SNR may not pose a limi-
tation in RT planning [17]. However, improved image 
quality is still required for further precision radiotherapy. 
Although the SNR can be improved in several ways, the 
process of doing so often comes with other problems. 
For instance, by changing the MR parameters, such as 
raising the signal average [32], lowering the accelera-
tion, or shortening the time of echo (TE), the SNR can be 
increased, but the acquisition time will also be increased 
[17]. Additionally, an adjustable coil bridge was developed 
to solve the problem of patient-coil distance, and while 
moving the coil closer to the patient improves image qual-
ity, positioning repeatability may become more difficult 
[33]. Boosting spatial resolution, which defines the pic-
ture’s capacity to portray fine structures, is another tech-
nique for improving MRI image quality, but care must be 

Table 2 Comparison of diagnostic PET/MRI and PET/MRI simulator for radiotherapy positioning

Diagnostic PET/MRI PET/MRI simulator

Purpose Exploration, qualitative evaluation, staging, assisted target 
delineation, efficacy evaluation and prognosis prediction

To provide imaging data for target volume delineation in the 3D 
direction

Positioning device Does not involved Positioning devices such as thermoplastic masks and laser system 
are used to fix the patient’s position

Anterior receiver coil RF coil could touch and deform the surface of the patients RF coil was fixed by the coil holder away from the patient’s surface, 
ensuring a gap for the placement of the positioning device 
and repeatability of each positioning for the patient

Treatment bed Diagnostic PET/MRI is the curved one The PET/MRI simulator is the flat one

Image quality MRI image:
• No positioning device
• Almost no effect with coil
• A negligible effect with treatment bed
PET image:
• No positioning device
• A slight effect with coil
• A slight effect with treatment bed

MRI image:
• A slight effect with positioning device
• No image distortion with coil and coil holder
• A negligible effect with treatment bed
PET image:
• Almost no effect with positioning device
• A slight effect with coil and coil holder
• A slight effect with treatment bed
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given not to impair SNR due to the inverse relationship 
between spatial resolution and SNR [17]. Recently, a new 
noise reduction and reconstruction technique using deep 
learning reconstruction, which only changes the SNR, has 
emerged, but its accuracy needs to be further verified [34].

In PET imaging, objects within the field of view (FOV) of 
the PET detector can attenuate and scatter PET photons, 
leading to reduced image quality. Thus, thin patient posi-
tioning devices, such as thermoplastic masks, were reported 
and found to have a negligible effect on PET quantification 
[21]. Witoszynskyj et  al. demonstrated, using a phantom, 
that image activity near the flat tabletop side was underes-
timated, but this can be rectified by employing attenuation 
correction [31]. Based on phantom and human data, Paulus 
et al. predicted that accounting for the coil holder, including 
the radiofrequency (RF) coil, in the attenuation correction 
would reduce the deviation from 13.8 to 0.8% [21].

Attenuation correction (AC)
[18F]-FDG PET/MRI positioning images, unlike diag-
nostic images that only need to provide qualitative 
information, will subsequently be used for dose calcu-
lations in radiation therapy and thus require an accu-
rate AC map. The introduction of coil fixation devices 
in radiation equipment mitigates the problem of AC 
map error caused by the unfixed position and geomet-
ric shape of the flexible coil during scanning [32, 35, 36]. 
But another key issue arises in  [18F]-FDG PET/MRI, 

different from PET/CT, MRI cannot provide photon 
attenuation data that can be directly used for AC of PET. 
To resolve this issue, different proposals have been sug-
gested, including MR-based image segmentation, atlas-
based AC, and substitute CT (s-CT) [37–40]. MR-based 
image segmentation divides the attenuated images 
into four categories, but bone segmentation is not per-
formed due to the low intensity and non-specific signals 
of cortical bone on MRI [37]. Atlas-based AC can take 
into account cortical bone. However, the registration 
of the whole-body image to the atlas is prone to errors 
due to the different stiffness of the chest and abdomen 
and the head [41, 42]. s-CT correlates the voxel values 
of CT with MRI images, which can turn the MRI image 
into s-CT, and automatically generates attenuation 
maps with more fine intervals than those generated by 
segmentation [40]. Recently, artificial intelligence (AI) 
employing deep learning convolutional neural networks 
(CNNs) is emerging as an alternative to traditional AC 
methods owing to its speed, accuracy, and robustness 
[43]. In addition, different AC methods were generated 
according to the characteristics of different components. 
Rigid hardware components, like coil holders and flat 
tabletops, can undergo AC using CT-based 3D attenua-
tion maps or 68Ge/68Ga projection scanning attenuation 
maps, due to their fixed positions and strict geometry 
[44]. In contrast, AC for flexible coils can be achieved 
using MRI with ultra-short echo time (MRI-UTE) 

Fig. 2 The difference between image quality obtained from different types of tabletop materials using (a) carbon fiber, (b) glass fiber, and (c) plastic 
sandwich with foam core
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sequences. However, this method has very limited visu-
alization and provides insufficient information on the 
coil components for accurate AC [44, 45]. The marker-
based correction method, automatically determining 
the position of surface coils using markers, was pro-
posed for accurate AC [46]. Moreover, Lindemann et al. 
proposed a method based on computer-aided design 
(CAD), which generated AC-map without artifacts and 
improved spatial resolution [31, 32, 46, 47].

Once the attenuation map is obtained, it is vital to 
assess its repeatability during the radiation reposition-
ing process. Since the  [18F]-FDG PET/MRI flat tabletop 
remains in a fixed position, only a single registration 
is necessary. However, as the coil holder undergoes 
repeated installation and removal, it is essential to con-
firm the accuracy of the attenuation map during repo-
sitioning [21]. Paulus et  al. evaluated the accuracy of 
the coil holder during multiple repositionings using 
a phantom and an active 68Ge rod source. They found 
that there were only slight deviations in accuracy when 
the RF coil holder was repeatedly moved without alter-
ing the phantom’s position, suggesting that the attenu-
ation map of the coil holder is reliable for repositioning 
purposes [21].

MRI protocols for RT positioning
In the context of RT localization using MRI, the selection 
of sequences is a crucial step in ensuring both efficiency 
and accuracy. Typically, T1-weighted imaging (T1WI), 
T2-weighted imaging (T2WI), and DWI sequences are 
chosen. T1WI and T2WI offer essential anatomical infor-
mation for registration and target delineation. DWI, 
providing valuable metabolic insights, aids in refining 
tumor boundaries and assessing lymph node involvement 
[48]. Recently, in order to further optimize the scanning 
time of MRI sequences, and to improve patient compli-
ance while ensuring accurate clinical information, dif-
ferent sequences are recommended for different lesions 
[48–54]. For instance, inversion recovery gradient echo 
(IR-GRE) is commonly used for T1WI in brain tumors, 
while turbo spin-echo (TSE) and fluid-attenuated inver-
sion recovery (FLAIR) imaging are frequently employed 
for T2WI [51, 52]. In areas with abundant soft tissues like 
the head and neck, breast, abdomen, and pelvis, fat satu-
ration technology is often applied for improved tumor 
and organ visualization [48, 53, 54].

Radiotherapy planning
With the introduction of the IMRT, the significance 
of accurate tumor volumes is re-emphasized. Since 
 [18F]-FDG PET/MRI can concurrently capture both tis-
sue morphology and tumor metabolism information, it 
can accurately distinguish tumor tissue from neighboring 

tissues, making it valuable for accurate target identifica-
tion in radiotherapy [55].

Target delineation
Gross tumor volume (GTV) is commonly outlined using 
the tumor morphology visualized on MRI. However, 
integrating tumor biology information from PET can 
mitigate the risk of marginal loss, potentially impacting 
GTV changes. Zhang et  al. observed an increasing dif-
ference between GTV-MRI and GTV-PET with grow-
ing tumor volumes [56, 57]. Notably, while around 90% 
of GTV-PET overlapped with GTV-MRI, 10% of the 
tumor and lymph node volume was exclusively identified 
by PET, emphasizing the value of a combined  [18F]-FDG 
PET/MRI approach in RT planning [58]. The emergence 
of PET/MRI has great hope to achieve accurate target 
delineation.

The effect of PET/MRI on GTV has been studied 
through the observation of the differences among GTV-
MRI, GTV-PET, and GTV-PET/MRI [55, 58, 59]. Using 
GTV-MRI as a reference, Zhang et al. evaluated the dif-
ferences between GTV-PET and GTV-[18F]-FDG PET/
MRI in the delineation of colorectal liver metastases 
and found that GTV-[18F]-FDG PET/MRI had the high-
est tumor volume [55]. In contrast, Mahase’s work came 
to the opposite [59], where they found that the aver-
age volume of GTV-[68Ga]-DOTATATE PET/MRI was 
lower than that of GTV-MRI in patients with intrac-
ranial meningiomas. This discrepancy may be attrib-
uted to the utilization of specific tracers in PET, which 
enable the detection of microscopic tumor activity even 
in the absence of morphological changes. As a result, 
the obtained GTV will expand [59, 60]. Conversely, 
 [68Ga]-DOTATOC PET/MRI allows for the visualization 
of the boundary between the tumor and normal tissue, 
as well as the necrotic parts of the tumor resulting from 
adjuvant treatment, which can lead to a reduced estima-
tion of GTV [61]. Furthermore, Mahase et  al. observed 
that the use of  [68Ga]-DOTATATE PET/MRI, which can 
result in a reduction of GTV, consequently leading to a 
decrease in both clinical tumor volume (CTV)—com-
prising the GTV and potentially invaded tissues and 
planning target volume (PTV), which is derived from 
the expansion of CTV [59]. In addition, in the lymph 
node metastasis delineation, the nodal GTV (GTVnd) 
delineated based on PSMA PET/MRI contains meta-
static pelvic lymph nodes more accurately than MRI 
[62]. However, Liu et al. showed that the CTVs of PSMA 
PET/MRI and MRI are similar in the target delineation 
of pelvic lymph node metastasis [62], where the distinc-
tion brought about by GTVnd is not apparent, possibly 
because CTV encompasses a larger range than GTVnd. 
Moreover, the pathological analysis also confirmed the 
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advantage of PET/MRI in the target delineation, Zhang 
et al. proposed that PET/MRI is more adept at mapping 
GTV by comparing the Dice Similarity Coefficient (DSC) 
of PET/MRI and PET. Additionally, they demonstrated 
that the longest tumor length measured by PET/MRI 
correlated well with the longest tumor length measured 
by histopathological analysis, providing robust evidence 
for the superior accuracy of GTV delineation by PET/
MRI [60, 62]. Figure 3 illustrates the difference between 
 [18F]-FDG PET/MRI and other traditional imaging 
methods for GTV delineation. However, although the 
advantages of PET/MRI in target delineation have been 
identified, the impact of PET/MRI on treatment response 
and survival has not been determined, and further explo-
ration is needed in the future.

In addition to the abovementioned effects of PET/
MRI on the target area, manual delineation of tumor 
volume introduces considerable potential for inter-
observer variability [63], which can be mitigated through 

the application of standardized segmentation tech-
niques. Co-segmentation based on  [18F]-FDG PET/
MRI has garnered significant interest in recent years 
[64–66]. Leibfarth et  al. found that the tumor volume 
delineated manually by the observer was comparable 
to that automatically delineated by the  [18F]-FDG PET/
MRI method, indicating the viability of  [18F]-FDG PET/
MRI co-segmentation [66]. In addition,  [18F]-FDG PET/
MRI can provide more stable imaging [55, 67]. Cavaliere 
et al. demonstrated a high degree of agreement between 
two groups of observers in the anatomical localization 
and extent of lesions when using  [18F]-FDG PET/MRI 
[68]. Moreover, the DSC of the target volume deline-
ated by different observers on  [18F]-FDG PET/MRI is 
greater than that on MRI, demonstrating a higher degree 
of overlap and less degree of discrimination. To address 
observer inconsistency and enhance accuracy, some stud-
ies propose the use of an adaptive threshold level (aTL) 
derived from individual maximum standardized uptake 

Fig. 3 Sixty nine-year-old female with nasopharynx cancers. a The blue line represents gross tumor volume (GTV)-PET/CT. b The pink line 
represents GTV-PET/MRI. c The red line represents GTV-CT. d The green line represents GTV-MRI. e The yellow line represents GTV-PET
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values  (SUVmax) [58, 69–71]. It is important to note that 
the appropriate threshold is not a fixed value due to the 
low spatial resolution of PET and the existing partial vol-
ume effect. Published articles indicate that in lung cancer, 
thresholds based on a percentage of  SUVmax range from 
15 to 50% [72]. Alfano et al. revealed that the sensitivity 
and specificity could be improved using a 67%  SUVmax 
threshold and 81%  SUVmax, respectively [73]. In addition, 
Dietlein et al. observed that thresholds may vary depend-
ing on the chosen radiotracer [74]. Research is needed 
to further explore whether the threshold is related to 
additional tumor-related factors such as hypoxia, pro-
liferation, and histological differences. Despite ongoing 
innovations [65, 66, 75], errors in automatically deline-
ated target areas may still occur due to imprecise tumor 
boundaries, necessitating manual adjustments.

RT dose optimization
The integration of PET in radiotherapy has led to the 
development of the concept of biological target volume 
(BTV), which is based on the biological characteristics 
of tumors. As BTV can furnish insights into the radia-
tion sensitivity of tumors, it is instrumental in deter-
mining the appropriate RT dosage [76]. Utilizing the 
data derived from BTV, higher RT doses are admin-
istered to treatment-resistant regions of the tumor, 
while lower doses are allocated for treatment-sensitive 
regions [25, 77]. This heterogeneous RT dose distribu-
tion strategy not only ensures that a high local dose is 
delivered to the tumor but also safeguards vital organs, 
such as the spinal cord and lungs, consequently miti-
gating the toxic effects on normal tissues [78].

RT dose calculation
Once the target volume is identified, a dose prescription 
map becomes essential for dose calculation. Unlike CT, 
 [18F]-FDG PET/MRI lacks the capability to acquire tis-
sue electron density values, dose prescription maps of 
 [18F]-FDG PET/MRI are typically derived through the 
co-registration of  [18F]-FDG PET/MRI and CT images 
[36, 79]. To streamline the workflow and minimize addi-
tional radiation exposure from CT scans, recent advance-
ments suggest the use of pseudo-CT methods generated 
directly from MR images for dose calculation (Fig.  4) 
[19, 80, 81]. Ahangari et al. pioneered the transfer of the 
delineated PTV and optimized treatment plan from CT 
to pseudo-CT. The dosimetric analysis of the pseudo-CT 
revealed a mean absolute error within the PTV of 0.17 
± 0.12  Gy, demonstrating a negligible dose difference 
between the two. This finding was further corroborated 
by Farjam et  al. [19, 82]. In addition, emerging studies 
indicate that deep learning techniques enable the formu-
lation of pseudo-CT for dose calculation in  [18F]-FDG 
PET/MRI, facilitating the swift acquisition of dose pre-
scription while preserving image quality, though the data 
is still limited [19, 80, 81, 83, 84].

Treatment evaluation
In clinical practice, CT and MRI are commonly employed 
to gauge changes in tumor size post-therapy to evalu-
ate the treatment response. However, as morphological 
alterations in tumors tend to lag behind hypometabolic 
changes [85], relying on anatomical data for predict-
ing and assessing treatment response may be inaccu-
racies. Using specific PET tracers and MRI sequences, 

Fig. 4 a The calculated dose plan for CT and pseudo-CT (pCT) images. b Dose and volume histogram (DVH) curve comparing the planned dose 
of target volumes and different organ at risk (OAR) for CT and pCT
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 [18F]-FDG PET/MRI is capable to capture both tissue 
morphology and tumor metabolism, making it significant 
in treatment outcome prediction and evaluation.

Pre‑treatment evaluation
The prognosis of advanced cancer patients after treatment 
is still poor, so it is important to accurately evaluate the 
treatment effect before treatment, and to guide clinicians 
in choosing the most appropriate treatment strategies. 
Metabolic tumor volume (MTV) and total lesion glyco-
lysis (TLG) are robust  [18F]-FDG PET/MRI parameters 
that effectively represent the metabolic activity of tumor 
cells, providing a comprehensive measure of the overall 
initial tumor burden before treatment [86]. Meanwhile, 
as DWI captures the texture of biological tissues [87], the 
study by Freihat et al. revealed that elevated ADC values 
derived from DWI, TLG, and MTV before treatment 
correlated with increased likelihood of recurrence and 
decreased response rate. This underscores the significance 
of imaging parameters as valuable predictive biomarkers 
before treatment, offering more precise information for 
treatment selection [88]. Recently, image analysis meth-
ods such as radiomics and AI have demonstrated their 
effectiveness in predicting therapy response and progno-
sis. Features derived from  [18F]-FDG PET/MRI radiomics 
have proven to be viable non-invasive imaging biomarkers 
for predicting efficacy in cervical cancer treatment. How-
ever, additional clinical data are required to validate its 
feasibility in future applications [89, 90].

Mid‑treatment evaluation
To avoid accelerated tumor growth, increased organ tox-
icity, and increased mortality due to delayed adjustment 
of therapy [91, 92], it is necessary to evaluate the thera-
peutic effect and risk of recurrence in the middle of treat-
ment [93, 94].  SUVmax and diffusion-related coefficient, 
which show glucose metabolism and water diffusion dur-
ing treatment, can assess tumor sensitivity to the treat-
ment by changes in these parameters. Xu et al. discovered 
that the minimum diffusion correlation coefficient (Dmin) 
and  SUVmax would be significantly different mid-treat-
ment [86]. In addition, the percentage changes of the 
maximum standardized uptake value (ΔSUVmax) and the 
mean diffusion-related coefficient (ΔDmean) of the non-
complete metabolic responder during treatment also had 
a substantial predictive potentiality. Further analysis indi-
cated that the percentage changes in minimum diffusion-
related coefficient (ΔDmin) was corrected with ΔSUVmax, 
suggesting that the two related parameters of  [18F]-FDG 
PET/MRI could be used as substitutes for each other 
[86]. However, although investigations have shown that 
 [18F]-FDG PET/MRI is useful in treatment evaluation, 
there is no consensus on the optimal scanning time point 

[86, 95, 96]. Mayerhoefer et  al. demonstrated that cap-
turing treatment-induced changes in lymphoma patients 
at 48–72 h after the start of treatment could be used to 
evaluate the therapeutic effect of the first week of treat-
ment [95], while Vojtíšek et al. recorded the pre- and the 
mid-treatment parameters at week 5 during treatment to 
predict failure to achieve complete metabolic remission 
(CMR).

Post‑treatment evaluation
The combination of multiple parameters obtained by dif-
ferent image methods is found to be significantly better 
for evaluating the therapeutic effect [86, 93, 97, 98]. The 
advent of PET/MRI enables the simultaneous acquisition 
of multiple parameters while mitigating errors caused by 
patients’ movement between different scanning modes, 
thus reducing the impact of physiological changes in 
tumor tissue due to time intervals [99]. Romeo et al. con-
ducted a study involving patients with head and neck 
cancer undergoing concurrent chemoradiotherapy. They 
found that DCE parameters, such as volume transfer 
constant (Ktrans), and rate constant (Kep), can confirm the 
treatment response according to morphological, meta-
bolic, and diffusion data. In addition, in combination 
with elevated post-treatment  SUVmax, it can help identify 
patients with disease progression at follow-up who were 
initially classified as either in partial response (PR) or 
stable disease (SD) [100–102]. Recently,  [18F]-FDG PET/
MRI has also been found to be valuable in the evaluation 
of efficacy after radiotherapy. Mongula et  al. found that 
the use of  [18F]-FDG PET/MRI in patients with cervi-
cal cancer after radiotherapy could affect the treatment 
strategy in 50% of patients [103]. Kovács et al. established 
a mouse model to demonstrate that SUV and ADC values 
in  [18F]-FDG PET/MRI can be used to determine physi-
ological changes in brain tissue after radiotherapy and 
thus monitor the occurrence of adverse effects after radi-
otherapy, making  [18F]-FDG PET/MRI an irreplaceable 
tool in the assessment of efficacy after radiotherapy [104]. 
However, unlike post-chemotherapy efficacy evaluation, 
radiotherapy may yield up to 50% false positives owing 
to the occurrence of radiation-induced fibrosis, necrosis, 
inflammation, and edema [105, 106], potentially limiting 
the role of  [18F]-FDG PET/MRI in assessing radiotherapy 
efficacy. Nevertheless, recent studies suggest that func-
tional imaging techniques, such as diffusion kurtosis 
imaging (DKI) and 11C-methionine (11C-MET)-PET, may 
be beneficial in differentiating residual tumors from radi-
ation-induced fibrotic tissue [103, 107].

In addition, ultrafast DCE-MRI, advanced DWI 
sequences such as intravoxel incoherent motion (IVIM), 
diffusion tensor imaging (DTI), proton MR spectroscopy 
(1H MRS), and chemical exchange saturation transfer 
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(CEST) imaging have shown promise in evaluating the 
efficacy of cancer patients [108–110]. For instance, due 
to special IVIM parameters, PET/IVIM-MRI, which 
simultaneously displays the diffusion of water molecules 
and microcirculation perfusion in the tumor tissue, can 
be used to evaluate early treatment outcomes for locally 
advanced cervical cancer and to predict lymphovascu-
lar space invasion in cervical cancer without lymphatic 
metastasis [86, 93, 111]. However, it is noteworthy that 
the use of these novel imaging sequences in radiotherapy 
requires further investigation.

Patient surveillance
Patient surveillance plays a key role in the survival of 
cancer patients. Local recurrence may be the main cause 
of treatment failure, so timely and accurate restaging of 
patients with suspected recurrence is required for opti-
mal management. Traditional imaging methods play a 
decisive role in the evaluation of locoregional recurrence. 
However, the anatomical changes, scars, and radiation-
induced inflammation caused by radiotherapy or surgery 
make it difficult to distinguish the active tumor tissue, 
leading to incorrect restaging and thus affecting further 
treatment decisions [112–114].  [18F]-FDG PET/MRI is 
expected to be the best choice for long-term follow-up 
of patients. Sawicki et  al. showed that in patients with 
suspected pelvic tumor recurrence,  [18F]-FDG PET/MRI 
correctly diagnosed 100% of malignant lesions, com-
pared with MRI only 74.6%. PET/MRI was also found to 
reduce the probability of misdiagnosing distant metas-
tases as only local recurrence, thus leading to a higher 
tumor stage [115]. Since PET/CT was introduced, it has 
had a high utilization rate in patient follow-up due to its 
combination of metabolic and anatomical information 
[116–118]. Some studies have compared  [18F]-FDG PET/
MRI with PET/CT and found that there was no differ-
ence in the diagnostic performance of the two in follow-
up, but  [18F]-FDG PET/MRI can better define the tumor 
margin, which could show more unclear FDG findings 
[119]. Additionally, during long-term follow-up, patients 
may undergo repeated radiation exposure from CT and 
PET/CT scans, which has been shown to potentially 
elevate the risk of cancer [120, 121]. Notably, PET/MRI 
offers a radiation-free alternative, mitigating the potential 
for cumulative radiation damage and alleviating patient 
concerns. However, the high purchase and maintenance 
costs and potential reimbursement issues in PET/MRI 
could limit its use.

Other works
Specific PET tracers
With the introduction of various tracers, PET/MRI can pro-
vide complementary and sensitive information for lesion 

characterization, boosting its utility in RT planning. As a 
hypoxic PET tracer,  [18F]-Fluoromisonidazole([18F]-FMISO) 
can predict radiotherapy response, given that nor-
moxic tumors respond better to treatment than hypoxic 
ones [122]. Neuroendocrine tumors (NETs) frequently 
overexpress somatostatin receptors (SSTRs). Thus in 
RT planning of NETs, SSTR-targeted molecular imag-
ing, such as  [68Ga]-DOTATOC,  [68Ga]-DOTATATE, or 
 [68Ga]-DOTANOC, was used to precisely locate and delin-
eate tumor targets [59]. Recently, the texture features of 
 [68Ga]-DOTATOC-PET/MRI have also been increasingly 
used to evaluate treatment-related changes in NETs [123]. 
In addition, as PSMA is highly expressed in prostate can-
cer (PCa) cells, 68Ga-PSMA-11 PET/MRI provides a good 
detection rate for PCa in biochemical recurrence after ini-
tial curative therapy [124]. Other promising tracers, such 
as fibroblast activation protein inhibitor-PET/MRI(FAPI-
PET/MRI) [125] and 18F-EF5-PET/MRI [126], are currently 
under investigation but not yet utilized in routine clinical 
radiotherapy.

Multimodality nanoparticle probes
When the lesion is not well defined from the sur-
rounding tissue, MRI contrast agents are often used 
to improve image contrast. In integrated PET/MRI, 
PET tracer and MRI contrast agent are initially used 
in combination; however, this combination increases 
both the number of injections and the time spent by 
patients in the scanner and may ultimately increase 
costs [127, 128]. To solve these problems, dual-modal-
ity probes are under development. Nanoparticles (NPs) 
lay the foundation for the realization of dual-modality 
probes due to their highly tunable characteristics and 
large surface area: volume [129]. In the past few years, 
iron oxide nanoparticles have been radiolabeled with 
different radioisotopes (18F, 11C, 13N, 15O, 124I, 64Cu, 
68Ga) for cancer diagnosis and evaluation in PET/MRI 
[130–132]. Recently, 68Ga-magnetic iron oxide nano-
particles targeting PSMA and gastrin-releasing peptide 
receptors (GRPRs) have been developed as a potential 
tool for PET/MRI diagnosis of PCa and are thought to 
improve the efficacy of PCa-targeted therapy, but fur-
ther application in mouse models is needed [128]. In 
addition, multimodality nanoparticle probes can be 
concurrently delivered with drugs or therapeutic agents 
gathering a dual diagnostic and therapeutic effect to 
perform cancer diagnosis and treatment at the same 
time [129].

Limitations
Compared with other imaging modalities, although 
PET/MRI has its outstanding advantages, it still has 
some inevitable drawbacks. For instance, the inherent 
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drawbacks of PET/MRI make it limiting for some 
patients. Firstly, a longer image acquisition time makes 
it less suitable for elderly and pediatric patients who 
may struggle to remain still for extended periods. Sec-
ondly, due to the narrower and longer bore diameter 
of PET/MRI, some patients who are larger or obese 
are not candidates for PET/MRI. Thirdly, patients with 
metal implants, ferromagnetic objects, etc. cannot use 
PET/MRI, as their presence distorts the magnetic fields 
and adversely affects image quality. In addition, while 
the simultaneous collection of PET and MRI data offers 
potential advantages in motion correction compared 
to PET/CT, motion artifacts remain an issue. Static 
motion correction techniques have been suggested 
as a possible improvement, but these techniques still 
require further validation [133]. Another notable limi-
tation is the inferiority of MRI compared to CT in the 
assessment of pulmonary nodules due to the low pro-
ton density, magnetic susceptibility, and respiratory 
motion of lung tissue. Moreover, PET faces difficul-
ties in detecting nodules with low glucose metabolism. 
Therefore, the precise application of PET/MRI in lung 
cancer remains an area to be explored [15, 134, 135]. 
The comparison between PET/MRI and other imaging 
methods at different angles was shown in Table 3.

Outlook
Integrated PET/MRI can get both the shape of the tumor 
and its biological characteristics simultaneously, allow-
ing for a precise understanding of the disease, which in 
turn guides the implementation of the radiotherapy plan 
more precisely. With the advent of new technologies, it 
is anticipated that PET/MRI will be utilized more fre-
quently for radiotherapy.

Abbreviations
[18F]-FDG  18F-fluorodeoxyglucose
[18F]-FMISO  [18F]-Fluoromisonidazole
11C-MET  11C-methionine
1H MRS  Proton MR spectroscopy
3D-CRT   Three-dimensional conformal radiotherapy
AC  Attenuation correction
ADC  Apparent diffusion coefficient
AI  Artificial intelligence
aTL  Adaptive threshold level
BTV  Biological target volume
CAD  Computer-aided design
CEST  Chemical exchange saturation transfer
CMR  Complete metabolic remission
CNNs  Convolutional neural networks
CTV  Clinical tumor volume
DCE  Dynamic contrast-enhanced
DKI  Diffusion kurtosis imaging
Dmin  Minimum diffusion correlation coefficient

Table 3 Comparison of different imaging methods

Red five-pointed stars represent the effect of the image: Three stars indicate a good effect and could be considered the first choice for patients. Two stars indicate a 
moderate effect and could be considered the second choice for patients. One star indicates a poor effect and could be considered the third choice for patients
* Diagnostic information: CT could obtain tumor anatomy and morphology information; MRI could obtain anatomy, morphology, and physiology information; PET 
could obtain tumor physiology and molecular information; PET/CT could obtain tumor anatomy, morphology, physiology, and molecular information; PET/MRI could 
obtain tumor anatomy, morphology, physiology, and molecular information
† Soft tissue density resolution: MRI is better than CT for soft tissue with more water. On PET, which reflects molecular metabolism, lesions usually show high 
metabolism and poor recognition of morphological structure
‡ Radiation exposure dose: The radiation dose of CT is mainly from ionizing radiation, and the radiation dose of PET is mainly from radioactive tracers, while the 
radiation exposure dose of CT examination is higher than that of radio pharyngology. MRI produces no radiation. The radiation dose of PET/MRI mainly comes from 
PET. Most of the radiation dose in PET/CT comes from the CT, and a small part comes from the PET radiotracer
§ Limitation of patient types: CT examination has radiation, so pregnant women and children should try to avoid using it. However, since it only takes a few minutes, 
most patients can tolerate it, and it can be used as the first choice in emergencies. MRI, PET, PET/CT, and PET/MRI take a long time to examine, which is unsuitable for 
emergency patients or some people who find it difficult to stay still for a long time. In addition, PET requires injection of radioactive drugs to image, so it is unsuitable 
for patients with drug allergies. MRI is noisy and narrow, which is not friendly for claustrophobic or obese patients and unsuitable for patients carrying metal objects. 
PET/CT and PET/MRI are integrated imaging modalities and, therefore, have the same problems as individual imaging modalities. ||Inspection time: CT usually takes a 
few minutes. MRI, PET, and PET/CT take about 30 min. PET/MRI takes an hour or longer
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DSC  Dice similarity coefficient
DTI  Diffusion tensor imaging
DWI  Diffusion-weighted imaging
FAPI-PET/MRI  Fibroblast activation protein inhibitor-PET/MRI
FLAIR  Fluid-attenuated inversion recovery
FOV  Field of view
GRPRs  Gastrin-releasing peptide receptors
GTV  Gross tumor volume
GTVnd  Nodal gross tumor volume
IMRT  Intensity-modulated radiation therapy
IR-GRE  Inversion recovery gradient echo
IVIM  Intravoxel incoherent motion
Kep  Rate constant
Ktrans  Volume transfer constant
MRI-UTE  Magnetic resonance imaging-ultra short echo time
MTV  Metabolic tumor volume
NETs  Neuroendocrine tumors
NPs  Nanoparticles
OAR  Organs at risk
PCa  Prostate cancer
PET/MRI  Positron emission tomography/magnetic resonance imaging
PR  Partial response
PSMA  Prostate-specific membrane antigen
PTV  Planning target volume
RF  Radiation frequency
RT  Radiotherapy
s-CT  Substitute CT
SD  Stable disease
SI  Signal strength
SNR  Signal-to-noise ratio
SRT  Stereotactic radiotherapy
SSTRs  Somatostatin receptors
SUV  Standardized uptake value
SUVmax  Maximum standardized uptake value
T1WI  T1-weighted imaging
T2WI  T2-weighted imaging
TE  The time of echo
TLG  Total lesion glycolysis
TSE  Turbo spin-echo
ΔDmean The percentage changes of the mean diffusion-related coefficient
ΔDmin  The percentage changes in minimum diffusion-related coefficient
ΔSUVmax  The percentage changes of the maximum standardized uptake 
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