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Abstract 

Objective To investigate whether T2‑weighted imaging (T2WI)‑based intratumoral and peritumoral radiomics can 
predict extranodal extension (ENE) and prognosis in patients with resectable rectal cancer.

Methods One hundred sixty‑seven patients with resectable rectal cancer including T3T4N + cases were prospectively 
included. Radiomics features were extracted from intratumoral, peritumoral 3 mm, and peritumoral‑mesorectal fat 
on T2WI images. Least absolute shrinkage and selection operator regression were used for feature selection. A radi‑
omics signature score (Radscore) was built with logistic regression analysis. The area under the receiver operating 
characteristic curve (AUC) was used to evaluate the performance of each Radscore. A clinical‑radiomics nomogram 
was constructed by the most predictive radiomics signature and clinical risk factors. A prognostic model was con‑
structed by Cox regression analysis to identify 3‑year recurrence‑free survival (RFS).

Results Age, cT stage, and lymph node‑irregular border and/or adjacent fat invasion were identified as independent 
clinical risk factors to construct a clinical model. The nomogram incorporating intratumoral and peritumoral 3 mm 
Radscore and independent clinical risk factors achieved a better AUC than the clinical model in the training (0.799 vs. 
0.736) and validation cohorts (0.723 vs. 0.667). Nomogram‑based ENE (hazard ratio [HR] = 2.625, 95% CI = 1.233–5.586, 
p = 0.012) and extramural vascular invasion (EMVI) (HR = 2.523, 95% CI = 1.247–5.106, p = 0.010) were independent risk 
factors for predicting 3‑year RFS. The prognostic model constructed by these two indicators showed good perfor‑
mance for predicting 3‑year RFS in the training (AUC = 0.761) and validation cohorts (AUC = 0.710).

Conclusion The nomogram incorporating intratumoral and peritumoral 3 mm Radscore and clinical risk factors 
could predict preoperative ENE. Combining nomogram‑based ENE and MRI‑reported EMVI may be useful in predict‑
ing 3‑year RFS.

Critical relevance statement A clinical‑radiomics nomogram could help preoperative predict ENE, and a prog‑
nostic model constructed by the nomogram‑based ENE and MRI‑reported EMVI could predict 3‑year RFS in patients 
with resectable rectal cancer.

Key points 

• Intratumoral and peritumoral 3 mm Radscore showed the most capability for predicting ENE.

• Clinical‑radiomics nomogram achieved the best predictive performance for predicting ENE.

• Combining clinical‑radiomics based‑ENE and EMVI showed good performance for 3‑year RFS.
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Introduction
Colorectal cancer ranks as the second most common 
cause of cancer mortality in the world [1]. Although most 
patients with resectable rectal cancer undergo curative 
resection, distant recurrence is the main cause of rectal 
cancer death [2]. Therefore, it is important to accurately 
assess risk factors for recurrence to improve survival. 
Extranodal extension (ENE) is the breakthrough growth 
of tumor cells from within the lymph node (LN) capsule 
into the surrounding perinodal adipose tissues [3]. Given 
this, ENE is known to be of important prognostic value 
in a variety of malignant tumors [4–7]. ENE has been 
recently incorporated into LN staging in neck cancer [8]. 
In rectal cancer, several previous studies indicated that 
ENE was an adverse factor for recurrence-free survival 
(RFS) [9–11]. Moreover, the panel agrees that radiolo-
gists should no longer consider the mesorectal fascia as 
involved when potentially malignant smooth enlarged 
lymph nodes (i.e., with an apparently intact capsule) 
contact the mesorectal fascia [12]. Therefore, these stud-
ies suggest that the preoperative prediction of ENE is an 

important parameter in reflecting the risk of recurrence 
and determining adjuvant treatment strategies [9–11].

Traditional imaging methods that depend on qualita-
tive evaluation alone cannot reliably identify ENE in neck 
cancer, with an area under the receiver operating char-
acteristic (ROC) curve (AUC) of 0.621–0.700 [13, 14]. 
Moreover, the size of node metastasis in head and neck 
squamous cell carcinoma is usually larger than that in 
rectal cancer [15]. Therefore, we hypothesized that the 
preoperative evaluation of ENE in patients with rectal 
cancer using qualitative evaluation alone was also not 
reliable. At present, no study has been performed to 
assess ENE in patients with rectal cancer using a method 
based on radiomics. Previous studies showed that the 
MRI-based radiomics signature score (Radscore) of the 
primary tumor could be used to identify lymph node 
metastasis (LNM) and tumor deposits in rectal cancer 
[16, 17]. However, most of these studies only focused on 
intratumoral regions, while peritumoral regions, which 
may have important information about the tumor, were 
excluded [18–20]. Heterogeneity exists not only in can-
cer cells but also in nonmalignant cells and infiltrating 
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cells around the tumor, usually referred to as the peri-
tumoral microenvironment [21]. Tumor evolution and 
progression are influenced by the interaction between 
cancer cells and the peritumoral microenvironment 
[22]. To our knowledge, no study has been performed to 
investigate the relationships between preoperative MRI-
Radscore-based ENE and 3-year RFS. The Radscore from 
T2-weighted imaging (T2WI) of the primary tumor alone 
has been reported to be useful for predicting the response 
to chemoradiotherapy in rectal cancer [23]. Therefore, 
the primary aim of this study was to develop and validate 
a radiomics approach for the preoperative prediction of 
ENE based on intratumoral and peritumoral tissue on 
T2WI images in patients with rectal cancer undergo-
ing radical resection. The secondary aim was to evaluate 
whether this predictive model-based ENE was associated 
with 3-year RFS in patients with rectal cancer.

Materials and methods
Patients
This prospective study was approved by the institutional 
review board of our hospital, and written informed con-
sent was obtained from all patients. The study complied 
with the Declaration of Helsinki.

From January 2019 to January 2022, 202 patients with 
rectal cancer deemed resectable based on the results of 
preoperative MRI were enrolled. Total mesorectal exci-
sion was performed in all patients. The inclusion criteria 
were as follows: (1) patients who received radical surgery 
without preoperative adjuvant therapy, (2) rectal cancer 

and LN status confirmed by pathological results, and (3) 
complete high-resolution rectal MRI examination data 
recorded 2  weeks before surgery. The exclusion crite-
ria were as follows: (1) tumor invisible on T2WI images 
(n = 4); (2) poor MRI image quality (n = 6); (3) nonre-
sectable tumor and/or metastatic disease (cM1 or pM1) 
(n = 21); and (4) incomplete clinical data (n = 4). Ulti-
mately, 167 patients were included in this study. Among 
the 167 patients, there were 60 patients without lymph 
node metastasis (LNM), 29 patients with 1 LNM, 47 
patients with 2–3 LNMs, 22 patients with 4–6 LNMs, and 
9 patients with 7 or more LNMs. According to the eighth 
edition American Joint Committee on Cancer (AJCC) 
rectal cancer staging system [8], there were 60 patients at 
stage pN0, 29 patients at stage pN1a, 47 patients at stage 
pN1b, 22 patients at stage pN2a, and 9 patients at stage 
pN2b. Baseline characteristics of the patients, includ-
ing carbohydrate antigen 199 (CA199), carcinoembry-
onic antigen (CEA), sex, and tumor location, were also 
recorded. There were 117 patients in the training cohort 
and 50 patients in the validation cohort. A flowchart of 
the study participants is described in Fig. 1.

Imaging protocol
MRI was performed on a 1.5-T MR scanner (MAG-
NETOM Aera, Siemens Healthineers). Scopolamine 
butylbromide (20 mg) (Buscopan, Boehringer Ingelheim) 
was intramuscularly injected to inhibit bowel motion 
10  min before the MRI examination. Water or air was 
not given to dilate the rectum. Axial T2WI without fat 

Fig. 1 Flowchart of patient selection
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saturation was performed, and the scanning direction 
was oriented perpendicular to the long axis of the rec-
tum. The following parameters were used: TR, 4600; TE, 
75; field of view (FOV), 220  mm2; matrix size, 256 × 512; 
and 3 mm thickness with no interslice gap. Diffusion-
weighted imaging parameters were as follows: TR, 4600; 
TE, 59; number of signals acquired, eight; FOV, 360  mm2; 
5 mm section thickness; and b = 0, 800 s/mm2.

Qualitative image evaluation
Two radiologists (with 5 and 12  years of experience in 
rectal cancer) who were blinded to the clinical informa-
tion reviewed the MR images in 167 patients with rectal 
cancer. Radiologic ENE was considered positive when at 
least one of the following criteria was met: (1) irregular 
LN border and (2) invasion of the adjacent fat [13]. Addi-
tionally, we assessed whether the internal intensity of LN 
was heterogeneous and whether the chemical shift effect 
(CSE) along the margin of LN was absent [24]. Tumor 
cells inside the subcapsular sinus that break through the 
LN capsule may influence the uniform fat-water inter-
face and thus destroy the normal CSE. If the LN capsule 
is broken by the tumor cell, the normal chemical shift 

effect in this region will disappear. The heterogeneous 
intensity of the LN indicates that the normal LN struc-
ture is replaced by tumor cells, and the low-intensity sig-
nal of the LN capsule on T2WI will disappear. Radiologic 
ENE status was compared with the nodal histopathology 
results (Fig. S1). For a node-to-node comparison, the fol-
lowing morphological features were recorded: LN size 
and the location related to the tumor, mesorectal fascia, 
and vessels. If the LNs on MRI did not match the histo-
pathological results, these LNs were excluded. Finally, 
the pathological findings determine whether LNM and 
ENE are positive or negative. The LN yield at pathology 
per patient was more than 12. The extramural vascular 
invasion (EMVI) status of the primary tumor and T stage 
were also evaluated on MRI [25]. Moreover, the tumor 
length and maximal tumor thickness were obtained on 
the sagittal and oblique T2WI images, respectively.

Tumor segmentation
The tumor segmentation process on MRI is shown in 
Fig.  2. Tumor delineation was performed on the entire 
three-dimensional tumor volume on T2WI images by a 
radiologist (the first author) using AK software (Artificial 

Fig. 2 Tumor segmentation process on MRI. First, we manually segmented the whole tumor on axial T2WI images and labeled it as the intratumoral 
area. Second, “shrink” was defined as the tumor border automatically shrinking by 1 mm on the inside. “Dilate” was defined as automated 
dilation of the tumor border by 2 mm on the outside. “Dilate‑shrink” resulted in a ring with a thickness of 3 mm. Thus, the peritumoral 3 mm area 
was obtained, including the most peripheral portion of the tumor and the surrounding tissues. Moreover, the peritumoral‑mesorectal fat (MRF) area 
was obtained by drawing along the mesorectal fascia
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Intelligence Kit, version 3.3.0, GE Healthcare). For the 
segmentation of peritumoral regions, a peritumoral 3 
mm region was obtained with automated dilation of the 
tumor boundaries by 2 mm on the outside and shrinkage 
of the tumor boundaries by 1 mm on the inside, resulting 
in a ring with a thickness of 3 mm [26]. The peritumoral-
mesorectal fat (MRF) region was obtained by drawing 
along the mesorectal fascia. Thirty patients’ data were 
randomly selected for assessing interobserver and intra-
observer agreement of feature extraction by intraclass 
correlation coefficient (ICC) analysis. First, a radiologist 
delineated the tumor volume of interest on T2WI images 
and repeated this process after 3  weeks to calculate the 
intraobserver ICC. Two radiologists independently delin-
eated the tumor volume of interest on T2WI images, and 
the interobserver ICC was calculated. Only radiomics 
features demonstrating an ICC greater than 0.75 were 
retained for further analysis.

Feature extraction, selection, and model building
The radiomics module (backed by PyRadiomics) was 
used to extract radiomics features. Voxel size was resa-
mpled by 1 × 1 × 1 mm, and z score normalization of the 
signal intensities for T2WI images was performed using 
PyRadiomics [27]. In total, 1316 radiomics features, 
including 252 histogram features, 14 shape features, 
336  Gy level co-occurrence matrix, 224  Gy level size 
zone matrix, 224 Gy level run length matrix, 196 Gy level 
dependence matrix, and 70 neighboring gray-tone differ-
ence matrix, were obtained from each patient. The sta-
tistical software R (version 3.5.1, 2019, The R Foundation 
for Statistical Computing, Vienna, Austria) was used to 
select radiomics features and build the model. The maxi-
mum relevance and minimum redundancy were first per-
formed to select radiomics features [28]. The optimized 
subset of features was obtained using the least absolute 
shrinkage and selection operator in the training cohort 
[29]. Subsequently, a linear combination of the selected 
features weighted by their respective coefficients was 
used to calculate the Radscore for each patient. The 
diagnostic performance of the Radscore in the training 
cohort and validation cohort was evaluated using AUC. 
The most predictive Radscore was selected for the subse-
quent analysis.

The nomogram was constructed by univariate and mul-
tivariate logistic regression analyses. ROC curves were 
generated to assess the discriminatory ability in the train-
ing cohort and validation cohort. A calibration curve was 
generated to calibrate the nomogram. Decision curve 
analysis (DCA) was applied to investigate the clinical util-
ity of the models.

Outcome
For patients with postoperative T1-2N0M0 rectal cancer, 
only the “follow-up watch” strategy was used. Patients 
with postoperative T3a/bN0M0, T4aN0M0, or T1-4aN1-
2M0 rectal cancer received 5-fluorouracil-based adjuvant 
therapy after surgery. Locoregional recurrence or distant 
metastasis after surgery was evaluated every 3–6 months 
based on digital rectal examination and endoscopic 
examination plus CT, MRI, and/or PET/CT to determine 
relapse. The primary endpoint was a 3-year RFS.

Statistical analysis
Statistical analyses were performed using SPSS (ver-
sion 23.0) and R software (version 3.5.1). An interreader 
agreement was conducted for the assessment results 
of ENE by the two radiologists using the kappa value. 
The relationship between clinical baseline characteris-
tics and ENE status was evaluated by the chi-squared 
test, independent two-sample t test, and Fisher’s exact 
test (where appropriate). The “mRMR” algorithm in the 
“mRMRe” package was used to conduct the maximum 
relevant minimum redundancy to initially screen the 
radiomics features. The best feature cohort was selected 
by the “glmnet” algorithm in the “glmnet” package. ROC 
analysis was carried out based on the “pROC” package 
to evaluate the effectiveness. The “calibrate” function in 
the “rms” package was applied to calibration curve plots 
and builds nomograms, and decision curves were plot-
ted based on the “rmda” package in both clinical and 
combined models. The differences in AUCs between 
the models were compared using Delong’s test. Kaplan–
Meier analysis with the log-rank test was used for sur-
vival analysis. Univariate and multivariate Cox regression 
analyses were used to construct a prognostic model for 
assessing 3-year RFS. The diagnostic performance of this 
prognostic model was determined using time-dependent 
ROC curves.

Results
Patient characteristics
Among the 167 patients (mean age, 62  years; range 
29–88  years), 117 patients were in the training cohort 
(43 ENE + and 74 ENE-), and 50 patients were in the vali-
dation cohort (8 ENE + and 42 ENE-). There was a sig-
nificant difference in pathological ENE between the two 
cohorts (p = 0.008), but no significant differences were 
found in CA199, CEA, tumor length, wall thickness, age, 
sex, location, cT stage, pathological LN, MRI-reported 
EMVI, LN-irregular border and/or adjacent fat invasion, 
LN-CSE, and LN-heterogeneous intensity between the 
two cohorts (all p > 0.05) (Table 1).
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MR‑reported ENE correlation with pathologic results
The correlation of MR-reported ENE and pathologic 
results is shown in Table S1.

Pathologically confirmed ENE positivity was observed 
in 51 patients, with an MR-reported ENE positivity in 
27 patients for reader 1 and 26 patients for reader 2. 

Pathologically confirmed ENE negativity was observed 
in 117 patients, with an MR-reported ENE negativity 
in 83 patients for reader 1 and 81 patients for reader 2. 
The interreader agreement between the two radiologists 
for assessing ENE was good, with a kappa value of 0.780 
(95% CI = 0.671–0.874). The correlation of MR-reported 

Table 1 Baseline characteristics of the patients in this study

CA199 carbohydrate antigen 199, CEA carcinoembryonic antigen, LN lymph node, CSE chemical shift effect, EMVI extramural vascular invasion

Variable Training cohort (n = 117) Test cohort (n = 50) p‑value

CA199 (kU/L) 7.85 (4.05, 17.86) 8.76 (3.77, 17.63) 0.760

CEA (ng/mL) 4.43 (2.61, 10.41) 3.40 (2.16, 8.10) 0.259

Tumor length (mm) 45.00 (34.50, 57.00) 46.65 (36.75, 60.75) 0.483

Maximal tumor thickness (mm) 10.00 (8.00, 13.00) 10 (7.00, 12.00) 0.232

Age 64.00 (55.00, 69.50) 67.50 (56.75, 71.00) 0.369

Sex 0.375

 Male 83 (70.21%) 32 (72.73%)

 Female 34 (29.79%) 18 (27.27%)

Location 0.521

 Upper 23 (28.72%) 13 (27.27%)

 Middle 60 (44.68%) 26 (63.64%)

 Lower 34 (26.60%) 11 (9.09%)

cT stage 0.557

 T1 1 (4.26%) 1 (0.00%)

 T2 21 (47.87%) 6 (50.00%)

 T3a/b 41 (17.02%) 21 (31.82%)

 T4a 54 (30.85%) 22 (18.18%)

pN stage 0.206

 N0 39 (33.33%) 21 (42%)

 N1a 18 (15.38%) 11 (22%)

 N1b 33 (28.21%) 14 (28%)

 N2a 19 (16.24%) 3 (6%)

 N2b 8 (6.84%) 1 (2%)

Pathological LN 0.285

 Negative 39 (33.33%) 21 (42%)

 Positive 78 (66.67%) 29 (58%)

Pathological ENE 0.008

 Negative 74 (63.3%) 42 (84%)

 Positive 43 (36.7%) 8 (16%)

MRI‑reported EMVI 0.321

 Negative 93 (69.15%) 43 (77.27%)

 Positive 24 (30.85%) 7 (22.73%)

LN‑irregular border and/or adjacent fat invasion 0.990

 Negative 75 (64.10%) 32 (64.00%)

 Positive 42 (35.90%) 18 (36.00%)

LN‑CSE 0.985

 Absence 63 (53.85%) 27 (54.00%)

 Existence 54 (46.15%) 23 (46.00%)

LN‑heterogeneous intensity 0.598

 Negative 77 (65.81%) 35 (70.00%)

 Positive 40 (34.19%) 15 (30.00%)
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ENE with pathologic findings was confirmed with 
kappa, sensitivity, and specificity values of 0.233, 52.9%, 
and 71.5%, respectively. Therefore, the association of 
MR-reported ENE with pathologic findings showed 
poor consistency.

Feature selection, development, and validation 
of prediction models
The final formula of the Radscore used to predict ENE 
is shown in Table S2. Combining intratumoral and 
peritumoral 3 mm Radscore resulted in the highest 

Fig. 3 Receiver operating characteristic curves of intratumoral radiomics score (red line), intratumoral&peritumoral‑MRF radiomics score (blue 
line), intratumoral and peritumoral‑3‑mm radiomics score (green line), peritumoral‑3mm radiomics score (purple line), and peritumoral‑MRF 
radiomics score (black line) for predicting extranodal extension in the training cohort (A) and validation cohort (B)

Table 2 Univariate and multivariate logistic regression analysis for clinical characteristics and Radscore

Radscore radiomics signature score, LN lymph node, CSE chemical shift effect, EMVI extramural vascular invasion

Parameters Univariate analysis p value Multivariate analysis p value

OR 95% CI OR 95% CI

Intra‑peritumoral 3‑mm Radscore 2.72 (1.56, 4.73)  < 0.001 2.89 (1.50, 5.56)  < 0.001

Gender 1.31 (0.56, 3.05) 0.582

Age 0.96 (0.93, 0.99) 0.025 0.95 (0.92, 0.99) 0.017

Location 0.73 (0.42, 1.27) 0.264

cT‑stage 2.03 (1.18, 3.49) 0.01 1.98 (1.02, 3.87) 0.037

Pathological LN 1.23 (0.45–2.88) 0.991

MRI‑reported EMVI 1.30 (0.52, 3.25) 0.576

CA199 1.00 (0.99, 1.00) 0.819

CEA 1.00 (0.99, 1.02) 0.347

Tumor‑length 1.00 (0.98, 1.03) 0.487

Wall thickness 0.98 (0.89, 1.09) 0.742

LN‑irregular border or invasion of the adja‑
cent fat

3.33 (1.5, 7.37) 0.003 3.36 (0.82, 13.73) 0.028

LN‑CSE 2.51 (1.16, 5.43) 0.019

LN‑heterogeneous intensity 2.00 (0.91, 4.38) 0.084
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capability for predicting ENE, with AUCs of 0.707 and 
0.667 in the training cohort and validation cohort, 
respectively (Fig.  3). A nomogram was constructed 
by adding the combined intratumoral and peritu-
moral 3 mm Radscore (odds ratio (OR) = 2.89) to the 
clinical model (age (OR = 0.95), cT stage (OR = 1.98), 

and LN-irregular border and/or adjacent fat invasion 
(OR = 3.36)) as summarized in Table  2. Compared 
with the clinical model, the nomogram (cutoff, -0.405) 
provided a slightly higher AUC in the training cohort 
(0.799 vs. 0.736, p = 0.072) and validation cohort (0.723 
vs. 0.667, p = 0.4) (Tables  3 and 4; Fig.  4). For the 

Table 3 Diagnostic performance of the models in the training cohort and validation cohort

MRF mesorectal fat, Intra-Peritumoral-MRF combined intratumoral with peritumoral-MRF, Intra-Peritumoral-3 mm combined intratumoral and peritumoral 3 mm

Data set Model AUC (95% CI) Sensitivity Specificity

Training cohort Intratumoral 0.618 (0.512–0.724) 0.659 0.571

Intra‑Peritumoral‑MRF 0.638 (0.521–0.756) 0.793 0.486

Intra‑Peritumoral‑3 mm 0.707 (0.612–0.803) 0.716 0.651

Peritumoral 3 mm 0.626 (0.512–0.74) 0.435 0.812

Peritumoral‑MRF 0.614 (0.505–0.723) 0.475 0.730

Clinical model 0.736 (0.641–0.832) 0.757 0.651

Nomogram 0.799 (0.718–0.881) 0.676 0.837

Validation cohort Intratumoral 0.612 (0.451–0.774) 0.382 0.688

Intra‑Peritumoral‑MRF 0.586 (0.413–0.760) 0.676 0.625

Intra‑Peritumoral‑3 mm 0.667 (0.493–0.841) 0.619 0.750

Peritumoral 3 mm 0.625 (0.467–0.782) 0.645 0.421

Peritumoral‑MRF 0.550 (0.366–0.734) 0.75 0.286

Clinical model 0.667 (0.434–0.899) 0.762 0.625

Nomogram 0.723 (0.532–0.916) 0.548 0.875

Table 4 Comparison of the diagnostic performance of the models in the training cohort and validation cohort

MRF mesorectal fat, Intra-Peritumoral-MRF combined intratumoral with peritumoral-MRF, Intra-Peritumoral-3 mm combined intratumoral and peritumoral 3 mm

Data set Models comparison AUC p

Training cohort Intratumoral vs Intra‑Peritumoral‑MRF 0.618 vs 0.638 0.8

Intratumoral vs Intra‑Peritumoral‑3 mm 0.618 vs 0.707 0.2

Intratumoral vs clinical model 0.618 vs 0.736 0.1

Intratumoral vs nomogram 0.618 vs 0.799 0.008

Intra‑Peritumoral‑MRF vs Intra‑Peritumoral‑3 mm 0.638 vs 0.707 0.4

Intra‑Peritumoral‑MRF vs clinical model 0.638 vs 0.736 0.2

Intra‑Peritumoral‑MRF vs nomogram 0.638 vs 0.799 0.03

Intra‑Peritumoral‑3 mm vs clinical model 0.707 vs 0.736 0.7

Intra‑Peritumoral‑3 mm vs nomogram 0.707 vs 0.799 0.03

Clinical model vs nomogram 0.736 vs 0.799 0.072

Validation cohort Intratumoral vs Intra‑Peritumoral‑MRF 0.612 vs 0.586 0.8

Intratumoral vs Intra‑Peritumoral‑3 mm 0.612 vs 0.667 0.3

Intratumoral vs clinical model 0.612 vs 0.667 0.7

Intratumoral vs nomogram 0.612 vs 0.723 0.4

Intra‑Peritumoral‑MRF vs Intra‑Peritumoral‑3 mm 0.586 vs 0.667 0.2

Intra‑Peritumoral‑MRF vs clinical model 0.586 vs 0.667 0.7

Intra‑Peritumoral‑MRF vs nomogram 0.586 vs 0.723 0.4

Intra‑Peritumoral‑3 mm vs clinical model 0.667 vs 0.667 0.8

Intra‑Peritumoral‑3 mm vs nomogram 0.667 vs 0.723 0.9

Clinical model vs nomogram 0.667 vs 0.723 0.4
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nomogram, good agreement between the predicted 
probability and actual observed probability was dem-
onstrated by the calibration curve. The result of the 
decision curve indicated that the nomogram had more 
benefits than the other models for predicting ENE 
when the threshold probability ranged from 0.18 to 
0.73 in the training cohort and from 0.10 to 0.74 in the 
validation cohort (Fig. 5).

Subgroup analyses
Subgroup analyses of the three models are shown in 
Fig. S2 and Table S3. There were 3 ENE + patients and 
26 ENE- patients at the T1-T2 stage. For differentiating 
ENE + from ENE- patients at the T1-T2 stage, both the 
clinical model and the nomogram had similar AUCs, 
which were slightly higher than that of the radiomics 
model (0.705 vs. 0.660, p = 0.076, i.e., not statistically 

Fig. 4 The performance and validation of the final selected model to predict extranodal extension (ENE). ROC of clinical model (red line), 
intratumoral and peritumoral‑3‑mm radiomics model (blue line), and nomogram (green line)  for predicting ENE in the training cohort (A) 
and validation cohort (B). C The predictive nomogram of ENE
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significant). There were 48 ENE + patients and 90 ENE-
patients at the T3a/b-T4a stage. For differentiating 
ENE + from ENE- patients at the T3a/b-T4a stage, the 
nomogram showed better AUCs than the clinical model 
(0.725 vs. 0.656, p = 0.041) and slightly higher AUCs 
than the radiomics model (0.725 vs. 0.697, p = 0.085, 
i.e., not statistically significant).

Survival analysis
The median follow-up of the event-free patients was 
24 months (range, 6–36 months) and 22 months (range, 
7–36  months) in the training cohort and validation 
cohort, respectively. The 51 patients with ENE had a 
higher rate of recurrence than the 116 patients with-
out ENE (43.1% vs. 18.9%). In the training cohort, there 

were 35 patients (35/117, 29.9%) with locoregional or 
distant relapse after a median duration of 10  months 
(3–36  months). In the validation cohort, there were 9 
patients (9/50, 18%) with locoregional or distant relapse 
after a median duration of 8 months (4–29 months). As 
shown in Kaplan–Meier survival curves (Fig. 6), patients 
with low clinical-radiomics nomogram score-based 
ENE- (≤ -0.405) showed better 3-year RFS than those 
with high score-based ENE + (> -0.405).

Univariate and multivariate Cox analyses showed that 
EMVI (hazard ratio [HR] = 2.523, 95% CI = 1.247–5.106, 
p = 0.010) and clinical-radiomics nomogram-based ENE 
(HR = 2.625, 95% CI = 1.233–5.586, p = 0.012) were inde-
pendent risk factors for 3-year RFS (Table 5). EMVI and 
clinical-radiomics nomogram-based ENE assessments 

Fig. 5 Fit and usefulness evaluation of the clinical‑radiomics nomogram. Calibration curve of the clinical‑radiomics nomogram for predicting 
extranodal extension (ENE) in the training cohort (red line) and validation cohort (blue line) (A); decision curve analysis (DCA) of the nomogram 
for assessing its clinical usefulness; this indicates that a nomogram to predict ENE gains more benefit than the “treat all,” “treat none,” radiomics 
model and the clinical model when the threshold probability ranges from 0.18 to 0.73 in the training cohort (B) and from 0.10 to 0.74 
in the validation cohort (C)
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were performed to construct the prognostic model for 
3-year RFS and indicated good performance, with AUCs 
of 0.761 in the training cohort and 0.710 in the validation 
cohort.

Discussion
From several studies, scholars have reported that intra-
tumoral radiomics signatures could predict LNM and 
tumor deposits in rectal cancer [17, 30, 31]. In this study, 
we also assessed ENE with radiomic signatures from the 
primary tumor, instead of lymph nodes. The explanation 
could be that it was sometimes difficult to completely 

maintain the node-to-node correspondence between sur-
gical histology and MR-identified nodes. Moreover, small 
LNs (e.g., < 5 mm) may have positive ENE, but were very 
difficult for the radiologist to draw ROI on given their 
small size. Even though small lymph nodes could be iden-
tified by the radiologist, drawing the entire lymph node on 
MR images with a slice thickness of 3  mm was also dif-
ficult. Since the risk of metastases is fundamentally driven 
by the primary tumor, we can hypothesize that radiomics 
analysis of the primary tumor may help identify the sta-
tus of ENE. We found that T2WI-based radiomics from 
the intratumoral region could predict ENE with an AUC 

Fig. 6 Kaplan–Meier survival curves of the nomogram‑based extranodal extension (ENE) for 3‑year recurrence‑free survival in patients with rectal 
cancer in the entire cohort (A), at T1‑T2 stage (B), and T3a/b‑T4a stage (C)

Table 5 The results of univariate and multivariate Cox regression analyses for assessing 3‑year recurrence‑free survival in the training 
cohort

Sex (female), age (≤ 65), treatment (surgery only), T-stage (T1-2), lymph node metastasis (LNM) (-), extramural vascular invasion (EMVI) (-), CA199 (≤ 37), CEA (≤ 6), 
tumor length (≤ 42.5 mm), wall thickness (≤ 12 mm), LN-irregular border (-), LN-chemical shift effect (-), LN-heterogeneous intensity (-), intratumoral Radscore 
(≤  -0.756), intra- and peritumoral-mesorectal fat (MRF) Radscore (≤ -0.930), intra- and peritumoral 3-mm Radscore (≤ -0.531), and clinical-radiomics combined model 
score-based ENE + (≤ -0.405) were as a reference in univariate and multivariate COX analysis

Variate Univariate Cox Multivariate Cox

p HR (95% CI) p HR (95% CI)

Sex (male) 0.033 2.805 (1.086–7.248) 0.180 1.966 (0.732–5.281)

Age (> 65) 0.189 1.569 (0.801–3.070)

Treatment (surgery plus postoperative adjuvant therapy) 0.136 2.213 (0.779–6.283)

T‑stage (T3a/b‑4a) 0.578 1.310 (0.506–3.395)

Pathological LNM ( + ) 0.027 2.917 (1.129–7.536) 0.308 1.771 (0.591–5.307)

MRI‑reported EMVI ( + ) 0.001 3.162 (1.589–6.292) 0.010 2.523 (1.247–5.106)

CA199 (> 37) 0.584 1.341 (0.469–3.833)

CEA (> 6) 0.079 1.817 (0.932–3.543) 0.370 1.378 (0.684–2.776)

Tumor length (> 42.5 mm) 0.466 1.283 (0.656–2.508)

Wall thickness (> 12 mm) 0.237 0.669 (0.344–1.302)

LN‑irregular border and/or adjacent fat invasion ( + ) 0.057 1.908 (0.982–3.709) 0.193 0.531 (0.204–1.377)

LN‑chemical shift effect ( + ) 0.081 1.816 (0.929–3.555) 0.391 1.603 (0.545–4.716)

LN‑heterogeneous intensity ( + ) 0.154 1.629 (0.833–3.185)

Intratumoral Radscore (> ‑0.756) 0.797 1.091 (0.561–2.122)

Intratumoral + peritumoral‑MRF Radscore (> ‑0.930) 0.911 0.963 (0.496–1.869)

Intratumoral + peritumoral 3‑mm Radscore (> ‑0.531) 0.289 1.451 (0.730–2.886)

Clinical‑radiomics combined model score based‑ENE + (> ‑0.405) 0.003 3.099 (1.485–6.466) 0.012 2.625 (1.233–5.586)



Page 12 of 15Li et al. Insights into Imaging           (2024) 15:57 

of 0.612. Jin et al. and Chen et al. reported that radiom-
ics features obtained from intratumoral and peritumoral 
fat were used to construct a model for predicting tumor 
deposits [16, 32]. These studies found that the combined 
model incorporating intratumoral and peritumoral fat 
and clinical factors provided good performance for pre-
dicting tumor deposits. However, the radiomic features 
in these studies were extracted from ultrasound or CT 
images, which were not the best examination modality for 
rectal cancer. Jayaprakasam et al. reported that MRI radi-
omics features from MRF showed good performance for 
predicting tumor recurrence and response to neoadjuvant 
chemoradiation therapy in rectal cancer [33]. A recent 
study also showed that combining intratumoral and MRF 
radiomics models provided better performance than a 
single intratumoral radiomics model for predicting tumor 
deposits [34]. These studies defined the peritumoral 
region by drawing along the mesorectal fascia. However, 
some studies have defined the peritumoral region as the 
area immediately surrounding the tumor [20, 26, 35–37]. 
Therefore, it is uncertain whether we should combine 
intratumoral and MRF radiomics features or intratu-
moral and peritumoral regions immediately surrounding 
the tumor. In this study, we compared different regional 
Radscores and found that the combined intratumoral and 
peritumoral 3 mm Radscore achieved the highest capabil-
ity for predicting ENE, with an AUC of 0.723. For radi-
omics features from the intratumoral region, the negative 
coefficient (-0.592) of Zone Percentage indicated a coarser 
texture, implying notable tumor heterogeneity. For peri-
tumoral 3 mm radiomics features, the positive coefficient 
of gray-level variance indicating the variance in gray-level 
intensity for the runs implies tumor heterogeneity. For 
peritumoral-MRF radiomics features, the positive coeffi-
cient of short-run high gray-level emphasis and IDN imply 
homogeneous textures [38]. These findings may suggest 
that the peritumoral region far from the tumor contains 
less information than the region immediately surrounding 
the tumor. The probable interpretation could be related to 
the peritumoral immune microenvironment, which was 
mainly in the region immediately adjacent to the tumor 
[39]. Moreover, in a previous study, it was reported that 
tumor cells were separated from the infiltrating edge of 
the tumor and migrated to the surrounding stroma, indi-
cating that tumor-budding cell clusters mainly existed at 
the edge of the tumor [40]. These findings may indicate 
that the region adjacent to the tumor plays an important 
role in metastatic LN.

To our knowledge, no studies have used clinical factors 
to select noninvasive independent predictors of ENE. We 
found that age, cT-stage, and LN-irregular border and/
or invasion of the adjacent fat on MRI were independent 

predictors for ENE. Heterogeneous LN intensity and dis-
appearance of the CSE were not independent risk factors 
for ENE. The most likely explanation is that heterogeneous 
intensity in LNs and the disappearance of LN-CSE are not 
unique to ENE, which can be seen in most metastatic LNs. 
Moreover, tumor cells inside the subcapsular sinus that do 
not break through the LN capsule may also influence the 
uniform fat-water interface and thus destroy the normal 
chemical shift effect [23]. In this study, LN-irregular bor-
der and/or adjacent fat invasion on MRI was considered a 
morphological feature for assessing ENE. We found that 
the correlations of LN-irregular border and/or adjacent 
fat invasion with pathologic findings were validated with 
kappa, sensitivity, and specificity values of 0.233, 52.9%, 
and 71.5%, respectively. The explanation could be that it 
was sometimes difficult to assess the border status of small 
nodes because of the restriction of spatial resolution. More-
over, there is a limitation for current imaging modalities to 
accurately identify microscopic ENE [41, 42]. Therefore, 
we may conclude that it was difficult to assess ENE using 
morphological features on MRI. Our findings indicated 
that adding the combined intratumoral and peritumoral 3 
mm Radscore to the clinical model could improve the ben-
efit compared with the clinical model alone for the assess-
ment of ENE. However, there was no statistical significance 
for AUC between the clinical model and the nomogram. 
A possible explanation could be the small sample size of 
patients and lower incidence of ENE + in this study. More-
over, the proportions of patients with and without ENE 
greatly differed between the training cohort and the valida-
tion cohort. Therefore, further studies with larger sample 
sizes should be performed to confirm our findings.

For the subgroup analyses, our results showed that 
both the clinical model and clinical-radiomics nomogram 
had similar AUCs of 0.705 for differentiating ENE + from 
ENE- patients at the T1-T2 stage. The explanation could 
be that the incidence of ENE + is low (10.3%, 3/29) at 
the T1-T2 stage. For differentiating ENE + from ENE- 
patients at the T3a/b-T4a stage, the clinical-radiomics 
nomogram performed significantly better than the clini-
cal model (AUC, 0.725 vs. 0.656). The explanation could 
be that the incidence of ENE + is high (34.8%, 48/138) at 
the T3a/b-T4a stage. Moreover, greater heterogeneity 
exists in T3a/b-T4a stage rectal cancers than in T1-T2 
stage cancers, and these features cause substantial dif-
ferences in radiomic features [43]. Therefore, combining 
these radiomics features with clinical risk factors may 
lead to a better prediction of ENE than the clinical model 
alone. These results may indicate that the clinical-radi-
omics nomogram can predict ENE stratified by tumor 
T staging. In addition, patients with ENE had a higher 
rate of recurrence than patients without ENE (51.9% vs. 
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8.3%). Our study showed that patients with low clinical-
radiomics combined model score-based ENE had better 
3-year RFS than patients with high scores. Multivariate 
Cox analysis showed that clinical-radiomics nomogram-
based ENE in addition to MRI-reported EMVI were 
independent risk factors for predicting 3-year RFS. A 
previous study also confirmed that MRI-reported EMVI 
was strongly associated with distant recurrence [44]. Our 
findings may lead to the conclusion that T stage and N 
stage are not sufficient for classifying the patient, and it 
may be more sensible to include additional indicators, 
such as in the clinical-radiomics nomogram-based ENE 
and EMVI.

There are some limitations in this study. Firstly, due 
to the low incidence of ENE, the sample size of patients 
with ENE enrolled in this study was small. To prevent the 
model from being affected by data bias during the train-
ing process, relatively more positive samples were ran-
domly allocated to the training set data to ensure that 
the ratio of ENE negative and positive in the training set 
data was within the range of 2:1. Although this alloca-
tion scheme would make the proportion of patients with 
ENE negative and positive very different in the valida-
tion cohort, the incidence rate of ENE was approximately 
22% [45], which would not affect practical clinical appli-
cations. Secondly, this is a single-center study, and the 
model will need to be confirmed with external validation 
data. Thirdly, this study only included T2WI-based radi-
omics analysis. Other MRI sequences, such as DWI, were 
excluded. Fourthly, although we endeavored to keep the 
LNs on preoperative images matched with histopatho-
logic results, it was sometimes difficult to completely 
maintain the node-to-node correspondence. However, 
clinicians generally focus only on the presence or absence 
of ENE in patients with rectal cancer. Therefore, in this 
study, the analysis was performed on a per-patient basis 
for ENE rather than on a per-node basis. Finally, patients 
with T3a/b-T4a or N + rectal cancer did not receive pre-
operative chemoradiotherapy. In this study, we found 
that the 3-year RFS rate was 73.5%, which did not differ 
when compared with standard therapy of preoperative 
chemoradiotherapy, surgery, and postoperative adjuvant 
chemotherapy with 3-year RFS rate of 75% [46]. This 
finding seems to indicate that preoperative chemoradio-
therapy has not been shown to significantly increase the 
3-year RFS rate compared with surgery alone [47].

In summary, our study provides a clinical-radiomics 
nomogram that combines intratumoral and peritumoral 
3 mm Radscore, age, cT stage, and LN-irregular border 
and/or adjacent fat invasion for the preoperative predic-
tion of ENE. Combining this nomogram-based ENE pre-
diction with EMVI could help identify patients at high 
risk for recurrence and promote personalized treatment.
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