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Abstract 

Purpose  The aim of this study was to diminish radiation exposure in interventional radiology (IR) imaging 
while maintaining image quality. This was achieved by decreasing the acquisition frame rate and employing a deep 
neural network to interpolate the reduced frames.

Methods  This retrospective study involved the analysis of 1634 IR sequences from 167 pediatric patients (March 2014 
to January 2022). The dataset underwent a random split into training and validation subsets (at a 9:1 ratio) for model 
training and evaluation. Our approach proficiently synthesized absent frames in simulated low-frame-rate sequences 
by excluding intermediate frames from the validation subset. Accuracy assessments encompassed both objective 
experiments and subjective evaluations conducted by nine radiologists.

Results  The deep learning model adeptly interpolated the eliminated frames within IR sequences, demonstrat-
ing encouraging peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) results. The average PSNR 
values for angiographic, subtraction, and fluoroscopic modes were 44.94 dB, 34.84 dB, and 33.82 dB, respectively, 
while the corresponding SSIM values were 0.9840, 0.9194, and 0.7752. Subjective experiments conducted with expe-
rienced interventional radiologists revealed minimal discernible differences between interpolated and authentic 
sequences.

Conclusion  Our method, which interpolates low-frame-rate IR sequences, has shown the capability to produce high-
quality IR images. Additionally, the model exhibits potential for reducing the frame rate during IR image acquisition, 
consequently mitigating radiation exposure.

Critical relevance statement  This study presents a critical advancement in clinical radiology by demonstrating 
the effectiveness of a deep neural network in reducing radiation exposure during pediatric interventional radiology 
while maintaining image quality, offering a potential solution to enhance patient safety.
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Key points 

• Reducing radiation: cutting IR image to reduce radiation.

• Accurate frame interpolation: our model effectively interpolates missing frames.

• High visual quality in terms of PSNR and SSIM, making IR procedures safer without sacrificing quality.

Keywords  Interventional radiology imaging, Radiation exposure reduction, Deep learning, Radiation safety

Graphical Abstract

Introduction
Interventional radiology (IR) imaging stands as the gold 
standard for diagnosing vascular diseases [1]. The field 
has undergone substantial development in tandem with 
advancements in endovascular techniques over the 
past decades [2]. Nonetheless, the procedure exposes 
both patients and interventionalists to ionizing radia-
tion, inherently posing health risks. The intricate ana-
tomical structures and procedural intricacies magnify 
radiation exposure, escalating these risks [3]. Notably, 
children often display heightened radiosensitivity in 
comparison to adults, resulting in prolonged survival 
times post-radiation exposure and an extended dura-
tion of radiological cancer risk. Consequently, pediatric 
patients often encounter more severe radiation-related 
risks than adults [4]. The aim of our study is to explore 

a new potential for reducing radiation dosage in inter-
ventional radiology.

The IR protection guidance established by the German 
Association of Physicians [5] outlines various strategies 
for mitigating radiation exposure in IR imaging. Firstly, 
reducing the radiation dose is achievable through real-
time digital fluoroscopy procedures and the adoption of 
lower frame rates [6]. Secondly, shortening exposure time 
can be accomplished by implementing pulsed fluoros-
copy rather than continuous fluoroscopy during IR exam-
inations [5], or by increasing the distance between the 
patient and the radiation source [7]. Additionally, protec-
tive shielding, whether the facility level [7] or individual 
level as exemplified by [5], plays a crucial role in shield-
ing patients and interventional personnel from radia-
tion exposure. However, there is still a lack of research 
on optimizing critical parameters like voltage, current, 
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exposure time, and frame rate [2], to effectively reduce 
radiation in IR imaging while maintaining the visual 
quality of IR sequences necessary for clinical diagnosis.

To minimize radiation exposure for patients and 
interventionalists, an optimal balance can be achieved 
between the frame rate of the acquired IR sequence and 
the radiation dose through the selection of an appropriate 
acquisition mode. Dose per frame and frame rate (frames 
per second, or FPS) are crucial parameters in IR imaging 
systems. Improving IR imaging quality often necessitates 
an increase in either the dose per frame or frame rate, 
consequently leading to higher radiation exposure. Lower 
IR frame rates are commonly favored as the default set-
ting. However, low-frame-rate IR sequences frequently 
display flicker artifacts, potentially compromising an 
interventionalist’s assessment of intricate blood flow and 
conditions [3, 8].

We are encouraged by substantial advancements in 
artificial intelligence and deep learning techniques in 
recent years. These advancements have notably contrib-
uted to progress in video enhancement tasks and medical 
image analysis [9–11]. However, research on frame inter-
polation of IR sequences for radiation dose reduction 
is still in its early stage, with limited research [12–15] 
exploring deep learning approaches on DSA sequences 
without significant motion. There are also studies pro-
posing interleaving high-dosage frames with low-dosage 
ones to acquire two types of sequences simultaneously, 
thereby reducing radiation dosage. Other deep learning 
research in DSA primarily focuses on the generation of 
subtraction sequences, which only a few addressing the 
radiation dosage problem. The aim of this study is to 
develop and validate an effective deep learning model 
enabling to sample digital subtraction angiography (DSA) 
images at low frame rates. This allows for reduced radia-
tion dosage while ensuring high-quality IR images meet-
ing the clinical requirements can still be restored. To the 
best of our knowledge, our study is the first to explore 
this application on IR images with noticeable motions 
and be validated by both subjective and objective experi-
ments. This innovation holds the potential in facilitating 
the implementation of pediatric interventional radiology 
and mitigating the radiation risks.

Materials and methods
Data collection and processing
A retrospective collection involved 1634 IR image 
sequences obtained from 167 children who underwent 
examination and treatment at the Children’s Hospital of 
Chongqing Medical University from March 12, 2014, to 
January 7, 2022. The study was registered in the Chinese 
Clinical Trial Registry (ChiCTR2200058971) and con-
ducted in compliance with the Declaration of Helsinki 

(DoH), with approval from the institutional ethical 
review board (File No. 2022, 69). Informed consent was 
waived.

To ensure the model’s accurate learning of blood flow 
interpolation, we excluded abnormal IR sequences dis-
playing blurry motions caused by camera or human 
movement, as well as static sequences lacking blood 
flow [16]. Additionally, IR sequences without breath 
motion, providing limited information on vascular 
motion, were also omitted. Consequently, after data 
preprocessing, a total of 1367 sequences comprising 
95,308 images were retained. These sequences encom-
passed arterial, venous, and portal vein angiography 
imaging across various anatomical regions.

The IR sequences encompass three modalities: angi-
ography, subtraction, and fluoroscopy. Each modal-
ity had 90% of its sequences randomly assigned to the 
training set, while the remaining 10% allocated to the 
test set. Angiography sequences, directly acquired 
form IR imaging equipment without processing, typi-
cally exhibited frame rates from 4 to 10 FPS and image 
sizes ranging from 500 × 500 to 1200 × 900. Subtrac-
tion sequences, derived from angiography, eliminated 
bone and soft-tissue information to emphasize blood 
vessel visualization [16]. Image sizes of subtraction 
sequences typically ranged from 200 × 200 to 500 × 500. 
Fluoroscopy sequences, recorded by physicians during 
DSA surveillance, provided limited vascular informa-
tion, having frame rates from 7 to 15 FPS and image 
sizes from 100 × 100 to 900 × 900. Table  1 summa-
rizes detailed information about the data sequences 
and patient characteristics. The high-frame-rate IR 
sequences obtained were considered as the original 
sequences in the training and test sets. To create cor-
responding low-frame-rate IR sequences, every alter-
nate frame was excluded, while always retaining the 
first frame, from each high-frame-rate IR sequence. The 
overall data preprocessing workflow is illustrated in 
Fig. 1.

Deep learning model for IR sequence interpolation
We utilized the SepConv +  + deep learning model [8] 
for IR frame interpolation due to its promising per-
formance in video frame interpolation tasks. Sep-
Conv +  + is a lightweight model with less than 20 
million parameters and capable of processing 5 to 20 
frames per second. It employs a U-Net-style backbone 
[17] which initially contracts into small-scale feature 
maps using convolutions and then expands to the origi-
nal size while preserving detailed information through 
skip connections. SepConv +  + extracts features to 
estimate two sets of convolution kernels that specify 
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motion between the frames. These kernels were applied 
in the convolution process of preceding and succeeding 
frames, and their output features were fused to gener-
ate the interpolated intermediate frame. Training was 
conducted separately on the training set for each IR 
modality and on a combined training set comprising 
sequences from all three IR modalities. Implemented 
in PyTorch [18], SepConv +  + was executed on an 
NVIDIA RTX 3060 GPU.

Model validation and statistical analysis
The SepConv +  + network’s performance was assessed on 
the DSA frame interpolation test set using both objec-
tive metrics and visual quality assessment. While Sep-
Conv +  + is a standard deep neural network capable of 
generalizing across diverse patient characteristics (e.g., 
age, body size, and sex), this study specifically evalu-
ates its impact on IR sequences with varying modalities 
and frame rates (Fig.  2). We utilized objective metrics 
including peak-signal-to-noise-ratio (PSNR), Structural 

Table 1  Summary of different group data sequences and patient characteristics. Data were provided by the Children’s Hospital of 
Chongqing Medical University. Information in each line shows the number (percentage) or the mean (standard deviation) values

Angiography train Angiography test Subtraction train Subtraction test Fluoroscopy train Fluoroscopy test

Patient #Average 
age (in years)

27 14 148 63 58 26

  Range (0.58–15) (0.58–13) (0.25–15) (0.58–14) (0.25–15) (0.25–15)

Sex
  Female 16 (59.3%) 9 (64.3%) 63 (42.6%) 23 (36.5%) 32 (36.5%) 15 (57.7%)

  Male 11 (40.7%) 5 (35.7%) 85 (57.4%) 40 (63.5%) 26 (44.8%) 11 (42.3%)

Sequence # FPS 127 17 819 94 276 34

  3 FPS — 1 (59%) — — — —

  4 FPS 92 (72.4%) 11 (64.7%) 731 (89.3%) 82 (86.3%)

  6 FPS 11 (8.7%) 2 (11.8%) 15 (1.8%) 2 (2.1%) — —

  7 FPS — — 6 (0.7%) 1 (1.1%) 52 (18.8%) 6 (17.6%)

  10 FPS 24 (18.9%) 3 (25.6%) 46 (5.6%) 6 (6.3%) 170 (61.6%) 20 (58.8%)

  15 FPS — — 21 (2.6%) 3 (3.2%) 46 (16.7%) 6 (17.6%)

  30 FPS — — — — 8 (2.9%) 2 (5.9%)

Images 7326 963 44,571 5678 32,099 4671

Fig. 1  Illustration of our data pre-processing stage. The raw data are firstly classified into invalid data, data with breath motion (respiratory), 
and data without breath motion (fixed). Then the sequences with breath motion are divided into three modalities, e.g., angiography, subtraction, 
and fluoroscopy, for model training and testing. The amounts of sequences and images are presented accordingly at each stage
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Similarity (SSIM) [19], and root mean square error 
(RMSE) to quantify the disparity between the interpo-
lated frames and the corresponding frames in the origi-
nal sequences. Typically, higher PSNR and SSIM values 
(lower RMSE values) indicate better interpolation per-
formance [8, 20, 21]. Additionally, we conducted a visual 
quality comparison to corroborate the quantitative find-
ings. Furthermore, a two-sample Kolmogorov–Smirnov 
(K-S) test [22] was carried out to establish the statistical 
significance of the comparative results. In addition to this 
evaluation, we conducted a comparison between Sep-
Conv +  + and the state-of-the-art (SOTA) video frame 
interpolation (VFI) method FLAVR [23]. FLAVR utilizes 
a 3D-UNet to extract multiple frames from the front and 
rear for synthesizing intermediate frames. It exhibited 
strong performance in synthesizing common videos.

To assess the potential clinical application of Sep-
Conv +  + , we conducted subjective experiments in a 
controlled environment involving nine professional 
interventional radiologists. Initially, we selected 15 rep-
resentative IR sequences from the test set to serve as the 
“ground truths.” These sequences comprised 6 angiog-
raphy sequences, 6 subtraction sequences, and 3 fluor-
oscopy sequences. Subsequently, for each sequence, we 
generated low frame-rate sequences for each sequence 
by removing every other frame. Next, as a baseline 
method, we synthesized each removed frame by averag-
ing its two adjacent frames. The resulting frames were 

labeled as “SepConv +  + ” and “Average,” respectively. 
During the experiments, the interventional radiolo-
gists were presented with quadrants displaying “Input,” 
“Average,” “Ground Truth,” and “SepConv +  + ” for the 
aforementioned 15 representative sequences, all simulta-
neously exhibited. The “Input” and “Average” quadrants 
served as visual references, while “Ground Truth” and 
“SepConv +  + ” were provided for comparison (refer to 
Figs. 3 and 4). In Fig. 5a, each interventional radiologist 
was prompted to choose the superior option between 
“Ground Truth” and “SepConv +  + ” based on the visual 
quality. They also had the option to select “Uncertain” if 
the candidates appeared comparable. Importantly, the 
radiologists were unaware of the identities of the candi-
dates beforehand. For credibility, the interventional radi-
ologists participating in the subjective experiments were 
selected from six hospitals and possessed over five years 
of working experience (e.g., 5, 5, 5, 8, 10, 15, 16, 16, and 
34 years, respectively). Their involvement was unrelated 
to the interests of this study.

Results
Overall performance
In our study to evaluate SepConv +  + (also referred as 
SepConv +  + All) in IR frame interpolation, we com-
pared its performance with the baseline method “Aver-
age,” involving averaging of adjacent frames to produce 
the middle one. This comparative analysis encompassed 

Fig. 2  Data flow pipeline for our study. Here, we take a DSA sequence with five frames as an example to illustrate the data processing scheme. 
For each sequence, we removed every other frame (but always keeping the 1-st frame). The remaining adjacent (e.g., 3rd and 5th) frames are input 
into a model to predict the missing intermediate frame (i.e., 4th). We use the objective metrics of PSNR, SSIM, and RMSE to quantitatively compare 
the closeness of the predicted frames to the real (removed) frames. Finally, the remaining (i.e., 1st, 3rd, and 5th) frames and the predicted (i.e., 2nd 
and 4th) frames are stacked together into a sequence according to priority for the subjective experiments by interventional radiologists



Page 6 of 12Tang et al. Insights into Imaging           (2024) 15:42 

Fig. 3  Qualitative and quantitative comparison of the baseline Average and SepConv +  + on three different modalities. The test images are 
from three modalities, i. e., angiography (1–2 row, redpartial splenic artery embolization image of a patient with megalosplenia), subtraction (3–4 
row, partial splenic artery embolization image of another patient with megalosplenia) and fluoroscopy (5–6 row, redhepatic arteriogram image 
of a patient with liver tumor). The results of PSNR and SSIM by the methods of “Average” (third column) and “SepConv +  + ” (fourth column) are 
provided for references
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IR sequences from angiography, subtraction, and fluor-
oscopy modalities. Table  2 and Fig.  4 illustrate that 
SepConv +  + outperforms “Average” across all three 
modalities. The p-values derived from the Kolmogo-
rov–Smirnov (K-S) test comparing the PSNR results 
of SepConv +  + and “Average” are less than 0.05 for 
each respective modality, indicating significant differ-
ences between the two methods. Similar conclusion 
was also drawn for other metrics like SSIM and RMSE. 

Furthermore, in our dataset, SepConv +  + also exhibited 
superior performance compared to the FLAVR method, 
as shown in Table  2. The intermediate frames gener-
ated by SepConv +  + exhibited a remarkably high visual 
similarity to the corresponding ground-truth frames, as 
evidenced by the combination of these metrics. Conse-
quently, these frames can be seamlessly integrated into 
existing frames for clinical diagnosis. Visual comparison 
between “Average” and SepConv +  + in Fig.  3 revealed 

Fig. 4  Violin plot results of PSNR distributions in test sets from three modalities and the overall test sets. The width of each violin indicates 
the density of PSNR results. The total area of each violin represents the number of samples

Fig. 5  User interface and voting results of subjective experiments on ground truth DSA sequences and the synthetic ones by SepConv +  + . a 
User interface for subjective experiment; b the overall voting results; c the voting results respect to interventional radiologists’ practice experience 
in DSA; the red, yellow, and green bars represent votings for “Ground Truth,” “Uncertain,” and the sequences interpolated by “SepConv +  + ,” 
respectively. The height of each bar represents the corresponding number of votings
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that SepConv +  + effectively restored intermediate 
frames, whereas “Average” often produced blurry edges. 
These results preferred SepConv +  + in IR sequence 
interpolation.

Performance of SepConv++ on different IR modalities
To evaluate SepConv +  + ’s interpolation performance 
across different IR modalities, we trained four differ-
ent variants of SepConv +  + . The initial variant, Sep-
Conv +  + All, utilized all IR sequences encompassing 
the angiography, subtraction, and fluoroscopy modali-
ties. Subsequently, the variants of SepConv +  + A, Sep-
Conv +  + S, and SepConv +  + F were exclusively trained 
on sequences from the angiography, subtraction, and 
fluoroscopy modalities, respectively. Our examination, 
using sequences from each individual IR modality, pro-
duced insightful results presented in Table 2.

Primarily, SepConv +  + All consistently achieved the 
highest performance on angiography sequences and 
obtained the second-best results (close to the best) on 
the subtraction and fluoroscopy sequences. These results 

indicate that training SepConv +  + on all IR sequences 
from the three modalities yielded highly effective frame 
interpolation with robust generalization capability.

Additionally, training SepConv +  + exclusively with IR 
sequences from a single modality led to superior per-
formance of the corresponding variant, SepConv +  + X 
(where “X” represents “A,” “S,” or “S”), on the IR sequences 
within the respective angiography, subtraction, or fluor-
oscopy modality. This can primarily be attributed to the 
presence of domain shift across different modalities, 
which negatively impacts the generalization ability of 
SepConv +  + in frame interpolation.

Lastly, the variant SepConv +  + A (or SepConv +  + C) 
demonstrated superior performance compared to the 
Average and SepConv +  + S on fluoroscopy (or angiogra-
phy) sequences. This can be attributed to the closer image 
style between angiography and fluoroscopy sequences 
compared to subtraction sequences. Consequently, Sep-
Conv +  + S exhibited the worst performance on angiog-
raphy or fluoroscopy sequences.

Table 2  Comparison of PSNR (dB), SSIM [18], and RMSE results by the baseline Average, FLAVR, and four variants of 
SepConv +  + trained with DSA sequences in different modalities. “SepConv +  + All,” “SepConv +  + A,” “SepConv +  + S,” and 
“SepConv +  + F” mean that the SepConv +  + is trained with the DSA sequences of all three modalities, angiography modality, 
subtraction modality, and fluoroscopy modality, respectively.“↑”(or “↓”) means that higher (or lower) is better. The best and second best 
results are highlighted in bold and italics, respectively

Method Average SepConv +  + All Gain p-value FLAVR SepConv +  + A SepConv +  + S SepConv +  + F

Angiography PSNR↑ 43.72 44.94  + 1.22  < 0.01 44.42 44.89 43.62 44.48

SSIM↑ 0.9786 0.9840  + 0.005 0.9830 0.9838 0.9818 0.9825

RMSE↓ 1.7636 1.5348  − 0.228 1.6299 1.5484 1.7481 1.6130

Subtraction PSNR↑ 33.86 34.84  + 1.01  < 0.01 34.34 33.00 34.86 33.65

SSIM↑ 0.9028 0.9194  + 0.016 0.9102 0.8837 0.9196 0.8942

RMSE↓ 4.0441 3.7446  − 0.300 3.8873 4.2735 3.7385 4.1096

Fluoroscopy PSNR↑ 32.81 33.82  + 1.01  < 0.01 33.72 33.62 33.16 33.85
SSIM↑ 0.7491 0.7752  + 0.026 0.7736 0.7691 0.7640 0.7758
RMSE↓ 5.3012 4.8724  − 0.428 4.9039 4.9630 5.1257 4.8624

Table 3  Interventional radiologists voting on DSA sequences for different modalities, FPS, and work experience

Vote Ground truth Uncertain SepConv +  +  p-value

Modalities Angiography 12 32 10 0.7870

Subtraction 16 27 11

Fluoroscopy 5 16 6

FPS 4 FPS 27 53 19 0.7675

10 FPS 4 17 6

30 FPS 2 5 2

Experience  < 10 year 41 19 15 0.9614

 > 10 year 34 14 12
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Subjective experiments
The subjective experiments depicted in Fig.  5 demon-
strate minimal disparity in voting between the “Ground 
Truth” (33 votes) and “SepConv++” (27 votes), with a 
majority of votes categorized as “Uncertain” (75 votes). 
These results strongly suggest a remarkable similarity 
between the generated images and real ones, supported 
by a p-value < 0.05. These consistent findings persist 
across all modalities, frame rates, and among radiologists 
with varying years of experience (as illustrated in Table 3 
and Fig. 5b). Notably, even with the reference of ground 
truth, physicians were unable to discern any notable dif-
ferences, suggesting that the interpolated frames possess 
both high diagnostic and visual qualities. Consequently, 
SepConv++ holds promising potential for utilization in 
clinical procedures.

Furthermore, to gain deeper insights, we present the 
findings in Table  3 and conduct a chi-square test to 
examine the correlation between voting and the modal-
ity, the FPS of IR sequences, as well as working experi-
ence of radiologists. In the test of independence between 
voting and modality, FPS and work experience, respec-
tively, the p-value was 0.787, 0.768, and 0.961. It leads to 
the acceptance of the original hypothesis and indicates 
the independence of voting results from these factors. 
In summary, the synthetic IR sequences interpolated by 
SepConv++ exhibit a striking resemblance to ground 
truth sequences concerning visual quality and blood flow 
across various modalities and FPS.

Discussion
Both interventional and diagnostic imaging procedures 
involve the use of ionizing radiation, which can induce 
structural damage at the cellular or molecular level 
and potentially lead to DNA damage, thereby increas-
ing the risk of cancer [24]. The susceptibility of tissues 
to radiation-induced damage varies depending on their 
rate of cell proliferation and the extent of cell differen-
tiation. Consequently, hematopoietic (lymphoprolifera-
tive) organs, characterized by rapid cell turnover, exhibit 
higher sensitivity, whereas neural tissues with minimal or 
no cell renewal demonstrate lower sensitivity. As a result, 
children, who constitute a particularly vulnerable group 
due to their heightened sensitivity to radiation, are at a 
substantially greater risk of harm from equivalent radia-
tion exposure compared to the adults, and this risk per-
sists for a longer duration.

The utilization of interventional radiology has wit-
nessed a significant increase for both diagnostic 
examination and treatment, aiming to enhance diag-
nostic accuracy and reduce the need for invasive pro-
cedures [25]. However, despite the extensive discussion 

surrounding the immediate and long-term benefits of 
interventional examinations and treatments in children, 
the associated risks are frequently overlooked. Children 
exhibit a higher vulnerability to ionizing radiation com-
pared to the adults, with pediatric patients displaying 
increased radiosensitivity, particularly in tissues such as 
the thyroid, gonads, and bone marrow. Furthermore, due 
to their smaller stature, children receive higher radia-
tion doses than adults [26]. Moreover, children have a 
longer post-radiation exposure survival period and face 
an extended duration of radiation-induced cancer risk, 
thereby experiencing a more severe radiation risk than 
the adults [27].

The likelihood of long-term effects from ionizing radia-
tion is probabilistic and depends on the total radiation 
dose, yet the severity of these effects cannot be solely 
attributed to radiation. Other factors, including environ-
mental and genetic factors, also play a significant role. 
Radiation-induced cancers, such as myeloma, leukemia, 
lung, thyroid, breast, bone, and skin cancers, may mani-
fest decades after exposure [28]. Therefore, it is crucial to 
minimize the exposure to ionizing radiation in children 
undergoing interventional procedures.

Scattered radiation from the patients is the primary 
source of radiation exposure to the interventionalist dur-
ing the intervention [29]. Consequently, interventions 
aimed at reducing radiation exposure to patients can 
simultaneously minimize radiation exposure to inter-
ventionalists. Conventional radiation protection meas-
ures primarily emphasize three aspects: exposure time, 
distance from the X-ray source, and the use of shielding 
devices [30, 31]. Due to the growing complexity of ana-
tomical and interventional techniques, DSA imaging sys-
tems frequently necessitate longer transmission times to 
obtain high-quality image sequences. Unfortunately, this 
prolonged exposure unavoidably leads to increased radia-
tion exposure for both patients and interventionalists [4]. 
Consequently, it becomes imperative to introduce inno-
vative technical solutions aiming at reducing radiation 
exposure associated with interventional procedures while 
preserving the quality of IR images.

In recent years, with substantial advancements in arti-
ficial intelligence techniques [14, 15, 32], particularly in 
deep learning-based image processing, these techniques 
have found widespread applications in various fields 
such as video frame interpolation, slow-motion gen-
eration, graphic animation, and rendering. Furthermore, 
an increasing number of researchers are opting to inte-
grate these emerging deep learning image-processing 
techniques into the conventional medical domain. In 
this study, we propose a fusion of artificial intelligence’s 
video interpolation technique with interventional radi-
ology images. The objective is to generate radiological 
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and interventional images with reduced frame rates 
that can subsequently be reconstructed and restored to 
high quality without compromising the clinical judg-
ment facilitated by deep learning models. Consequently, 
by decreasing the acquisition frame rate, it is feasible 
to reduce the duration of radiation exposure, thereby 
decreasing the radiation dose to both medical practition-
ers and patients.

Our study utilizes a retrospective approach to simu-
late high frame-rate IR sequences. This is achieved by 
artificially extracting frames at a one-frame interval. 
Subsequently, we employ a robust deep learning model, 
i.e., SepConv +  + , capable of interpolating frames to 
reconstruct the original high frame-rate IR sequences. 
The results are satisfactory, as SepConv +  + effectively 
restores the original IR images, as indicated by objective 
evaluation metrics including PSNR, SSIM, and RMSE. 
In our experimental results, it was challenging for inter-
ventionalists at different levels of expertise to distinguish 
the generated images from the original images. Addi-
tionally, the high frame-rate IR images restored by Sep-
Conv +  + were deemed clinically irrelevant.

Our study revealed that the preference for interpo-
lated sequences compared favorably to the ground-
truth sequences in angiography and fluoroscopy 
modalities. However, in subtraction sequences, Sep-
Conv +  + received fewer selections than the original 
sequences. This disparity can be attributed to irregular 
artifacts present in subtraction sequences, disrupting the 
smooth transition between adjacent frames in synthetic 
IR sequences.

Our results underscored the robustness of Sep-
Conv +  + across different modalities and frame rates. 
Moreover, we observed a positive correlation between 
its interpolation performance and the frame rate of IR 
sequences. The “SepConv +  + All” model, trained using 
sequences from all three modalities, consistently demon-
strated promising performance across IR sequences in the 
respective modalities. Furthermore, when SepConv +  + is 
trained on specific IR modalities, it achieves the optimal 
interpolation results for IR sequences within the corre-
sponding modality. However, in the case of the angiogra-
phy modality, the variant “SepConv +  + A” (trained with 
angiography sequences) exhibited slightly inferior perfor-
mance compared to “SepConv +  + All.” This suggests that 
data from the other two modalities slightly contribute 
positively to the training of SepConv +  + in interpolating 
angiography sequences. “SepConv +  + All” demonstrates 
excellent performance on IR sequences across various 
frame rates and achieves superior interpolation results 
for IR sequences with higher frame rates.

The study presents several limitations that warrant 
consideration. Firstly, our IR sequences were obtained 

from pediatric patients undergoing peripheral interven-
tions at a single imaging center. However, it should be 
noted that sequences obtained from different medical 
institutions may exhibit variations in image quality due 
to differences in parameter settings (e.g., voltage and 
image resolution) of IR imaging devices. The applica-
bility of our deep learning model requires further veri-
fication on sequences obtained from diverse imaging 
devices. Additionally, as different patient populations 
(adults or pediatrics) exhibit distinct blood flow condi-
tions, the transferability of models trained on pediatric 
datasets to adults requires investigation and is worth of 
study. Our ultimate research goal is to develop a model 
applicable across various modalities, patient demo-
graphics, and lesion locations. Secondly, our study did 
not include IR sequences with significant motion, such 
as those used in cardiac interventions. While abdomi-
nal interventions may involve breathing motion, it is 
considerably less pronounced compared to the motion 
caused by heartbeats. Consequently, our model cannot 
guarantee an equally satisfactory performance for car-
diac interventions. Further experiments should be con-
ducted along this direction.

Considering these limitations, the primary challenge 
in the broader clinical application of our work pertains 
to the domain gap arising from differences in the train-
ing set distribution and real-world scenarios. Variances 
in imaging settings, patient demographics (e.g., age, 
gender), and motion levels contribute to this disparity. 
While our method exhibits high adaptability and gen-
eralization in our experiments, we anticipate a slightly 
diminished performance in real-world scenarios. Nev-
ertheless, we expect acceptable visual quality, leverag-
ing knowledge gained from other modalities.

In conclusion, we have utilized an effective deep 
learning model for accurate frame interpolation in IR 
sequences from abdominal interventions. This model 
holds the potential for reducing radiation doses during 
IR examinations and treatments for both patients and 
interventional staff. Our future work will involve evalu-
ating the model’s performance through clinical animal 
trials to quantify radiation dose reduction, aiming to 
establish reliability for future interventional radiology 
procedures.
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