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Abstract 

Objective To systematically review radiomic feature reproducibility and model validation strategies in recent studies 
dealing with CT and MRI radiomics of bone and soft-tissue sarcomas, thus updating a previous version of this review 
which included studies published up to 2020.

Methods A literature search was conducted on EMBASE and PubMed databases for papers published between Janu-
ary 2021 and March 2023. Data regarding radiomic feature reproducibility and model validation strategies were 
extracted and analyzed.

Results Out of 201 identified papers, 55 were included. They dealt with radiomics of bone (n = 23) or soft-tissue 
(n = 32) tumors. Thirty-two (out of 54 employing manual or semiautomatic segmentation, 59%) studies included 
a feature reproducibility analysis. Reproducibility was assessed based on intra/interobserver segmentation variability 
in 30 (55%) and geometrical transformations of the region of interest in 2 (4%) studies. At least one machine learning 
validation technique was used for model development in 34 (62%) papers, and K-fold cross-validation was employed 
most frequently. A clinical validation of the model was reported in 38 (69%) papers. It was performed using a separate 
dataset from the primary institution (internal test) in 22 (40%), an independent dataset from another institution (exter-
nal test) in 14 (25%) and both in 2 (4%) studies.

Conclusions Compared to papers published up to 2020, a clear improvement was noted with almost double 
publications reporting methodological aspects related to reproducibility and validation. Larger multicenter investiga-
tions including external clinical validation and the publication of databases in open-access repositories could further 
improve methodology and bring radiomics from a research area to the clinical stage.

Critical relevance statement An improvement in feature reproducibility and model validation strategies has been 
shown in this updated systematic review on radiomics of bone and soft-tissue sarcomas, highlighting efforts 
to enhance methodology and bring radiomics from a research area to the clinical stage.
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Key points 

• 2021–2023 radiomic studies on CT and MRI of musculoskeletal sarcomas were reviewed.

• Feature reproducibility was assessed in more than half (59%) of the studies.

• Model clinical validation was performed in 69% of the studies.

• Internal (44%) and/or external (29%) test datasets were employed for clinical validation.

Keywords Artificial intelligence, Radiomics, Sarcoma, Texture analysis

Graphical Abstract

Introduction
The term “radiomics” indicates the extraction and anal-
ysis of large amounts of quantitative parameters, also 
known as radiomic features, from medical images [1]. 
Similar to other “omics” technologies (e.g., genomics and 
proteomics), the extraction of quantitative information 
from images obtained during standard clinical workflows 
may potentially enable an extensive tumor characteriza-
tion, including its genotype and predictions regarding 
prognosis [1–3]. Although radiomics holds great poten-
tial to augment clinical decision-making, translation to 
clinical practice is very limited compared to preclinical 
software development [4, 5]. The translational gap is at 
least partially attributable to low overall methodologi-
cal quality of radiomics research and reporting. This was 
recently highlighted in a systematic review evaluating the 

application of the Radiomics Quality Score [6], which 
was proposed by Lambin et  al. in 2017 and is currently 
the most widespread tool to assess the comprehensive-
ness and adequacy of radiomic pipelines, as well as the 
quality of their reporting [7]. Another important initia-
tive aiming to improve standardization and reproducibil-
ity was the Image Biomarker Standardization Initiative, 
which provided a stepwise consensus for different parts 
of execution of radiomics pipelines [8].

To bridge the gap between academic endeavors and 
real-life application, certain challenges of radiomics must 
be addressed carefully. As radiomics is based on a two-
step approach consisting of data extraction and analysis 
[9], the main challenge of the first step (i.e., data extrac-
tion) is the reproducibility of radiomic features, which 
is influenced by several parameters related to image 
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acquisition, region of interest (ROI) delineation and post-
processing [10, 11]. The main challenge of the second 
step (i.e., data analysis) is validation of the radiomics-
based models, which are built with the aim of predict-
ing the diagnosis or outcome of interest [11]. The issues 
of feature reproducibility and validation strategies are 
well addressed as separate items in Radiomics Quality 
Score [7]. Additionally, they are included in international 
guidelines recently published to guide the translation of 
radiomics into clinical practice, such as criteria for devel-
opment of radiomic models [12] and a checklist for eval-
uation of radiomics research endorsed by the European 
Society of Radiology and European Society of Medical 
Imaging Informatics [13].

In musculoskeletal oncology, radiomic studies have 
shown encouraging results to improve diagnosis and 
prognosis prediction of bone and soft-tissue sarcomas 
[14], which are rare cancers where quantitative imaging 
data may certainly aid in clinical management. Repro-
ducibility and validation strategies in radiomics of bone 
and soft-tissue sarcomas were assessed in a previous sys-
tematic review including papers published up to Decem-
ber 2020 [14]. Reproducibility analysis and independent 
clinical validation were reported in 37% and 10% of the 
papers, respectively [14]. Particularly, the relative rarity 
of bone and soft-tissue sarcomas certainly contributed to 
preventing model validation in large datasets, thus high-
lighting the need for multi-center investigations or reg-
istries. Hence, the authors recommended future efforts 
to bring the field of radiomics from a preclinical research 
area to the clinical stage [14]. Since then, the number of 
radiomics research papers has rapidly increased. Com-
bined with the great attention currently paid to reproduc-
ibility and validation strategies in radiomic workflows, 
this increase highlights the need for an update of the pre-
vious review [14] following guidelines on when and how 
to update systematic reviews [15]. Thus, the aim of our 
current study is to systematically review radiomic feature 
reproducibility and model validation strategies in recent 
studies dealing with computed tomography (CT) and 
magnetic resonance imaging (MRI) radiomics of bone 
and soft-tissue sarcomas, which have been published 
since 2021. The ultimate goal is to promote and facilitate 
a consensus on feature reproducibility and model valida-
tion in radiomic workflows.

Methods
The study was registered on the International Prospective 
Register of Systematic Reviews database with the regis-
tration number CRD42023395542. The methods used in 
the current review paralleled those employed in the pre-
vious version [14], except for the number of reviewers 

involved in literature search, study selection, and data 
extraction, namely three in the current and two in the 
previous reviews. Additionally, in data extraction, seg-
mentation process and style were grouped under baseline 
study characteristics in the previous review [14]. Con-
versely, these items constituted a separate category in the 
current version, which also included information regard-
ing radiomic feature types as broad categories.

Reviewers
Literature search, study selection, and data extrac-
tion were performed independently by three muscu-
loskeletal radiologists with 3 to 5 years of experience 
in radiomics and bone and soft-tissue sarcomas (S.G., 
C.M., D.A.). In case of disagreement, an agreement 
was achieved by consensus of these three readers and 
a fourth radiologist with 8 years of experience in arti-
ficial intelligence and radiomics (R.C.). The Preferred 
Reporting Items for Systematic reviews and Meta-Anal-
yses (PRISMA) guidelines were followed [16]. PRISMA 
checklist is provided as a supplementary table (Supple-
mentary file 1).

Search strategy
An electronic literature search was conducted on 
EMBASE (Elsevier) and PubMed (MEDLINE, US 
National Library of Medicine and National Insti-
tutes of Health) databases for studies dealing with CT 
and MRI radiomics of bone and soft-tissue sarcomas, 
which were published between  1st January 2021 and 
 31st March 2023. A controlled vocabulary was adopted 
using medical subject headings in PubMed and the the-
saurus in EMBASE. Search syntax was built by combin-
ing search terms related to two main domains, namely 
“musculoskeletal sarcomas” and “radiomics.” The exact 
search query was: (“sarcoma”/exp OR “sarcoma”) AND 
(“radiomics”/exp OR “radiomics” OR “texture”/exp 
OR “texture”). Studies were first screened by title and 
abstract. The full text and supplementary material of 
eligible studies were retrieved for further review. The 
references of eligible papers were also checked for addi-
tional publications to include.

Inclusion and exclusion criteria
Inclusion criteria were (i) original research studies 
published in peer-reviewed journals; (ii) focus on CT 
or MRI radiomics-based characterization of sarcomas 
located in bone and soft tissues for either diagnosis- 
or prognosis-related tasks; (iii) statement that local 
ethics committee approval was obtained, or ethical 
standards of the institutional or national research com-
mittee were followed. Exclusion criteria were (i) studies 
not dealing with mass characterization, such as those 
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focused on computer-assisted diagnosis and detec-
tion systems; (ii) studies concerning retroperitoneal 
and visceral sarcomas or cancers other than sarcoma; 
(iii) animal, cadaveric or laboratory studies; (iv) papers 
published in languages other than English; (v) studies 
already included in the previous version of this review 
[14], such as those published online in 2020 and in a 
volume/issue in 2021.

Data extraction
Data were extracted to a spreadsheet with a drop-
down list for all items, which were grouped into four 
main categories, namely baseline study characteristics, 
segmentation and radiomic feature type, radiomic fea-
ture reproducibility strategies, and predictive model 
validation strategies. Items regarding baseline study 
characteristics included first author’s last name, year of 
publication, study aim, tumor type, study design, ref-
erence standard, imaging modality, database size, and 
use of public data. Items concerning segmentation and 
radiomic feature types were segmentation process, seg-
mentation style, and radiomic feature types as broad 
categories. Items regarding radiomic feature repro-
ducibility included strategies, statistical methods, and 
thresholds used for reproducibility analysis. Finally, 
items concerning model validation included the use of 

machine learning validation techniques, clinical valida-
tion performed on a separate internal dataset, and clin-
ical validation performed on an external dataset.

Results
Baseline study characteristics
A flowchart showing the literature search process is 
shown in Fig.  1. After screening 201 papers and apply-
ing the eligibility criteria, 55 papers were finally included 
in this systematic review. Tables 1 and 2 show the char-
acteristics of studies on radiomics of bone (n = 23) and 
soft-tissue (n = 32) sarcomas, respectively.

Twenty-four out of 55 studies (44%) were published 
in 2021, 23 (42%) in 2022, and 8 (14%) between January 
and March 2023. The design was prospective in 1 study 
(2%) and retrospective in the remaining 54 studies (98%). 
The investigated imaging modality was MRI (one or mul-
tiple sequences) in 43 studies (78%), CT in 9 (16%), and 
a combination of both in 3 (6%). The median size of the 
database was 120 lesions (range 25–810). In 3 studies 
multiple lesions for the same patient(s) were considered, 
thus including 142 [17], 128 [18], and 161 [19] lesions 
from 36, 125, and 160 patients, respectively. Public data 
were used only in 1 (2%) study.

Included studies aimed at predicting either diagnosis 
or prognosis. In diagnostic studies, classification tasks 

Fig. 1 PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) flowchart of systematic identification, screening, eligibility, 
and inclusion information from retrieved studies
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were benign vs. malignant (including intermediate malig-
nancies such as atypical lipomatous tumor) tumor dis-
crimination (n = 20), grading (n = 8), tumor histotype 
discrimination (n = 2), proliferation index Ki-67 expres-
sion (n = 1), and evaluation of marginal infiltration (n = 
1). Prognostic studies aimed at predicting survival (n = 
10), local and/or metastatic relapse (n = 9), response to 
chemotherapy or radiotherapy (n = 11), treatment com-
plications (n = 1), and natural evolution over time before 
starting any treatment (n = 1). It should be noted that the 
aim was two- or threefold in some studies, as detailed in 
Tables  1 and 2. In studies focused on diagnosis-related 
tasks, histology was the reference standard in all cases 
except benign lesions diagnosed on the basis of stable 
imaging findings over time in four papers [17, 20–22]. 
In studies dealing with survival prediction, survival was 
assessed based on clinical follow-up. In studies focused 
on the prediction of tumor relapse, the reference stand-
ard was based on histology or clinical and imaging fol-
low-up. In one study, the criteria for determining relapse 
were not specified [23]. In studies aimed at therapy 
response prediction, the reference standard was histol-
ogy in all but one study where the response was assessed 
based on clinical and imaging evaluation [24]. Treat-
ment complications were assessed based on clinical and 
surgical data. In the study dealing with natural evolution 
monitoring, radiomics was correlated to gene expression 
assessed using RNA sequencing [25].

Segmentation and feature types
The segmentation process was performed only manually 
in 48 (87%) studies, semiautomatically in 5 (9%) stud-
ies, both manually and automatically (for handcrafted 
and deep features, respectively) in 1 study (2%), and only 
automatically in 1 (2%) study. Of note, in one study, man-
ual segmentation was performed to extract handcrafted 
features and, in parallel, deep features were extracted 
from the whole images with no segmentation [26]. In 
three studies, tumor borders were manually delineated 
on one image of interest, and ROIs were then co-regis-
tered with a different MRI sequence or imaging modality 
[18, 24, 27]. In another study, manual segmentation was 
performed to include the tumor area, and an additional 
cubic ROI was placed in a non-tumorous area to evaluate 
non-tumorous radiomics [28].

The following segmentation styles were identified: 
3D in 45 (82%) studies, 2D without multiple sampling 
in 7 (13%) studies, 2D with multiple sampling in 1 (2%) 
study, and multiple segmentation styles such as 3D and 
2D without multiple sampling in 1 (2%) study. In the 
remaining study, the segmentation style was not speci-
fied [29]. Of note, a single slice showing maximum tumor 

extension was chosen in all studies employing 2D seg-
mentation without multiple sampling, except in one case 
where it was chosen based on tumor characteristics [30] 
and another study where the criteria for slice selection 
were not specified [31].

Regarding the radiomic feature types, 48 (87%) stud-
ies included only handcrafted features, 6 (11%) studies 
included both handcrafted and deep features, and the 
remaining (2%)  study included only deep features.

Feature reproducibility
Thirty-two (59%) of the 54 studies employing manual or 
semiautomatic segmentation process included a repro-
ducibility analysis in their workflow. In 30 (55%) inves-
tigations [19–21, 23, 26, 32–56], the reproducibility of 
radiomic features was assessed based on repeated seg-
mentations performed by different readers and/or the 
same reader at different time points. In 2 (4%) studies 
[57, 58], feature reproducibility was assessed through 
small geometrical transformations of the ROIs mimick-
ing multiple manual delineations. In detail, small transla-
tions of the ROI were applied in different directions, and 
the entity of these translations was 10% of the length of 
the bounding box including the tumor [57, 58]. No stud-
ies evaluated feature reproducibility based on different 
acquisition or post-processing techniques. The distribu-
tion of the employed feature reproducibility strategies 
among the included studies is shown in the bar plot in 
Fig.  2. Of note, in 3 studies [59–61], repeated segmen-
tations were performed to assess similarity (using Dice 
similarity coefficient) but feature reproducibility was not 
evaluated. Additionally, segmentations were validated by 
a second experienced reader in 7 studies [17, 25, 28–30, 

Fig. 2 Bar plot showing the distribution of the employed feature 
reproducibility strategies among the included studies
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62, 63] without, however, addressing the issue of feature 
reproducibility.

The intraclass correlation coefficient (ICC) was the sta-
tistical method used in all papers reporting a reproduc-
ibility analysis. ICC threshold ranged between 0.7 [54] 
and 0.9 [20, 46] for reproducible features. Additionally, 
the following statistical methods were used less com-
monly: Bland–Altman method [54], Pearson’s correlation 
coefficient [52], and Spearman’s rank-order coefficient 
[52].

Validation techniques
At least one machine learning validation technique was 
used in 34 (62%) of the 55 papers. K-fold cross-validation 
was used in most of the studies [18, 20, 22, 24, 27, 31, 
37–39, 44, 47, 49, 52, 54, 57, 58, 60–68]. The following 
machine learning validation techniques were used less 
commonly: bootstrapping [34, 46], leave-one-out cross-
validation [17, 28], and nested cross-validation [43, 55, 
56, 69]. In one study, both K-fold cross-validation and 
nested cross-validation techniques were employed [50]. 
Figure 3 provides an overview of these machine learning 
validation techniques.

Clinical validation
A clinical validation of the radiomics-based prediction 
model was reported in 38 (69%) of the 55 studies. In 
22 (40%) studies, it was performed on a separate set of 
data from the primary institution, namely the internal 
test dataset, which was chosen randomly [19, 20, 24, 28, 
29, 31, 32, 37, 41, 42, 45, 47, 52, 53, 59, 65, 66, 68], based 
on temporal criteria [61, 69, 70] or different acquisition 
scanners [62]. Of note, in a multi-center study, patients 

were split into training and test cohorts randomly rather 
than following geographical criteria [68]. Thus, this was 
considered as an internal test dataset. In 14 (25%) studies 
[26, 36, 38, 39, 43, 44, 48–51, 56, 63, 64, 67], clinical vali-
dation was performed on an independent set of data from 
an external institution, namely the external test dataset. 
In 2 (4%) studies [22, 33], both internal and external test 
datasets were used for clinical validation. The distribu-
tion of the employed clinical validation strategies among 
the included studies is shown in the bar plot in Fig.  4. 
Radiomic feature reproducibility and model validation 
strategies of the included studies are summarized in 
Table 3, along with the same information extracted from 
the previous version of this review [14] for comparison.

Fig. 3 Overview of machine learning validation techniques. In k-fold cross-validation (a), the data is split into k equally sized partitions, and each 
is used in turn to validate a model trained on the remaining. The process for leave-one-out cross-validation (b) is the same, but k equals the total 
sample size. In nested cross-validation (c), an outer and an inner loops of k-fold cross-validation are performed. Typically, the inner loop is used 
for model tuning, and the outer one to assess its accuracy. Bootstrapping (d) is based on a different  principle: random sampling from the original 
dataset is performed, with replacement. As a result, the produced samples may include multiple (or even no) instances of each original case

Fig. 4 Bar plot showing the distribution of the employed clinical 
validation strategies among the included studies
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Discussion
This systematic review addressed the issues of feature 
reproducibility and validation strategies in CT and MRI 
radiomics of bone and soft-tissue sarcomas, as these 
are two main challenges hampering the generalizability 
of radiomic models and preventing their clinical imple-
mentation. Among papers published between January 
2021 and March 2023, more than half reported a repro-
ducibility analysis of radiomic features (59%) and a clini-
cal validation of the predictive model against an internal 
test dataset, an external test dataset, or both (69% over-
all, among which 29% also or exclusively external). These 
assessments almost doubled compared to the previous 
version of this review including papers published up to 
December 2020, where they amounted to 37% and 39%, 
respectively [14]. Hence, although the percentage of 
investigations without any reproducibility and/or vali-
dation assessment is still considerable, significant efforts 
have been made to include them in radiomics studies to 
facilitate generalizability and thus clinical transferability. 

In particular, external clinical validation is crucial to 
ensure clinical translation of imaging biomarkers and 
should be encouraged.

CT and MRI radiomics of bone and soft-tissue sar-
comas have progressively gained attention in mus-
culoskeletal oncology to solve several diagnosis- or 
outcome-related tasks. In the previous version of this 
review [14], a rapid increase in research papers was 
observed and almost half of them (n = 23) were published 
in 2020. Since then, the number of new publications has 
remained almost unchanged every year, with 24 papers 
in 2021, 23 in 2022, and 8 in the first trimester of 2023. 
Most included studies (98%) were retrospective, similarly 
to the previous review [14]. Although prospective stud-
ies could provide the highest level of evidence supporting 
the clinical validity and usefulness of radiomic biomark-
ers [7], bone and soft-tissue sarcomas are low prevalent 
[71, 72] and retrospective design allows including rela-
tively large amounts of data already available in radiology 
departments. The median size of the database was 120 

Table 3 Radiomic feature reproducibility and model validation strategies of the studies included in the previous [14] and current 
review versions

Previous review [14]
(Studies published up to 2020)

Current review
(Studies published between 2021 and March 
2023)

Reproducibility
 Proportion of studies evaluating feature 
reproducibility

37% (18/49) 59% (32/54 studies employing manual or semi-
automatic segmentation)

 Strategies used for reproducibility assessment Different acquisition techniques
Different post-processing techniques
Repeated segmentations performed by differ-
ent readers or the same reader at different time 
points (mostly employed)

Repeated segmentations performed by differ-
ent readers or the same reader at different time 
points (mostly employed)
ROI geometrical transformations

 Statistical methods Analysis of variance
Cronbach alpha statistic
ICC (mostly employed)
Pearson correlation coefficient
Spearman correlation coefficient

Bland–Altman method
ICC (mostly employed)
Pearson’s correlation coefficient
Spearman’s rank-order coefficient

Validation
 Proportion of studies employing machine 
learning validation techniques

51% (25/49) 62% (34/55)

 Employed machine learning validation 
techniques

Bootstrapping
K-fold cross-validation (mostly employed)
Leave-one-out cross-validation
Leave-p-out cross-validation
Monte Carlo cross-validation
Nested cross-validation
Random-split cross-validation

Bootstrapping
K-fold cross-validation (mostly employed)
Leave-one-out cross-validation
Nested cross-validation

 Proportion of studies including clinical valida-
tion (internal or external)

39% (19/49) 69% (38/55)

 Proportion of studies including internal clinical 
validation

29% (14/49) 44% (24/55, among which two studies also per-
formed external clinical validation)

 Proportion of studies including external clini-
cal validation

10% (5/49) 29% (16/55, among which two studies also per-
formed internal clinical validation)
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lesions, having doubled compared to the previous review 
[14]. Of note, the use of public data was described only 
in one study dealing with soft-tissue sarcomas (2%) [46], 
even less than the previous review where it was reported 
in three cases [14]. Specifically, a public dataset available 
on The Cancer Imaging Archive was employed (https:// 
www. cance rimag ingar chive. net) [73]. Public datasets are 
essential to allow research groups from around the world 
to test and compare different radiomic models using 
common data. Hence, the use of public data should be 
promoted through new publicly available imaging data-
bases in the future.

Segmentations included the entire tumor volume (3D) 
in most studies (84%) and, less frequently, single slices 
(2D) with or without multiple sampling. The segmen-
tation process was performed manually in most stud-
ies (89%) and semiautomatically less frequently, as also 
observed in the previous review [14]. In addition, a fully 
automatic segmentation was used in two investigations 
(4%, one of which employing both automatic and man-
ual segmentations). Furthermore, while most studies 
included only handcrafted features, deep features were 
employed in 13% of the studies (either alone or together 
with handcrafted features). In contrast to handcrafted 
features based on predefined mathematical formulas, 
deep features are obtained inside the layers of convolu-
tional neural networks [74]. Future investigations focus-
ing on deep features and convolutional neural networks 
with the use of very large datasets will better highlight 
the potential value of deep learning methods in radiomic 
workflows.

Radiomic feature reproducibility was evaluated in 
more than half of the studies (59%) employing manual 
or semiautomatic segmentation, which increased by 
approximately three-quarters compared to the previous 
version of this review [14]. This methodological assess-
ment allows for identifying robust features and avoid-
ing biases related to non-reliable, noisy features [75]. 
Inter- and intra-observer variability related to multiple 
ROI delineations by different readers or the same reader 
at different time points was the focus of reproducibility 
analysis in most studies. Less frequently, ROI perturba-
tions obtained through geometrical transformations were 
used to mimic multiple delineations and evaluate feature 
reproducibility. No study assessed the influence of image 
acquisition parameters or post-processing techniques on 
feature reproducibility. Thus, this latter domain deserves 
further investigation, which could be facilitated by pro-
spective design in future studies. Finally, ICC was the 
statistical method of choice in all studies including a 
reproducibility analysis, with threshold values ranging 
from 0.7 to 0.9, which were in line with recent guidelines 
for performing and assessing ICC [76].

At least one machine learning validation technique 
was used in more than half (62%) of the papers and 
K-fold cross-validation was performed most com-
monly, similarly to the previous review [14]. These res-
ampling strategies are extremely useful with relatively 
limited data samples to reduce overfitting and better 
estimate the radiomic model performance on new data 
[77, 78]. Besides, a clinical validation of the radiomic 
model should be performed through real testing against 
unseen data [79]. We found that clinical validation was 
reported in 69% of studies. In detail, it was performed 
against unseen separate data from the primary institu-
tion (internal test dataset) and unseen independent data 
from a different institution (external test dataset) in 44% 
and 29% of the studies, respectively. Of note, two stud-
ies (4%) included both internal and external test datasets 
for clinical validation. The number of radiomic papers 
reporting clinical validation increased compared to the 
previous review [14] and, particularly, the number of 
those including an external test dataset tripled. Although 
the percentage of studies without any clinical validation 
is not negligible and future efforts are required, this may 
suggest that we are on the right track to bridge the gap 
between research concepts and clinical application in 
radiomics of bone and soft-tissue sarcomas.

Some limitations of this study need to be considered. 
First, this review focused on feature reproducibility and 
model validation strategies employed in bone and soft-
tissue sarcoma studies to facilitate achieving a consen-
sus on these aspects in radiomic workflows. However, 
this consensus has still to be reached. Second, this study 
is limited to a systematic review and no meta-analysis 
was performed, as radiomic papers dealing with bone 
and soft-tissue sarcomas are heterogenous in terms of 
objectives and subgroups of sarcoma with relatively 
small sample size per each objective and subgroup. 
Additionally, most studies assessed reproducibility as a 
feature-reduction method in radiomic pipelines based 
on an ICC threshold, without reporting ICC values for 
all features. Finally, in studies reporting a clinical vali-
dation, different metrics were used for model perfor-
mance estimation. All these reasons prevented us from 
including reproducibility and validation methods in a 
meta-analysis.

Limitations notwithstanding, feature reproduc-
ibility and validation strategies were systematically 
reviewed in radiomic studies dealing with bone and 
soft-tissue sarcomas and published between January 
2021 and March 2023. Compared to a previous review 
addressing the same issues in studies published up to 
December 2020 [14], a clear improvement was noted 
with almost double publications reporting methodo-
logical aspects related to reproducibility and validation. 

https://www.cancerimagingarchive.net
https://www.cancerimagingarchive.net
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Larger investigations involving multiple institutions 
and the publication of new databases in freely available 
repositories should be promoted to further improve 
the methodology of radiomic studies and bring them a 
from preclinical research area to the clinical stage.
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