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Abstract 

Objectives  To develop a deep learning (DL) model for differentiating between osteolytic osteosarcoma (OS) 
and giant cell tumor (GCT) on radiographs.

Methods  Patients with osteolytic OS and GCT proven by postoperative pathology were retrospectively recruited 
from four centers (center A, training and internal testing; centers B, C, and D, external testing). Sixteen radiologists 
with different experiences in musculoskeletal imaging diagnosis were divided into three groups and participated 
with or without the DL model’s assistance. DL model was generated using EfficientNet-B6 architecture, and the clini-
cal model was trained using clinical variables. The performance of various models was compared using McNemar’s 
test.

Results  Three hundred thirty-three patients were included (mean age, 27 years ± 12 [SD]; 186 men). Compared 
to the clinical model, the DL model achieved a higher area under the curve (AUC) in both the internal (0.97 vs. 
0.77, p = 0.008) and external test set (0.97 vs. 0.64, p < 0.001). In the total test set (including the internal and external 
test sets), the DL model achieved higher accuracy than the junior expert committee (93.1% vs. 72.4%; p < 0.001) 
and was comparable to the intermediate and senior expert committee (93.1% vs. 88.8%, p = 0.25; 87.1%, p = 0.35). With 
DL model assistance, the accuracy of the junior expert committee was improved from 72.4% to 91.4% (p = 0.051).

Conclusion  The DL model accurately distinguished osteolytic OS and GCT with better performance than the junior 
radiologists, whose own diagnostic performances were significantly improved with the aid of the model, indicating 
the potential for the differential diagnosis of the two bone tumors on radiographs.

Critical relevance statement  The deep learning model can accurately distinguish osteolytic osteosarcoma 
and giant cell tumor on radiographs, which may help radiologists improve the diagnostic accuracy of two types 
of tumors.
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Key points 

• The DL model shows robust performance in distinguishing osteolytic osteosarcoma and giant cell tumor.

• The diagnosis performance of the DL model is better than junior radiologists’.

• The DL model shows potential for differentiating osteolytic osteosarcoma and giant cell tumor.

Keywords  Bone neoplasms, Knee joint, Deep learning, Radiography

Graphical Abstract

Introduction
Bone tumors are a group of primary or secondary neo-
plastic lesions of bone with various pathological types 
and biological behaviors [1]. According to the 5th edition 
of the World Health Organization (WHO) classification 
of bone tumors published in 2020, bone tumors are clas-
sified as benign, intermediate, or malignant [2]. Primary 
bone tumors of the extremities are commonly found in 
the bones around the knee joint [3–5], with the most 
common types including osteochondroma, osteosarcoma 
(OS), and giant cell tumor (GCT) of bone [6–8]. The imag-
ing manifestation of osteochondroma is a benign bone 
tumor growing outside the bone, with diagnostic charac-
teristics including cartilage cap coverage, and it is there-
fore not difficult to make a correct diagnosis according to 
medical imaging [9, 10]. OS and GCT of bone both show 
strong local aggressiveness on imaging [7, 8], but they 

are classified as malignant bone tumors and intermediate 
bone tumors according to the WHO classification of bone 
tumors, and their clinical treatment plans and progno-
sis are substantially different. Therefore, it is necessary to 
obtain an accurate differential diagnosis between OS and 
GCT before clinical treatment [1, 7, 8].

Digital radiography is widely acknowledged as the pri-
mary imaging method for diagnosing bone lesions and 
is extensively utilized in clinical practice [11]. Radio-
graphs can display the overall image of bone tumors as 
a whole and reflect their biological behaviors, providing 
diagnostic and differential diagnostic information [12]. 
Tumoral bone formation on radiographs is a charac-
teristic feature in the diagnosis of OS [11]. OS can be 
categorized into osteolytic, osteoblastic, and mixed 
subtypes according to the osteogenic quantity within 
the OS on radiographs [13]. However, distinguishing 
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osteolytic OS from GCT becomes more challenging 
when tumoral bone formation is absent, especially for 
junior radiologist, as both exhibit localized, aggres-
sive bone destruction [14]. Patient age holds diagnostic 
value in distinguishing between the two tumor types, 
but similar ages between patients with these two differ-
ent tumors may confuse the radiologist’s judgment [11]. 
Therefore, we constructed a clinical model to investi-
gate the role of clinical variables.

As an emerging machine learning technology, deep 
learning (DL) has been widely applied to medical image 
analysis of bone tumors [15–17], which can distinguish 
benign and malignant bone tumors [11, 12, 14, 18–21]. A 
recent study has highlighted DL’s potential in effectively 
classifying healthy and pathological X-rays in children 
[22]. However, previous studies have primarily focused on 
the benign and malignant classification of various bone 
tumors at different sites throughout the body [15, 18, 21], 
rather than specifically addressing the differential diagno-
sis of osteolytic OS and GCT around the knee joint. To 
our knowledge, there have been no reported studies uti-
lizing DL for this specific purpose.

The purpose of this study was to develop a DL model 
for the differential diagnosis of osteolytic OS and GCT of 
bone on knee radiographs and to compare its diagnostic 
performance with that of radiologists with and without 
model assistance.

Materials and methods
Subjects
The retrospective study adhered to the principles outlined 
in the Helsinki Declaration and received institutional 
review board approval, including a waiver for writ-
ten informed consent. This multicenter study collected 
patients with OS and GCT of bone around the knee joint 
obtained from four tertiary referral centers, from 2013 to 
2022. The training set and internal test set were obtained 
from the First Affiliated Hospital of Sun Yat-Sen Univer-
sity (center A), while the external test set was obtained 
from Foshan Hospital of Traditional Chinese Medicine 
(center B), People’s Hospital of Huizhou City Center 
(center C) and the People’s Hospital of Guangxi Zhuang 
Autonomous Region (center D). Radiographs were 
obtained from different digital X-ray imaging devices with 
automatic examination parameters set in each of the four 
centers. Detailed information on the digital X-ray imaging 
devices is provided in Supplementary Table S5.

There were 333 patients (osteolytic OS:136, GCT:197) 
in this study. The inclusion and exclusion criteria are 
shown in Fig.  1. The osteosarcoma, in which tumoral 
bone formation is not observed on both anteroposte-
rior and lateral radiographs, is considered as osteolytic 
osteosarcoma. According to the inclusion and exclusion 
criteria (Fig.  1), two radiologists (both unknown to the 
study, with more than 10 years of experience in reading 

Fig. 1  Inclusion and exclusion criteria. DR, digital radiography; OS, osteosarcoma; GCT, giant cell tumor; DL, deep learning
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musculoskeletal radiographs) independently reviewed 
all radiographs and selected the patient included in the 
study. The clinical data of all patients are summarized in 
Table  1. All included bone tumors were pathologically 
confirmed. Both anteroposterior and lateral radiographs 
were available for each patient.

Radiologists’ interpretations
In the internal and external test sets, sixteen radiolo-
gists from 6 tertiary referral hospitals were selected 
using the Multi-Reader Multi-Case (MRMC) reading 
method [23, 24] and Digital Imaging and Communica-
tion in Medicine (DICOM) Viewer 2.2.9 software (Med-
ical Company, Poland) to independently evaluate the 
radiographs. All observers were blinded to the patho-
logic diagnosis results. The time taken by radiologists to 
evaluate radiographs was recorded.

All radiologists were categorized into three “expert 
committee” groups (expert decision by majority rule) 
based on their experience in reading musculoskeletal 
radiographs. There were 5 radiologists (> 2 but ≤ 5 years) 
in group A, 7 radiologists (> 5 but ≤ 8 years) in group B, 
and 4 radiologists (> 8 but < 13 years) in group C. All radi-
ologists participated in the evaluation of performance 
with and without assistance from the DL model. The 
washout period between the two evaluations was more 
than 4 weeks (4–6 weeks, with an average of 5.8 weeks).

Preprocessing
All images were downloaded from the picture archiving 
and communication system in DICOM format at their 
original dimensions and resolution, at which point the basic 
information of the patients on the images was removed. All 
images were converted from DICOM to 8-bit JPEG using 
MicroDicom software (Version 3.8.1.422, MicroDicom Ltd, 

Bulgarian). To facilitate input to the neural networks, the 
pixel size of each image was adjusted to 1080 by 1080, and 
the pixel values were scaled into the range [0,1].

DL model building
Model training was performed in Python 3.6 (https://​www.​
python.​org) and PyTorch 1.6.0 (https://​pytor​ch.​org). We 
adopted the EfficientNet-B6 architecture [25] with weights 
pretrained on ImageNet. Five-fold cross-validation was 
used for model training and selecting. The model took pre-
processed images with a resolution of 1080 × 1080 as inputs 
and output the predicted probability for each image. It 
employed Binary Cross Entropy (BCE) loss as the loss func-
tion and incorporated data augmentation operations such 
as horizontal/vertical flips, rotation, and contrast adjust-
ments. sThe network was optimized with the following 
parameters: basic learning rate = 1 × 10-4; batch size = 2; and 
epoch = 150. The model with the minimum validation loss 
was selected for testing on both the internal and external 
test sets. 

Clinical model and integrated model building
A clinical model based on clinical variables, including 
patient age, sex and tumor site (distal femur, proximal 
tibia and proximal fibula), was developed using logistic 
regression. Sex was coded using binary coding, and the 
tumor site was coded using one-hot coding. The clinical 
model was trained using a cross-validation strategy. The 
model with the best validation performance was selected 
for testing on both the internal and external test sets. 
Additionally, we incorporated the predictions generated 
by the DL model as a variable into the clinical model to 
establish an integrated model. Similarly, the training and 
testing strategy for the integrated model remains consist-
ent with that of the clinical model.

Table 1  Demographic data of patients with osteolytic OS and GCT from four centers

Data shown are numbers of patients with percentages

Abbreviations: Osteolytic OS Osteolytic osteosarcoma, GCT​ Giant cell tumor

Characteristics Overall (333 
patients)

Training set Internal test set External test set

Center A (217 
patients)

Center A (62 
patients)

Center B (24 
patients)

Center C (9 
patients)

Center D (21 
patients)

All (54 patients)

Age (years ± SD) 27 (12) 25 (13) 26 (11) 29 (12) 34 (8) 36 (12) 33 (11)

Sex (female) 147 (44.1%) 100 (46.1%) 27 (43.6%) 12 (50.0%) 1 (11.1%) 8 (38.1%) 21 (38.8%)

Tumor type

  Osteolytic OS 136 (40.8%) 102 (47.0%) 22 (35.5%) 6 (25.0%) 0 (0%) 6 (28.6%) 12 (22.2%)

  GCT​ 197 (59.2%) 115 (53.0%) 40 (64.5%) 18 (75.0%) 9 (100%) 15 (71.4%) 42 (77.8%)

Tumor site

  Distal femur 186 (55.9%) 125 (57.6%) 34 (54.8%) 13 (54.2%) 7 (77.8%) 7 (33.3%) 27 (50.0%)

  Proximal tibia 128 (38.4%) 78 (35.9%) 26 (41.9%) 10 (41.7%) 2 (22.2%) 12 (57.1%) 24 (44.4%)

  Proximal fibula 19 (5.7%) 14 (6.5%) 2 (3.2%) 1 (4.2%) 0 (0%) 2 (9.5%) 3 (5.6%)

https://www.python.org
https://www.python.org
https://pytorch.org
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Feature visualization and analysis
For feature visualization, gradient-weighted class activa-
tion mapping (Grad-CAM) [26] was used to generate the 
Grad-CAM maps with the last convolution layer of the 
DL model, representing the model’s attention to different 
portions of an input radiograph. For the feature analysis, 
the t-distributed stochastic neighbor embedding (t-SNE) 
[27] algorithm was used to reduce the 2304-dimensional 
features extracted by the DL model to three dimensions 
and then visualize them in 3D space to display the differ-
ence in the distribution of the features of GCT and OS.

Statistical analysis
In comparisons of clinical variables between two groups 
and to assess the impact of different digital X-ray imaging 
devices on DL model performance, the chi-square test 
was used for categorical variables (sex, tumor site, digi-
tal X-ray imaging device), and the independent samples 
t test was used for continuous variables (age). Addition-
ally, we grouped patients according to patient age and 
divided into quartiles to analyze diagnostic performance 
of different radiologists in different age groups. The accu-
racy, sensitivity, specificity, area under the ROC curve 
(AUC), and corresponding 95% confidence interval were 
calculated. The optimal cutoff value was determined by 
the maximum Youden index. The ROC curves of various 
models were compared using the DeLong test. The accu-
racy of the various models was compared using McNe-
mar’s test. All analyses were conducted using R (Version 
4.0.4), SPSS (Version 24.0), and MedCalc (Version 15.8) 

statistical software. p < 0.05 was considered statistically 
significant.

Results
Patient characteristics
A total of 333 patients with bone tumors were included 
in this study, with an average age of 27 years, including 
186 males and 147 females. Among them, there were 
136 patients with osteolytic OS (male: 72, female: 64), 
aged 3–61  years, with an average age of 19  years, and 
197 patients with GCT of bone (male: 117, female: 80), 
aged 12–70  years, with an average age of 32  years (as 
shown in Table 1). There was no significant difference in 
sex between patients with osteolytic OS and GCT; how-
ever, there was a significant difference in age and tumor 
site between the two types of bone tumors, as shown in 
Table S1.

Model performance
The DL model achieved an AUC of 0.94 (0.90–0.97) in 
the training set, 0.97 (0.90–1.00) in the internal test set, 
and 0.97 (0.88–1.0) in the external test set (all p < 0.001; 
as shown in Table  2, Fig.  2a). According to the DeLong 
test, we found no evidence of a significant difference in 
the performance of the DL model between the inter-
nal test set and external test set (p = 0.79). Additionally, 
there was no significant difference in the DL model per-
formance among digital X-ray imaging devices (p = 0.43) 
according to the chi-square test (as shown in Table S5).

The logistic regression clinical model based on clinical 
variables achieved an AUC of 0.77 (0.65–0.87, p = 0.001) 

Table 2  Diagnostic performance of the deep learning model, clinical model, and integrated model in the training set, internal test set, 
and external test set

p value represents a comparison between the AUC value of the model and chance (AUC = 0.5)

DL Deep learning, integrated model indicates DL model combined with clinical model

Dataset AUC (95% CI) Accuracy Sensitivity Specificity p value

Training set (n = 217)
  DL model 0.94 (0.90–0.97) 91.2% (198/217) 90.2% (92/102) 92.2% (106/115) < 0.001

Internal test set (n = 62)
  DL model 0.97 (0.90–1.00) 93.5% (58/62) 90.8% (20/22) 95.0% (38/40) < 0.001

  Clinical model 0.77 (0.65–0.87) 82.3% (51/62) 59.1% (13/22) 95.0% (38/40) < 0.001

  Integrated model 0.94 (0.84–0.98) 93.5% (58/62) 86.4% (19/22) 97.5% (39/40) < 0.001

External test set (n = 54)
  DL model 0.97 (0.88–1.00) 92.6% (50/54) 100% (12/12) 90.5% (38/42) < 0.001

  Clinical model 0.64 (0.50–0.76) 79.6% (43/54) 41.7% (5/12) 90.5% (38/42) 0.17

  Integrated model 0.88 (0.76–0.95) 90.7% (49/54) 66.7% (8/12) 97.6% (41/42) < 0.001

Total test set (n = 116)
  DL model 0.97 (0.92–1.00) 93.1% (108/116) 94.1% (32/34) 92.7% (76/82) < 0.001

  Clinical model 0.72 (0.63–0.80) 81.0% (94/116) 52.9% (18/34) 92.7% (76/82) < 0.001

  Integrated model 0.91 (0.85–0.96) 92.2% (107/116) 79.4% (27/34) 97.6% (80/82) < 0.001
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in the internal test set and 0.64 (0.50–0.76, p = 0.17) in 
the external test set (as shown in Table 2, Fig. 2b).

According to the DeLong test, the diagnostic perfor-
mance of the DL model was superior to that of the clini-
cal model in both the internal (p = 0.008) and external 
test sets (p < 0.001) and superior to that of the integrated 
model in both the internal (p = 0.28) and external test sets 
(p = 0.11).

Diagnostic performance of radiologists’ evaluation 
with and without the DL model
The comparative results of the diagnostic performance 
among the DL model, radiologists without model assis-
tance, and radiologists with model assistance are shown 
in Table 3, S2, S3, and S4. In the total test set composed 
of the internal and external test sets, there was a signifi-
cant difference in the diagnostic performance between 
the DL model and the expert committee “A” (junior radi-
ologists) (p < 0.001). The diagnostic accuracy of the expert 
committee “A” was significantly improved with the help 
of the DL model (p = 0.05). Specifically, among the five 
junior radiologists (> 2 but ≤ 5 years), the accuracy of the 
DL model was better than that of the radiologists (93.1% 
vs. 52.6%, 55.2%, 81.0%, 75.0%, 78.5%; all p < 0.05), and 
the accuracy of all the junior radiologists was improved 
with the aid of the model (52.6% to 86.2%, p < 0.001; 
55.2% to 87.9%, p < 0.001; 81.0% to 90.5%, p = 0.49; 75.0% 
to 80.2%, p = 0.35; 78.5% to 92.2%, p = 0.003; as shown in 

Table S2). Additionally, the diagnostic performance of 
the DL model was superior to that of the expert commit-
tee “C” (senior radiologists), and the diagnostic accuracy 
of the expert committee “C” was improved with the help 
of the DL model but the difference was insignificant. Spe-
cifically, among the four senior radiologists (> 8  years), 
the accuracy of the DL model was better than that of 
the radiologists (93.1% vs. 85.3%, 85.3%, 88.8%, 86.2%; 
p = 0.06, p = 0.06, p = 0.25, p = 0.09), and the accuracy of 

Fig. 2  ROC curves of the three models in the internal test set (a) and in the external test set (b). CLI, clinical model; DL, DL model

Table 3  Diagnostic performance comparison among the DL 
model, radiologist evaluation without model assistance, and 
radiologist evaluation with model assistance

Expert committees A, B, and C indicated three groups of radiologists with 
different levels of experience in reading musculoskeletal radiographs. “Wt” 
means without DL model assistance, “Wi” means with DL model assistance, 
and the p value reflects the comparison of accuracy between different pairs of 
models, indicating “Wt” versus DL and “Wt” versus “Wi” (indicated by *) (the same 
below)

Model ACC (95% CI) p value

Deep learning 93.1 (87.0–96.5) [108/116]

Expert committee A-Wt 72.4 (63.7–0.79.7) [84/116] < 0.001

Expert committee A-Wi 91.4 (84.9–0.95.3) [106/116] 0.051*

Expert committee B-Wt 88.8 (81.8–93.3) [103/116] 0.25

Expert committee B-Wi 90.5 (83.8–94.6) [105/116] 0.67*

Expert committee C-Wt 87.1 (79.8–92.0) [101/116] 0.32

Expert committee C-Wi 89.7 (82.8–94.0) [104/116] 0.54*
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three of the senior radiologists was improved with the aid 
of the model (85.3% to 87.1%, p = 0.70; 85.3% to 90.5%, 
p = 0.23; 88.8% to 92.2%, p = 0.37; as shown in Table S4).

Among 16 radiologists in reading radiographs from 116 
patients, 9 had shorter diagnostic time with DL assistance 
(decrease of 1 to 15 min), while 4 had longer diagnostic 
time (increase of 5 to 10 min) and 3 remained unchanged 
(Tables S2–S4). Patients in the total test set were further 
grouped according to patient age, divided into quartiles: 
27 patients (OS 21 and GCT 4) in group A; 30 patients 
(OS 4 and GCT 26) in group B; 31 patients (OS 1 and 
GCT 30) in group C; and 28 patients (OS 7 and GCT 22) 
in group D. The statistical results are shown in Table 4. In 
the 21–30-year age group, the diagnostic performance of 
the DL model was better than that of the junior radiolo-
gist group (p = 0.003).

Feature visualization and analysis
For the 116 patients in the total test set, the main fea-
tures of the DL model concentrated in the area of bone 
destruction caused by the tumor on the radiographs and 
their corresponding overlapping Grad-CAM heatmaps. 
The red areas in the heatmaps were simultaneously pre-
sent in 95 patients’ bone tumor areas on the anteroposte-
rior and lateral radiographs (shown in Figs. 3 and 4), but 
only in 19 patients’ bone tumor areas on the anteroposte-
rior radiographs and 2 patients’ bone tumor areas on the 
lateral radiographs.

The t-SNE feature analysis results from the total test set 
showed that the spatial distribution of extracted image 
features for GCT and OS were different (shown in Fig. 5), 
indicating that the spatial distribution of the features 

extracted by the DL model was involved in the differen-
tial diagnosis of the two diseases.

Discussion
In this multicenter study, DL models were developed and 
validated to distinguish between osteolytic OS and GCT on 
radiographs and compared to radiologists. Overall, the DL 
model showed a higher diagnostic accuracy than the clinical 
model or integrated model (0.97 vs. 0.72, 0.91). In the test 
set, the DL model achieved higher accuracy than the jun-
ior expert committee (93.1% vs. 72.4%; p < 0.001) and was 
comparable to the intermediate and senior expert commit-
tee (93.1% vs. 88.8%, 87.1%; p = 0.25, p = 0.35, respectively). 
With DL model assistance, the performance of junior expert 
committee improved (72.4% to 91.4%, p = 0.051).

This study revealed a significant difference in age 
between the two types of bone tumors, which is consist-
ent with previous literature, indicating that patient age 
holds some diagnostic value in distinguishing between the 
two tumor types [11]. Regarding the tumor site, this study 
revealed a statistically significant difference between oste-
olytic OS and GCT, which is inconsistent with previous 
research about OS and GCT [6–8]. We believe that this 
may be attributed to sample bias due to the limited num-
ber of osteolytic OS patients included. The logistic regres-
sion model based on clinical characteristics exhibited poor 
performance in the differential diagnosis of the two tumor 
sites in the overall test set (AUC = 0.72).

In clinical practice, radiologists may misdiagnose 
osteolytic OS as GCT of bone and vice versa due to the 
similar appearances on radiographs. The diagnostic accu-
racy of radiologists in distinguishing between osteolytic 

Table 4  Comparison of diagnostic performance between the DL model and radiologist evaluation in the patient subgroups

p value indicates significant differences in accuracy between expert committee and DL

Age Model Accuracy 95% CI) p value

Age (< 21 years, n = 27) DL 100 [27/27]

Expert committee -A 88.9 (71.9–96.2) [24/27] 0.25

Expert committee -B 96.3 (81.7–99.3) [26/27] 0.99

Expert committee 96.3 (81.7–99.3) [26/27] 0.99

Age (21–30 years, n = 30) DL 96.7 (83.3–99.4) [29/30]

Expert committee -A 60.0 (42.3–75.4) [18/30] 0.003

Expert committee -B 83.3 (66.4–92.7) [25/30] 0.22

Expert committee -C 86.8 (70.3–94.7) [26/30] 0.38

Age (30–38 years, n = 31) DL 90.3 (75.1–96.7) [28/31]

Expert committee -A 74.2 (56.8–86.3) [23/31] 0.13

Expert committee -B 83.9 (67.4–92.9) [26/31] 0.63

Expert committee -C 83.9 (67.4–92.9) [26/31] 0.63

Age (≥ 38 years, n = 28) DL 85.7 (68.5–94.3) [24/28]

Expert committee -A 85.7 (68.5–94.3) [24/28] 0.99

Expert committee -B 92.9 (77.4–98.0) [26/28] 0.63

Expert committee -C 92.9 (77.4–98.0) [26/28] 0.63
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OS and GCT of bone is greatly influenced by their clini-
cal experience in reading musculoskeletal radiographs 
(accuracy ranging from 52.6% to 90.5%, Tables S2, S3, 
S4). This study used the MRMC method and voting rules 
(minority follows majority) to demonstrate that radiolo-
gists with different levels of clinical experience exhibit 
different diagnostic performances (accuracy: 76.7%, 
88.8%, and 87.1%). Greater clinical experience in reading 
musculoskeletal radiographs led to improved accuracy of 
the radiologists in differentiating between osteolytic OS 
and GCT of bone, which aligns with the learning growth 
curve characteristics [7]. We conducted a stratified analy-
sis of patients with either type of tumor at different ages. 
The study revealed that within the patient group with 
age range of 21 to 30  years, the radiologists’ diagnostic 
accuracy was lower, while the DL model demonstrated 
significantly higher accuracy (Table  4). This indicates 
that when faced with patients of similar age present-
ing with these aggressive bone tumors, radiologists may 
experience reduced diagnostic accuracy due to the simi-
larities in radiographic appearance. When 16 radiologists 
evaluated all radiographs with AI, the evaluation time 

varied compared to that without AI assistance (Tables 
S2–S4), which may be due to the different experiences. 
Of these, 11 radiologists’ diagnostic accuracy with AI 
was improved, suggesting that artificial intelligence can 
provide valuable information. Our study demonstrated 
that the DL model outperformed both the clinical model 
and the combined model. This suggests that although 
patient age has a certain reference value in the differential 
diagnosis between tumor types, the overlap among the 
patient ages may have reduced the diagnostic accuracy. 
In contrast, the radiographic appearance can reflect the 
underlying pathology and biological behavior of the bone 
tumors, highlighting the superior diagnostic value of the 
DL model based on radiograph features.

Our proposed DL model identified the tumor area and its 
surrounding normal bone in the full field of the radiograph, 
rather than only choosing the tumor area [18, 21], avoiding 
the need for tumor area labeling. Additionally, the DL model 
takes into account not only the bone tumor itself but also 
the shape and size of the bone in which the tumor is located, 
thereby capturing important variations associated with age. 
The DL model proposed in this study may include clinical 

Fig. 3  Anteroposterior (a) and lateral (b) radiographs of GCT of the distal femur and their overlapping Grad-CAM maps



Page 9 of 11Shao et al. Insights into Imaging           (2024) 15:35 	

Fig. 4  Anteroposterior (a) and lateral (b) radiographs of OS of the proximal tibia and their overlapping Grad-CAM maps

Fig. 5  3D display of features extracted by the DL model in the total test set: red crosses represent osteolytic OS patients; green dots represent GCT 
patients
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information about age and tumor site, resulting in better 
diagnostic performance. According to the Grad-CAM heat-
maps and t-SNE feature analysis, the features extracted by 
the DL model concentrated in the bone destruction area 
caused by the tumors and were spatially able to differentiate 
between the two types of tumors to some extent.

This study was subject to several limitations. First, the 
research only focused on two primary aggressive bone 
tumors around the knee joint, OS and GCT of bone, with-
out considering other bone tumors. In our opinion, the 
region around the knee joint is the most common site for 
primary bone tumors, and the most common aggressive 
bone tumors among them are OS and GCT of bone [3–8]. 
The radiographic manifestations of osteolytic OS and GCT 
are similar, which can easily confuse the diagnosis [10]. In 
the future, we intend to incorporate other types of bone 
tumors to expand the application scope of our model in 
real clinical scenarios. Second, this study only utilized 
radiographic information for the establishment of the DL 
model without incorporating other imaging modalities, 
such as CT or MRI. This is because digital radiography is 
recognized as a first-line imaging modality for bone lesion 
evaluation [11], facilitating the widespread implementa-
tion of the DL model in clinical practice. Third, we used the 
MRMC method to evaluate the radiologist’s diagnostic per-
formance, but the sample size of the patients in the external 
test set was limited. To further evaluate the DL model, we 
may continue to collect more data in future studies.

In conclusion, we developed a DL model for the dif-
ferential diagnosis of osteolytic OS and GCT of bone on 
knee radiographs. Our model outperformed junior radiol-
ogists in terms of diagnostic accuracy, required less time, 
and enhanced the diagnostic performance of radiologists 
as an assistive tool, which demonstrated its potential for 
accurate differential diagnosis in clinical applications.
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