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Abstract 

Objectives The purpose of this study is to assess the equivalency of MRI-based synthetic CT (sCT) to conventional CT 
for sacroiliac joint bony morphology assessment in children.

Methods A prospective study was performed. Children who had (PET-)CT-scan underwent additional MRI. sCT-CT 
image quality was analyzed by two readers subjectively overall, semi-quantitatively in terms of cortical delineation, 
joint facet defects, growth plate fusion, ossified nuclei, lumbosacral transitional anomaly, and bony bridges, and quan-
titatively for disc space height, spinal canal width, and sacral vertebrae width and height. Cohen’s kappa and equiva-
lence analyses with Bland–Altman plots were calculated for categorical and continuous measures respectively.

Results Ten patients were included (6 boys; aged 9–16 years; mean age 14 years). Overall sCT image quality 
was rated good. Semi-quantitative assessment of cortical delineation of sacroiliac joints, bony bridges, and joint facet 
defects on the right iliac and sacral sides showed perfect agreement. Correlation was good to excellent (kappa 0.615–
1) for the presence of lumbosacral transitional anomaly, fusion of sacral growth plates, joint facet defect, and presence 
of ossified nuclei. sCT-CT measurements were statistically equivalent and within the equivalence margins (–1–1 mm) 
for intervertebral disc space height and spinal canal width.

Intra- and inter-reader reliability was excellent for quantitative assessment (0.806 < ICC < 0.998). For categorical scoring, 
kappa ranged from substantial to excellent (0.615–1).

Conclusion sCT appears to be visually equivalent to CT for the assessment of pediatric sacroiliac joints. sCT may aid 
in visualizing sacroiliac joints compared to conventional MRI, with the benefit that no ionizing radiation is used, espe-
cially important in children.

Critical relevance statement MRI-based synthetic CT, a new technique that generates CT-like images without ion-
izing radiation, appears to be visually equivalent to CT for assessment of normal pediatric sacroiliac joints and can 
potentially assess structural damage as it clearly depicts bony cortex.

Key points 

• MRI-based sCT is a new image technique that can generate CT-like images.

• We found that sCT performs similarly to CT in displaying bony structures of pediatric sacroiliac joints.

• sCT has already been clinically validated in the sacroiliac joints in adults.

• sCT can potentially assess structural damage from erosions or ankylosis as it clearly depicts bony cortex.
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Introduction
Imaging of the sacroiliac (SI) joints in children is 
increasingly used for diagnosis and classification of 
juvenile spondyloarthritis (JSpA) [1]. Early diagnosis 
of sacroiliitis in children with JspA is important for 
therapy, especially with new biologic treatment options 
now available to delay progression and treat sacroiliitis 
in JspA [2, 3]. Historically the diagnosis of sacroiliitis 
was based on radiography. Radiography is not sensi-
tive in early-stage disease [4] and has been replaced by 
MRI as the first line of investigation. MRI is excellent to 
detect active lesions of sacroiliitis and can also assess 
structural damage [2]. T1-weighted MRI images are the 
standard in evaluating structural lesions of sacroiliitis 
[5]. However, structural lesions including erosions, can 
be difficult to reliably assess on routine T1-weighted 
MRI scans in children [6]. The SI joint in adults is 
delineated as a sharply defined low signal black line 
on T1-weighted MRI images, which is rarely the case 
in children. Normal growth-related variations such as 
the absence of this black line representing the subchon-
dral bone plate, blurring, and irregularity can mimic 

erosions, making this diagnosis more difficult in chil-
dren [6, 7]. New ways to visualize and assess the bony 
structures of the SI joints on MRI would be helpful.

In most parts of the body, computed tomography (CT) 
is the method of choice to demonstrate bony anatomy 
[8]. In adults, CT has proven to be superior to MRI for 
assessing bone sclerosis and ankylosis in sacroiliitis [8]. 
Unfortunately, single-energy CT is not able to detect 
active lesions of sacroiliitis, which are key to diagnosing 
sacroiliitis according to the Assessment of SpondyloAr-
thritis International Society (ASAS) criteria [9, 10]. CT 
can be used as a standard in adults in the evaluation of 
chronic sacroiliitis [1, 5, 11–13], but it cannot routinely 
be used in children due to radiation exposure [2, 8].

Synthetic CT (sCT), a new MRI technique, is a deep 
learning-based technology performing a 3-dimen-
sional MRI-to-CT mapping, which is learned from 
paired MRI and CT data, generating ‘CT-like’ images 
without ionizing radiation. The sCT is generated from 
an axial 3D T1-weighted radiofrequency spoiled multi-
ple gradient-echo sequence (T1MGE) [14]. This tech-
nology has previously been clinically validated for the 
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SI joints in adults but has not yet been validated for 
use in children [9, 14, 15].

The purpose of this study is to assess the equivalence of 
MRI-based sCT to conventional CT in normal SI joints 
in children in a semi-quantitative and quantitative assess-
ment of bony morphology.

Materials and methods
This prospective study was approved by the local ethics 
committee and written informed consent was obtained 
from all patients and their parents. Authors without con-
flicts of interest had full control of the inclusion of any 
data and information submitted for publication. None 
of the data from study participants has been reported 
previously.

Study patients
From May 2021 until June 2022, patients aged 6 to 
18  years who underwent clinical CT of the pelvis or 
abdomen or whole-body PET-CT for any reason except 
for lower back pain, were asked to participate in our 
study. Patients admitted to the intensive care unit, very 
ill patients, patients who needed sedation for MRI, and 
immunocompromised patients were excluded. An addi-
tional MRI scan was done within approximately 1 month 
after the CT or PET-CT scan.

CT protocol
CT and PET-CT images were acquired during clinical 
practice. CT scans were performed on Somatom Defini-
tion Edge Siemens Healthineers and Somatom Definition 
FLASH Siemens Healthineers. PET-CT was performed 
on Siemens Biograph mCT flow 20 PET/CT scanner (Sie-
mens Healthcare, Erlangen, Germany) and GE Discovery 
MI 3ring scanner (GE Healthcare, Waukesha, WI, USA).

MRI protocol
All MRI scans were performed on a 3.0-Tesla MRI unit 
(Prisma, Siemens Healthineers, Erlangen, Germany). 
An axial 3-dimensional T1-weighted radio-frequency-
spoiled multiple gradient echo (3DT1MGE) sequence was 
performed: 2 echoes: repetition time/echo time 1/echo 
time 2: 7/2/3.5 ms, field of view 360 × 360 mm, acquisi-
tion matrix: 352 × 352, voxel size: 0.5 × 0.5 × 0.8  mm, 
acquisition time: 5 min 12 s.

Synthetic CT reconstruction
sCT images were reconstructed with a commercially 
available software (BoneMRI Pelvic Region, version 1.4, 
MRIguidance BV). The software runs on-site and is con-
nected to the hospital picture and archiving and com-
munication system (PACS). The PACS automatically 
forwards the source MRI images to the sCT software, 

which reconstructs sCT images with a processing time of 
around 30  min. No manual input is required. The soft-
ware reconstructed sCT images from two 3DT1MGE 
images derived from two different echoes using a deep 
learning method based on the U-net architecture. This 
method exploits local spatial contextual information in 
the multi-echo data to reconstruct the latent bone struc-
tures, which was learned using paired MRI and CT data. 
The resulting sCT image expresses radiodensity contrast 
in Hounsfield units (HU) values [14].

Analysis/image assessment/definitions
CT and sCT were reconstructed in a paracoronal plane 
(parallel to the dorsal cortex of the S2 vertebral body) a 
true axial and a true sagittal plane, all with a slice thick-
ness of 1 mm. Two radiologists (N.H. and E.S.) with 18 and 
10 years of experience respectively, independently reviewed 
sCT and CT images. For the measurements, sCT and CT 
images were mixed and displayed in random order. Readers 
were blinded to clinical and demographic findings. Defini-
tions were first defined in consensus on 5 other sCT and 
5 other CT scans of pediatric patients, not included in the 
study because they did not have paired data.

Overall image quality, presence of lumbosacral tran-
sitional anomaly, and fusion of sacral vertebral growth 
plates at levels S1/S2 and S2/S3 were scored. Corti-
cal delineation of the joint space at both iliac and sacral 
sides, presence of joint facet defects, ossified nuclei, and 
bony bridges were scored (Table 1). Quantitative analysis 
was performed by measuring the maximal diagonal width 
and height of the S1 and S2 vertebral bodies and the 
maximum height of the disc space at levels L5–S1, both 
on a midsagittal plane. The maximum width of the spi-
nal canal at levels L5–S1 was measured in the axial plane 
(Table 2). Prior to quantitative analysis, the two readers 
reached a consensus on measurement methodology.

In order to investigate the intra-reader reliability, 1 
reader (E.S.) repeated the measurements 1 month later (a 
delay added to avoid recall bias).

Statistical analysis
An agreement between sCT and CT for the categorical 
measures was determined by Cohen’s kappa. Confusion 
matrices were generated for CT as the gold standard. For 
the continuous measures, differences between methods 
were analyzed with Bland–Altman plots and equivalence 
analyses. An equivalency design was chosen to prove 
whether the outcomes did not differ by more than a clini-
cally or scientifically meaningful threshold [16]. For the 
equivalence analyses, the equivalence margin was set to 
1 mm, which represents 1 voxel of a typical high-resolu-
tion CT scan.
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Table 1 Overview of planes, methods, level/side, and scoring

All planes Overall image quality: 1 = Poor, impossible for visualization of bony structures N/A

2 = Impaired, difficult for visualization of bony structures N/A

3 = Good, for visualization of bony structures

4 = Excellent

Paracoronal Lumbosacral transitional anomaly: 0 = Not present

1 = Present

Paracoronal Fusion of the growth plates of the sacrum: Level S1/S2 0 = Open

1 = Partially closed

2 = Completely closed

Level S2/S3 0 = Open

1 = Partially closed

2 = Completely closed

Paracoronal Cortical delineation of the joint space: Iliac side (R/L) 0 = Not clearly visible, the iliac joint is not completely seen 
as a hyperdense cortical line

1 = Clearly visible, the iliac joint is clearly seen as a hyperdense 
cortical line

Sacral side 
(R/L)

0 = Not clearly visible, the sacral joint is not completely seen 
as a hyperdense cortical line
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Inter‑ and intra‑reader reliability
For the categorical measures, Cohen’s kappa was calculated, 
and confusion matrices were constructed. For the continu-
ous measures, inter- and intra-rater reliability measures 

were obtained by calculating the intra-class correlation coef-
ficient (ICC), using a two-way and one-way random model, 
respectively, for absolute agreement and a single measure.

All statistical analyses were performed using R 4.2.2.

Table 1 (continued)

1 = Clearly visible, the sacral joint is clearly seen as a hyper-
dense cortical line

Paracoronal Joint facet defect (≥ 3 mm): Iliac side (R/L) 0 = Not present, no surface defect greater than or equal 
than 3 mm are present

1 = Present, there is one or more surface defect(s) greater 
or equal than 3 mm (the measurement of the defect can be 
parallel or perpendicular to the joint space)

Sacral side 
(R/L)

0 = Not present, no surface defect greater than or equal 
than 3 mm are present

1 = Present, there is one or more surface defects greater 
or equal than 3 mm (the measurement of the defect can be 
parallel or perpendicular to the joint space)

Paracoronal Presence of ossified nuclei of the SI joint: R/L 0 = Not present

1 = Present and not fused

2 = Partially fused ossified nuclei

Paracoronal Bony bridges of the SI joint: R/L 0 = Not present

1 = Present

Abbreviations: N/A not applicable, S sacral, L lumbar, R/L right/left, SI joint sacroiliac joint
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Results
In all patients, MRI was obtained within a maximum 
period of just over one month (range 5–33  days) after 
performing clinical CT or PET-CT scan. Six boys and 4 
girls were included aged between 9 and 16 years (mean 
age 14 years), resulting in a total of 20 SI joints. There was 
no reported SI joint pathology in these patients.

In addition to the features that were scored semi-quan-
titatively and quantitatively, some obvious other inciden-
tal findings were depicted on CT as well as on sCT, such 
as spina bifida occulta (2 cases), ossification centers of 
the apophysis of the iliac crest (4 cases) and an enostoma 
(1 case) (Fig. 1).

One patient had a joint facet defect meeting the cri-
terion of ≥ 3  mm, seen on both sCT and CT (Fig.  2). 
There were multiple irregularities seen on sCT and CT 
on the iliac and sacral side of the SI joint that did not 
meet the criterion of ≥ 3 mm (Fig. 3).

Semi‑quantitative assessment
Excellent image quality was scored on all sCT and CT 
images except for 1 sCT that was scored as good due to 
motion artifacts.

Agreement on the presence of features in categori-
cal scoring was high. Kappa ranged from substantial 
(0.672) to excellent (1) (median = 0.672) [17], except 
for bony bridges on the left side, (kappa = 0. Table 3). 
However, this is due to low variability and small sam-
ple size, as the methods agreed on 9 out of 10 times for 
this measure (Table S1) [17]. Because of a lack of vari-
ability, we were unable to calculate a kappa for 8 meas-
ures. For these measures, there was a 100% agreement 
between sCT and CT.

Quantitative assessment
In the Bland–Altman plots the differences between sCT 
and CT were plotted against the mean score for each 

Table 2 Overview of quantitative analysis

Abbreviations: S sacral, L lumbar

Mid sagittal Maximum diagonal width of vertebral body from anterior to posterior S1

Mid sagittal Maximum diagonal height of vertebral body from superior to inferior S1

Mid sagittal Maximum diagonal width of vertebral body from anterior to posterior S2

Mid sagittal Maximum diagonal height of vertebral body from superior to inferior S2

Mid sagittal Maximum height of the intervertebral disc space L5-S1

Axial Maximum spinal canal width L5-S1
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measurement, showing that the deviations were inde-
pendent of the size of the measurements (Fig. S1). For 
the 6 continuous measures, we could not find statisti-
cally significant differences in means in this sample. sCT 
was equivalent to CT for the geometric measurement 
of intervertebral disc space height and maximum spinal 

canal width. The measurements of S1 and S2 vertebral 
bodies were not within the equivalency margin of 1 mm. 
The equivalency plot of sCT to CT is shown in Fig. 4, indi-
cating equivalency when the entire confidential interval 
(CI) is within the two margins (–1–1 mm). For the 6 con-
tinuous measures, equivalence was calculated (in mm): 

Fig. 1 Some incidental findings were seen on both MRI-based synthetic CT (sCT) (left images a, c, and e) and CT (right images b, d, and f). 
a–b Spina bifida occulta of S1 (arrowhead) in a 15-year-old girl in an axial plane. Also note the ossification centers of the apophysis of the iliac 
crest that can be seen as well (arrows). c–d Lumbosacral transitional anomaly without bony fusion on the left side (asterisk) in a 12-year-old boy 
in a paracoronal plane. Also note the white line in the right SI joint (black arrowhead), consistent with an artifact on sCT (this was not seen on CT). 
e–f Enostoma in a 16-year-old female on the left side of S1 in a paracoronal plane (black arrows)

Fig. 2 Joint facet defect ≥ 3 mm (arrows) in the left iliac joint in a 16-year-old girl in a paracoronal plane. a MRI-based synthetic CT (sCT). b CT
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for diagonal width S1 (− 1.7–0.62), diagonal height S1 
(− 1.13–0.21), diagonal width S2 (− 1.75–0.23), diagonal 
height S2 (− 1.16–1.18), intervertebral disc space L5–S1 
(− 0.25–0.65), and spinal canal width (− 0.74–0.38).

Inter‑ and intra‑reader reliability
Semi‑quantitative assessment
Inter- and intra-reader agreement on categorical scor-
ing was generally high. Kappa ranged from substantial 
(0.615) to excellent (1), except for inter-reader reliability 

for bony bridges of the right SI joint and cortical delinea-
tion of the joint space of the left sacral side on sCT (both 
0, again due to low variability and small sample size, as 
the readers agreed in 9 out of 10; Table  4). One reader 
scored cortical delineation as insufficient one-time due to 
motion artifacts on sCT. Because of a lack of variability, 
we were unable to calculate a kappa for inter-reader reli-
ability in 15 measures and for intra-reader reliability in 
16 measures (Table 4). For all these measures there was a 
100% agreement between the readers.

Fig. 3 Comparison between MRI-based synthetic CT (sCT) (a, c) and CT (b, d) in a 15-year-old girl in a paracoronal plane. Arrows indicate ossified 
nuclei. Also note the irregularities seen on sCT and CT (arrowheads) on the iliac side of the sacroiliac (SI) joints, these did not meet the criterion 
of ≥ 3 mm for joint facet defect

Table 3 Cohen’s kappa (%) for the categorical scoring between synthetic CT (sCT) and CT

Abbreviations: sCT synthetic CT, S sacral; SI joint sacroiliac joint
a 100% perfect agreement between sCT and CT, kappa could not be calculated because of lack of variability

Measurement Kappa (%)

Right side Left side

Lumbosacral transitional anomaly: 100

Fusion of the growth plates of the sacrum S1/S2: 83.9

Fusion of the growth plates of the sacrum S2/S3: 84.8

Cortical delineation of the joint space of the iliac side: 100a 100a

Cortical delineation of the joint space of the sacral side: 100a 100a

Joint facet defect (≥ 3 mm) on the iliac side: 100a 61.5

Joint facet defect (≥ 3 mm) on the sacral: 100a 100a

Presence of ossified nuclei of the SI joint: 67.2 67.2

Bony bridges of the SI joint: 100a 0
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Quantitative assessment
ICCs were excellent for inter- and intra-reader reliability 
for all quantitative measurements [18]. The overall inter-
reader ICC was 0.945 to 0.996 on sCT and 0.909 to 0.994 
on CT. The intra-reader ICC was 0.806 to 0.998 on sCT 
and 0.946 to 0.955 on CT. In Table 5, the ICCs obtained 
for the combined measurements for the intra- and inter-
reader reliability are displayed.

Discussion
This prospective study was performed to test the 
equivalency of MRI-based sCT images with conven-
tional CT images of (normal) SI joints in children. 
The sCT images were generated from the 3DT1MGE 
sequence using a deep learning-based method aiming 
at specific visualization of the osseous morphology by 
HU estimation [14].

We found that overall image quality was good for all 
bony structures on sCT and CT. Osseous morphology 
was correctly visualized on sCT for detection and visu-
alization of lumbosacral transitional anomalies, fusion of 
sacral growth plates, cortical delineation of the SI joint, 
presence of ossified nuclei of the SI joint, and joint facet 
defects of the SI joint. Cortical delineation of the joint 
space was equally well seen on sCT and CT.

Subjectively, in some cases, the sCT images even dem-
onstrated sharper cortical delineation than the CT and 
PET-CT images (Fig. S2). This made ossified nuclei and 

growth plates better visualized and more sharply delin-
eated on sCT than on CT (Figs. 3, 4, and 5), explaining 
partly the variability in measurement of S1 and S2 ver-
tebral bodies between sCT and CT. Suboptimal CT scan 
images may be due to the use of low-dose protocols con-
forming to the ALARA principle (as low as reasonably 
achievable), in which the lowest possible radiation dose 
to achieve the clinical diagnosis is used, which does not 
necessarily provide excellent images for evaluation of 
bony structures [19, 20]. This may explain why measure-
ments of S1 and S2 vertebral bodies were not within the 
1 mm equivalency margin, especially the endplate of the 
S2 vertebral body which was sometimes difficult to see 
on a midsagittal plane.

In this study, we set a very strict 1-mm equivalence 
margin; all measures would have been within an equiva-
lence margin of 2 mm.

The ongoing ossification process in children can result 
in unsharp cortical margins, making cortical assessment 
difficult. Multiple irregularities of the SI joints were seen 
in our study that did not meet the prespecified size defi-
nition of ≥ 3 mm (Fig. 3). Only 1 cortical irregularity met 
the definition and was observed on sCT as well as on CT 
by both readers (Fig. 2).

This is the first study using MRI-based sCT in children. 
In adults, several studies were published comparing sCT 
and CT in the SI joints, spine, and pelvis [9, 15, 21–26]. In 
a study of the lumbar spine and hips, geometric analysis 

Fig. 4 Equivalency plot of synthetic CT (sCT) to CT depicting the outcome difference in the geometrical measurements on sCT and CT. 
The plot indicates the equivalency of sCT to CT when the entire confidential interval (CI) is within the two margins (− 1 and 1 corresponding 
with an equivalency margin of − 1 mm and 1 mm, respectively). Shaded area, equivalency range; L, lumbar; S, sacral
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of MRI-based sCT showed similar measurements in com-
parison to CT [15, 25]. Jans et al. showed that the diagnos-
tic accuracy of sCT was higher than that of T1-weighted 
MRI sequences for detecting erosions, sclerosis, and 
ankylosis in adult patients suspected of having sacroiliitis 
[9]. Using sCT in children can be of great benefit in the 
assessment of sacroiliitis as assessing pediatric SI joints is 
very challenging on MRI, mainly due to normal variability. 
In children, blurring and irregularity of the SI joint line is 
frequently seen on classical T1-weighted sequences, mak-
ing it difficult to detect erosions. sCT could definitely 
improve the assessment of joint delineation and bone 
erosions in pediatric SI joints [6]. Cortical delineation of 
the SI joint was excellent in all but one patient (who had 
motion artifacts) in our study on both sCT and CT.

sCT has a key advantage in that it can be scanned 
in one examination together with the classical MRI 
sequences, allowing assessment of active and structural 
lesions concomitantly and thus possibly better diagnostic 
interpretation of sacroiliitis in children with JSpA. Scan 
time is just 5  min 12  s longer when including the sCT 
sequence. Importantly, sCT comes with no ionizing radi-
ation, which is essential in the younger population as the 
radiosensitive reproductive organs are in close proximity 
to the SI joints. Even though low-dose CT shows promis-
ing results in adults with SpA, in pediatric patients it is 
particularly preferable to perform an examination with-
out ionizing radiation such as sCT [11–13].

sCT is also a 3D modality, thus allowing for images to 
be reconstructed in all planes, which could be especially 
beneficial to evaluate the rather complex SI joints [21].

Ankylosis and bony bridges of the SI joint are known 
structural lesions in sacroiliitis [3, 4, 10], however they 
were not expected in this normal population. In our 
study, bony bridges were scored in only 1 patient on 
sCT on the left side, not on CT, resulting in a kappa 
value of 0 (Table  3) (Table S1). Bony bridge-like fea-
tures are a known artifact on sCT and a potential pit-
fall that has already been described in adults when 
using sCT for the diagnosis of sacroiliitis. Morbée 
et al. have shown that the vacuum phenomenon can be 
falsely seen as the bony bridge on sCT in SI joints [21]. 
In our case too, this rather thin white “artifactual” line 
crossing the SI joint on sCT (Fig.  1b.) did not mimic 
true ankylosis as can be seen in sacroiliitis, also no 
other features of sacroiliitis were present. In our nor-
mal study group, we also detected an incidental enos-
toma (Fig.  1e–f.) near the SI joint, which was equally 
seen on CT and sCT. This is promising as sCT might 
be used as well for assessing sclerosis as a structural 
lesion of sacroiliitis [21].

Table 5 Intraclass correlation coefficient (ICC) obtained for all 
the measurements for the inter- and intra-reader reliability of 
synthetic CT (sCT) and CT

Abbreviations: ICC intraclass correlation coefficient, sCT synthetic CT, S sacral

Inter‑
reader 
reliability

Intra‑
reader 
reliability

Measurement sCT CT sCT CT

Maximum diagonal width of vertebral body 
S1

0.994 0.982 0.995 0.993

Maximum diagonal height of vertebral body 
S1

0.991 0.962 0.995 0.975

Maximum diagonal width of vertebral body 
S2

0.979 0.914 0.996 0.977

Maximum diagonal height of vertebral body 
S2

0.955 0.909 0.982 0.984

Maximum height of the intervertebral disc 
space

0.945 0.966 0.806 0.946

Maximum spinal canal width 0.996 0.994 0.998 0.995

Fig. 5 Comparison between MRI-based synthetic CT (sCT) (a) and CT (b) in a 13-year-old boy in a paracoronal plane. Arrows indicate open growth 
plates at the levels S1–S2 and arrowheads indicate partially closed growth plates at the S2–S3 level
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Our study has some limitations. The main limita-
tion is that we did not image children with sacro-
iliitis, hence our study is limited to assessing image 
quality for normal appearances and normal variation. 
CT scans are not commonly performed in children 
with sacroiliitis due to radiation dose. Also, CT and 
MRI did not take place at the same day. The addi-
tional MRI scan was obtained within approximately 
1  month after the CT scan. Also, different kinds of 
CT, including PET-CT were used, depending on the 
clinical question.

Another limitation is the low number of examined 
patients in this study. CT is in most children replaced 
by ultrasound or MRI in abdominal and pelvic pathol-
ogy. Moreover, if an abdominal or pelvic CT was nev-
ertheless performed, critical illness prevented these 
children from undergoing an additional MRI exami-
nation within one month. In this study, the youngest 
patient was 9  years old. In even younger age groups 
sedation might even be necessary, which was not 
approved by the ethics committee.

Future studies in larger groups of children, also includ-
ing pathological scans of the SI joint, are required to fur-
ther examine the added value of sCT for assessment of 
structural lesions (erosions, ankylosis, and sclerosis) of 
sacroiliitis on sCT in pediatric SI joints in comparison 
with the classically used MRI sequences and CT as gold 
standard where available.

Conclusion
By all our measures in a group of normal children, 
sCT was visually equivalent to CT for assessment of 
the bony morphology of pediatric sacroiliac joints. 
In a clinical setting, adding sCT to the MRI protocol 
may have additional value as it allows for easily visu-
ally interpretable visualization of the bony structures 
of the sacroiliac joints in children without the use of 
ionizing radiation.

Abbreviations
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ICC  Intra-class correlation coefficient
JSpA  Juvenile spondyloarthritis
MRI  Magnetic resonance imaging
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