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Abstract 

Objective To provide a comprehensive framework for value assessment of artificial intelligence (AI) in radiology.

Methods This paper presents the RADAR framework, which has been adapted from Fryback and Thornbury’s imag‑
ing efficacy framework to facilitate the valuation of radiology AI from conception to local implementation. Local 
efficacy has been newly introduced to underscore the importance of appraising an AI technology within its local envi‑
ronment. Furthermore, the RADAR framework is illustrated through a myriad of study designs that help assess value.

Results RADAR presents a seven‑level hierarchy, providing radiologists, researchers, and policymakers with a structured 
approach to the comprehensive assessment of value in radiology AI. RADAR is designed to be dynamic and meet the differ‑
ent valuation needs throughout the AI’s lifecycle. Initial phases like technical and diagnostic efficacy (RADAR‑1 and RADAR‑
2) are assessed pre‑clinical deployment via in silico clinical trials and cross‑sectional studies. Subsequent stages, spanning 
from diagnostic thinking to patient outcome efficacy (RADAR‑3 to RADAR‑5), require clinical integration and are explored 
via randomized controlled trials and cohort studies. Cost‑effectiveness efficacy (RADAR‑6) takes a societal perspective 
on financial feasibility, addressed via health‑economic evaluations. The final level, RADAR‑7, determines how prior valuations 
translate locally, evaluated through budget impact analysis, multi‑criteria decision analyses, and prospective monitoring.

Conclusion The RADAR framework offers a comprehensive framework for valuing radiology AI. Its layered, hierarchical struc‑
ture, combined with a focus on local relevance, aligns RADAR seamlessly with the principles of value‑based radiology.

Critical relevance statement The RADAR framework advances artificial intelligence in radiology by delineating 
a much‑needed framework for comprehensive valuation.

Keypoints  
• Radiology artificial intelligence lacks a comprehensive approach to value assessment.

• The RADAR framework provides a dynamic, hierarchical method for thorough valuation of radiology AI.

• RADAR advances clinical radiology by bridging the artificial intelligence implementation gap.
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Introduction
A survey among European Society of Radiology (ESR) 
members indicated a promising role for artificial intel-
ligence (AI) in radiology, with over 50% of respondents 
using or considering its use [1]. Promises surrounding 
AI have been monumental, with the alleged enhance-
ment of technical performance, detection, and quan-
tification of pathologies to streamline radiologists’ 
workflows and improve patient outcomes [2–5]. AI 
has promised to generate value in image acquisition, 
preprocessing, and interpretation in various imaging 
modalities (CT, MRI, X-ray, and ultrasonography), but 
also in administrative radiology tasks that leverage gen-
erative AI.

This alleged value of radiology AI should, however, first 
be rigorously assessed before implementation. The gen-
eral lack of knowledge regarding radiology AI’s added 
value has been reported elsewhere [2, 6, 7] and calls for a 
robust valuation framework to properly assess the value. 
The valuation must move beyond conventional metrics 
like sensitivity and specificity, delving into actual added 
value on a clinical level by considering among others 
patient impact, influence on clinical decision-making, 
workflow implications [8–12], and actual value for the 
patient.

In this paper, we present the Radiology AI Deployment 
and Assessment Rubric (RADAR), a framework designed 
to conceptualize the value of radiology AI across its 
entire lifecycle. Rooted within the widely endorsed con-
cept of value-based radiology, RADAR emphasizes the 
centrality of patient outcomes [8, 13, 14]. Subsequently, 
we discuss various study designs that help to assess value 
in alignment with the distinct levels of RADAR.

Radiology AI Deployment and Assessment Rubric 
(RADAR)
The conceptual RADAR framework is depicted in Fig. 1. 
Table 1 provides a comprehensive definition of the vari-
ous RADAR levels and links it to the various study 
designs discussed throughout this paper. RADAR is an 
adaptation of Fryback and Thornbury’s 1991 “Imaging 
Efficacy Framework” [10], designed to evaluate the effi-
cacy of imaging technologies. It methodically progresses 
through seven hierarchical levels of efficacy, from specific 
to broader. Each efficacy level is foundational for the next: 
e.g., when technical efficacy (RADAR-1) is not ensured, 
progression to subsequent levels becomes redundant. We 
introduce the novel level of “local efficacy” (RADAR-7), 
underscoring the need for the valuation of an AI system 
within the local context. This is crucial, as insights from 
RADAR-1–6 might not translate universally across dif-
ferent healthcare institutions.

We illustrate RADAR with the hypothetical case of 
a multifunctional AI system for stroke care. RADAR 
commences with technical efficacy (RADAR-1), consti-
tuting the prerequisite that the AI can consistently pro-
cess and analyze CT brain images for subsequent tasks. 
Diagnostic accuracy efficacy (RADAR-2) is perhaps the 
most widely reported evidence type in AI literature. In 
our stroke example, this could pertain to the sensitiv-
ity and specificity of the algorithm in finding and high-
lighting large vessel occlusions. Both RADAR-1 and 
RADAR-2 are foundational measures, addressed before 
clinical implementation. Adequate diagnostic accuracy 
(RADAR-2) could allow for an impact on diagnostic 
thinking (RADAR-3) if the radiologist’s diagnostic work-
flow changes due to AI usage (for instance, when utilizing 
AI speeds up the stroke-diagnosis workflow). An impact 
on the therapeutic process (RADAR-4) occurs when, 
e.g., accurate and fast stroke diagnosis results in more 
thrombectomies performed. Efficacy in the first four lev-
els culminates in actual patient outcomes (RADAR-5), 
which could in our example be measured as a reduction 
in long-term brain damage.

Whereas RADAR-1–5 are mostly clinically oriented, 
cost-effectiveness efficacy (RADAR-6) expands to incor-
porate wider considerations by contrasting costs with 
societal health benefits. Finally, the added level of local 
efficacy (RADAR-7) highlights the local adaptability and 
feasibility of the technology, for instance, the fit to the 
workflow of a specific hospital or stroke center.

RADAR‑1 through RADAR‑5: the assessment 
of clinical value
The first five RADAR levels predominantly pertain to 
clinical value, starting from technical efficacy (RADAR-
1) and culminating in broad patient outcome efficacy 
(RADAR-5). The appropriate clinical valuation method 
should conform to the AI system’s objective, typically 
aligning with one of three primary aims: description, 
identification, or explanation [15].

Descriptive studies shed light on disease frequency 
without causal considerations [16], mostly irrelevant in 
radiology AI. Identification studies discern individuals 
with a disease (diagnostic) or those at risk (prognostic) 
[17], the first of which we focus on as it mostly pertains 
to radiology AI. In this light, we discuss the cross-sec-
tional study and in silico clinical trial (IST) focused on 
RADAR-1 and RADAR-2. Finally, we also focus on expla-
nation-based studies exploring causality and the mecha-
nisms of the AI system’s impact. Against this background, 
we delineate the randomized controlled trial (RCT) and 
observational cohort study, related to RADAR-3 through 
RADAR-5. All discussed study designs are summarized 
in Table 2.
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Cross‑sectional study
In the valuation of radiology AI, cross-sectional studies—
single-point-in-time studies that assess a specific variable 
or outcome without requiring long-term follow-up—
serve as a useful design [16]. They could assess whether 
the AI system is technically efficacious (RADAR-1), 
e.g., in assessing the technology’s capabilities in accu-
rately interpreting radiographic images. Cross-sectional 
studies could also measure the technology’s efficacy in 

diagnosing patients with a certain condition (RADAR-
2), for instance, in terms of sensitivity and specificity in 
identifying lung nodules from CT scans. Cross-sectional 
studies are relatively fast and cheap, as they require only a 
single interaction with the study population and no time-
consuming follow-up.

Their design does not afford a longitudinal perspective, 
limiting insights into the radiology AI’s performance over 
extended periods. Therefore, cross-sectional studies are 

Fig. 1 Overview of the RADAR framework. The outer circle depicts the RADAR efficacy level, and the inner circle provides its description. 
Abbreviations: AI, artificial intelligence; RADAR, Radiology AI Deployment and Assessment Rubric
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less equipped for addressing the AI’s influence on treat-
ment decisions or patient outcomes (RADAR-3 through 
RADAR-5), as these often necessitate a longitudinal 
design (e.g., RCT or cohort study).

In silico clinical trial
For radiology AI, there is commonly a big gap between 
retrospective proof-of-concept studies (RADAR-1) 
and a solution robustly evaluated in a clinical setting 
(RADAR-3 to RADAR-5). Retrospective studies in radi-
ology AI generally focus on technical efficacy, while 
other aspects are equally crucial for trustworthy AI (e.g., 
fairness, usability, robustness) [18]. While RCTs are 
considered the golden standard to overcome this gap, 
conducting an RCT for every radiology AI is time-inten-
sive and costly.

To this end, virtual or in silico clinical trials (ISTs) have 
been proposed. ISTs assess the initial viability and poten-
tial of a technology, functioning as a preparatory step 
for RCTs [19–21]. The main difference is that, instead 
of human subjects, digital data is used. ISTs are there-
fore easier to organize, less expensive, and have a lower 
entry level compared to RCTs. To ensure high levels of 
evidence before transitioning into RCTs, guidelines for 
ISTs are continuously evolving and becoming stricter to 
mimic RCTs as closely as possible.

In addressing technical efficacy (RADAR-1), ISTs 
might for instance be used to simulate the extent to 
which an AI technology can process X-ray scans in bone 
fractures. Moreover, they can offer insight into diagnos-
tic accuracy (RADAR-2), for instance, through modeling 
the technology’s proficiency in finding long nodules in 
chest CTs. Furthermore, since ISTs can emulate various 
clinical situations, they could for example mimic the AI 
recommendation’s influence on the radiologist’s assess-
ment of detecting irregularities in initial breast mammo-
grams, addressing its influence on clinical management 
decisions (RADAR-3) before more comprehensive exam-
ination in a later-stage study. Pending further advance-
ments, prospective ISTs could theoretically also address 
RADAR-4 and RADAR-5.

The idea of ISTs for healthcare, already proposed in 
2011, has only recently been applied to radiology AI, 
largely due to the challenges in digital data generation 
[22]. As the assumption of ISTs is that the results of digi-
tal data generalize to real patient data, the generation of 
representative and realistic digital data is crucial for the 
validity of ISTs. Two prevailing approaches are virtual 
patient generation from compiled datasets and the use 
of digital twins mimicking individual patients [23, 24]. 
Technological advancements have eased data simulation 

and improved generalization to real patient data. Yet, 
each method requires specific developments and strin-
gent quality control for accurate representation.

Randomized controlled trial
RCTs are underrepresented in (radiology) AI [25, 26], 
which aligns with the absence of careful value assessment 
[26]. RCTs are widely recognized as the gold standard 
in evidence-based medicine and could strongly benefit 
radiology AI valuation. In terms of diagnostic thinking 
efficacy (RADAR-3), RCTs investigate if there is a shift 
in the radiologist’s diagnostic process and whether such 
changes yield measurable improvements. Regarding ther-
apeutic efficacy (RADAR-4), RCTs measure the effect of 
AI on treatment strategies, such as how AI assistance in 
interpreting images affects the final choice of treatment. 
In terms of patient outcomes (RADAR-5), they might 
finally evaluate direct patient outcomes, such as whether 
the AI-guided intervention results in improved survival 
rates.

To draw adequate causal conclusions, researchers must 
maximize internal validity. RCTs are highly regarded due 
to their robust internal validity, which is maximized when 
selection bias, information bias, and confounding bias 
are mitigated. Selection bias (i.e., the relation between 
inclusion in the study and exposure assignment) is mini-
mized through exposure assignment after individuals are 
included in the study, information bias through (double) 
blinding, and confounding bias through randomization, 
which ensures a balanced distribution of potential con-
founders across the exposed and unexposed arms. While 
RCTs boast strong internal validity, their external validity 
(or generalizability) can be a concern due to strict eligi-
bility criteria, which limit applicability to certain popu-
lations outside the controlled setting. Improving external 
validity in RCTs is challenging and would generally rely 
on replicating the study with a wider scope of patients 
(e.g., through a multicenter approach).

Cohort studies
In a systematic review on AI in clinical radiology, 98% of 
clinical questions were approached with (retrospective) 
cohort studies, making them easily the most employed 
study design [27]. Cohort studies investigate associations 
between intervention and outcomes over time, with par-
ticipants compared by exposure status. Although funda-
mentally longitudinal, a single measurement instance can 
also facilitate a cross-sectional study, allowing for both 
explanatory and identification-based research questions 
to be addressed.
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While RCTs are often considered the gold standard, 
cohort studies provide a viable alternative. Opposed to 
the high costs and limited duration of RCTs, cohort stud-
ies can follow larger populations over extended periods, 
focusing on the long-term effects of AI on patient health 
outcomes (RADAR-5). Cohort studies often allow for 
a large study population, resulting in strong external 
validity.

In conducting a cohort study, one must however 
address potential threats to internal validity, including 
selection, information, and confounding biases. Yet, with 
careful design and analysis, these issues can be antici-
pated. Emergent analytic techniques, such as instrumen-
tal variables (like Mendelian randomization in genetics), 
generalized methods (e.g., g-formula, structural models), 
and target-trial emulations offer accurate causal infer-
ences. For instance, target-trial emulation can simu-
late an RCT within a cohort study, offering insight into 
AI impacts without the necessity to repeatedly conduct 
expensive and time-consuming RCTs.

RADAR‑6 and RADAR‑7: the assessment 
beyond clinical value
Health economic evaluations
Health economic evaluations (HEEs) are vital in 
understanding the (societal) financial feasibility of 
health technologies, yet are notably scarce in medical 
AI [28, 29]. HEEs contrast costs and health outcomes 
of two or more technologies, such as comparing an 
AI technology with the standard of care [30]. Costs 
encompass direct expenditures like purchasing, licens-
ing, and training costs, as well as indirect costs such 
as productivity loss and informal care costs. Outcomes 
are typically patient (health) outcomes such as quality-
adjusted life-years (QALYs) (RADAR-5), customarily 
obtained from RCTs, observational studies, modeling, 
or a combination thereof. HEEs can be leveraged to 

address cost-effectiveness efficacy (RADAR-6), mov-
ing beyond only clinical effectiveness [30].

Table  3 displays three common HEE methods. Cost-
minimization analysis (CMA) is utilized when there is 
sufficient reason to believe that the AI system does not 
improve (clinical) outcomes but has the potential to 
reduce costs due to improving the clinical-diagnosis 
workflow. Cost-effectiveness analysis (CEA) may be uti-
lized if the AI system has the potential to improve the 
clinical outcomes of patients, providing insight into the 
ratio of (improved) clinical outcomes and costs, captured 
in the incremental cost-effectiveness ratio. Cost-utility 
analysis (CUA) is finally similar to CEA, except that clini-
cal outcomes are measured in quality-adjusted life years, 
so as to ensure standardized comparisons of technologies 
across healthcare fields.

Budget impact analysis
Efficacy determined in the initial RADAR levels may 
not generalize to every local context, necessitating an 
evaluation of how well the value identified in RADAR-1 
through RADAR-6 translates. For instance, local vari-
ation in workflow, population composition, and IT 
infrastructure can all affect the ultimate value of an AI 
technology and thereby acquisition [31]. It is thus vital to 
customize AI valuation to align with the specific features 
and requirements of the local healthcare settings cap-
tured in RADAR-7.

To address local financial feasibility, budget impact 
analysis (BIA) evaluates the AI by considering local 
budgetary constraints and local population composition 
(Table 4) [32]. A comprehensive BIA accounts for locally 
estimated costs, including acquisition, maintenance, 
training, and workflow adaptation. This provides valuable 
insights into the AI’s affordability and sustainability for 
local radiological practices and aids in optimal decision-
making during the acquisition phase.

Table 3 Overview of the health economic evaluation study designs for the assessment of cost‑effectiveness efficacy in radiology AI 
(RADAR‑6)

Abbreviations: AI Artificial intelligence, BIA Budget impact analysis, CEA Cost-effectiveness analysis, CMA Cost-minimization analysis, CUA  Cost-utility analysis, QALY 
Quality-adjusted life year

Attribute Cost‑minimization analysis Cost‑effectiveness analysis Cost‑utility analysis

Description Compares costs of technologies (known 
or assumed to be equally effective) 
to find the cheapest option

Compares costs and outcomes of differ‑
ent technologies to assess if any health 
benefits justify costs

Compares costs and outcomes of different 
technologies to assess if any QALY benefits 
justify costs

Key input data Costs Costs, health outcomes (such as life 
expectancy, reduction in blood pressure)

Costs, health outcome in terms of QALYs

Literature example CMA of lung nodule management 
strategy leveraging AI in lung cancer CT 
screening [49]

CEA of AI‑based chest CT analysis 
for rapid COVID‑19 diagnosis and prog‑
nosis [50]

CUA of AI support in CT‑based lung cancer 
screening [51]
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When performing a BIA, it is crucial to consider not 
only the financial implications of implementing a new 
technology, but also who shoulders the costs and who 
reaps the benefits. While an AI tool may boost one 
department’s efficiency, its funding could come from 
another department. For instance, an AI tool used for 
early stroke detection may be funded by the radiology 
department. While the radiology department incurs 
the costs of purchasing and implementing this AI tool, 
it could be the neurology department that mostly ben-
efits from the improved diagnostic capabilities due to an 
increase in efficiency and better patient outcomes. This 
could occur without any increase in their department’s 
expenditures, which could result in disagreements over 
funding responsibility between departments. Under-
standing these budget dynamics is therefore essential 
when assessing AI value and increasing adoption, as BIA 
concerns not only the total cost, but also how these are 
distributed.

Multi‑criteria decision analysis
Whereas the previously discussed methods mostly focus 
on clinical outcomes and cost-effectiveness, a broader 
approach to the valuation of local efficacy (RADAR-7) 
allows for including not only medical and economic con-
siderations, but also legal, social, and ethical ones, the 
last being particularly relevant in radiological AI [11, 14, 
33–35]. Examples of broader issues are usability (how 
easy is it to use the AI technology), regulation (how well 
does the AI technology conform with local regulatory 
guidelines), explainability (to what extent is the AI sys-
tem’s decision understood by the radiologist), etc.

While crucial in valuing radiology AI, these issues are 
difficult to operationalize and quantify through the previ-
ously discussed methods. Multi-criteria decision analysis 
(MCDA) offers a solution by facilitating a comparison 
of a highly diverse range of issues [36]. An MCDA of 
an AI tool would involve local stakeholders (1) to iden-
tify the key criteria including patient outcomes, cost-
effectiveness, ethics, social concerns; (2) to score the AI 

technology against these criteria; and (3) to calculate 
an aggregate score for informed decision-making and 
acquisition. This allows for a broad health technology 
assessment perspective and ensures alignment with local 
requirements and constraints, effectively addressing local 
efficacy (RADAR-7).

Prospective monitoring
Prospective monitoring is vital in maintaining long-
term relevance and efficacy at the local level (RADAR-
7). Earlier work advocated a structured three-phased 
approach for successful local AI integration [37, 38]. 
Initially, the AI operates in “shadow mode,” allowing for 
safety assessments without affecting clinical decisions. 
This is followed by a small-scale workflow test, gather-
ing valuable feedback from involved clinicians. In the 
final stage, the AI becomes fully operational, necessitat-
ing ongoing monitoring. This continuous oversight helps 
counter challenges such as “model drift” [39, 40], where 
variations in new data inputs could compromise AI per-
formance. Given the comprehensive yet time-consum-
ing nature of RADAR, and especially in lengthy study 
designs like RCTs, model drift could erode the study’s 
relevance by its conclusion. Conducting meticulous 
planning and post-implementation prospective monitor-
ing is therefore essential.

Discussion
The RADAR framework is positioned to progressively 
value radiology AI through seven hierarchical efficacy 
levels and has been adapted from Fryback and Thorn-
bury’s (1991) imaging efficacy framework [10]. We have 
expanded this original framework by tailoring it to radi-
ology AI, adding a local efficacy level and connecting 
the levels with various study methodologies. We thereby 
provide radiologists and researchers with a framework 
that helps to conceptualize the valuation of radiology AI 
throughout the entire lifecycle. Local decision-makers 
can moreover use RADAR in making well-founded, evi-
dence-based decisions in the acquisition of radiology AI.

Table 4 Overview of the study designs for the assessment of local efficacy in radiology AI (RADAR‑7)

Abbreviations: BIA Budget impact analysis, MCDA Multi-criteria decision analysis, MRI Magnetic response imaging

Attribute Budget impact analysis Multi‑criteria decision analysis

Description Estimates the financial consequences 
of adopting a technology in terms of afford‑
ability and budgetary planning

Evaluates alternatives by considering multiple criteria simultaneously, wherein 
decision‑makers allocate weights to each criterion

Time frame Short to medium‑term Flexible, depending on the criteria

Key input data Costs, savings, budget constraints, uptake Costs, health outcomes, patient preferences, ethical considerations, etc

Literature example BIA of radioactive seed localization program 
for non‑palpable breast lesions at Canadian 
hospital [52]

MCDA of different MRI systems for regional hospitals in the Czech Republic [53]
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While we predominantly showcased RADAR through 
examples focused on improving patient health out-
comes, it is important to note that many AI systems 
target non-clinical tasks, e.g., the automation of rou-
tine administrative work with large language model 
technologies. RADAR is also positioned to address 
such AI systems. While in these examples cost savings 
(RADAR-6) are likely to be most relevant, influence on 
other RADAR levels is not exempt. For instance, the 
reduced administrative load could indirectly influence 
diagnostic thinking (RADAR-3) by granting radiologists 
more time for precise diagnoses, which could progres-
sively influence the higher RADAR levels. Radiologists 
and decision-makers should therefore hierarchically 
progress through all RADAR levels when ascertaining 
value. Nevertheless, this process is likely to be faster for 
technologies focused on administrative tasks such as 
the aforementioned.

Several frameworks have previously been suggested 
for valuing radiology AI. The international FUTURE-
AI consortium has formulated broad principles with 
an accompanying checklist to guide developers towards 
creating safe and trustworthy radiology AI [18]. The 
Canadian Association of Radiologists [41] and Park 
et  al. [42] proposed guidance on addressing techni-
cal performance (RADAR-2). Omoumi et  al. offered a 
more comprehensive checklist, assessing the value of 
radiology AI technologies through a wider array of con-
cerns [43].

RADAR is unique in that it accounts for different valu-
ation needs throughout the radiology AI lifecycle. For 
instance, early proof-of-concept technologies would 
mostly require technical efficacy (RADAR-1) and diag-
nostic (RADAR-2) efficacy to confirm their foundational 
capabilities. In contrast, further developed technologies, 
for which cost-effectiveness has been proven (RADAR-6), 
require local value assessment or a prospective monitor-
ing plan (RADAR-7) to ensure their broader utility trans-
lates locally. RADAR is thus contingent on the state and 
valuation need of the specific technology, which is vital as 
this changes throughout the radiology AI lifecycle.

In conclusion, RADAR constitutes a conceptual frame-
work for the valuation of radiology AI throughout its 
lifecycle. It initiates with technical performance at the 
technology’s conception (RADAR-1) and incorporates 
increasingly broader valuation, ultimately resulting in 
the assessment of generalizability to the local context 
(RADAR-7). Progressing hierarchically through the seven 
levels, RADAR constitutes a comprehensive valuation 
framework, positioned to bridge the implementation gap 
in radiology AI.
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