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Abstract 

Objectives MAchine Learning In MyelomA Response (MALIMAR) is an observational clinical study combining 
“real‑world” and clinical trial data, both retrospective and prospective. Images were acquired on three MRI scanners 
over a 10‑year window at two institutions, leading to a need for extensive curation.

Methods Curation involved image aggregation, pseudonymisation, allocation between project phases, data clean‑
ing, upload to an XNAT repository visible from multiple sites, annotation, incorporation of machine learning research 
outputs and quality assurance using programmatic methods.

Results A total of 796 whole‑body MR imaging sessions from 462 subjects were curated. A major change in scan 
protocol part way through the retrospective window meant that approximately 30% of available imaging sessions 
had properties that differed significantly from the remainder of the data. Issues were found with a vendor‑supplied 
clinical algorithm for “composing” whole‑body images from multiple imaging stations. Historic weaknesses in a digital 
video disk (DVD) research archive (already addressed by the mid‑2010s) were highlighted by incomplete datasets, 
some of which could not be completely recovered. The final dataset contained 736 imaging sessions for 432 subjects. 
Software was written to clean and harmonise data. Implications for the subsequent machine learning activity are 
considered.

Conclusions MALIMAR exemplifies the vital role that curation plays in machine learning studies that use real‑world 
data. A research repository such as XNAT facilitates day‑to‑day management, ensures robustness and consistency 
and enhances the value of the final dataset. The types of process described here will be vital for future large‑scale 
multi‑institutional and multi‑national imaging projects.

XNAT was originally [RM1] introduced as an abbreviation for "eXtensible 
Neuroimaging Archive Toolkit", but owing to increased user base of the 
product beyond the original neuroimaging origins, its authors have stated 
that XNAT should no longer regarded as an abbreviation but simply as the 
name of a piece of software.
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Critical relevance statement This article showcases innovative data curation methods using a state‑of‑the‑art 
image repository platform; such tools will be vital for managing the large multi‑institutional datasets required to train 
and validate generalisable ML algorithms and future foundation models in medical imaging.

Key points 

• Heterogeneous data in the MALIMAR study required the development of novel curation strategies.

• Correction of multiple problems affecting the real‑world data was successful, but implications for machine learning 
are still being evaluated.

• Modern image repositories have rich application programming interfaces enabling data enrichment and program‑
matic QA, making them much more than simple “image marts”.

Keywords Data curation, Data annotation, Magnetic resonance imaging, Myeloma

Graphical Abstract

Introduction
In 2016, on the basis of strong literature evidence [1], 
the UK’s National Institute for Health and Care Excel-
lence (NICE) recommended using whole-body magnetic 
resonance imaging (WB-MRI) as the first-line imaging 
tool for diagnosis of myeloma [2]. A consensus from the 
International Myeloma Working Group agreed that iden-
tification of more than two focal lesions larger than 5 mm 
on MRI should now be used as an indication to treat [3, 
4]. An optimised WB-MRI protocol has also been pub-
lished [5], recommending Dixon and diffusion-weighted 

MRI (DWI) from skull vertex to knees plus sagittal spine 
imaging as the basis for disease assessment.

Radiological reporting therefore requires inspection 
over the whole imaging volume of at least seven differ-
ent image series: T1-weighted Dixon “in phase”, “out of 
phase”, “fat” and “water”, two DWI “b-values”, and an 
apparent diffusion coefficient (ADC) map. Patterns of 
marrow infiltration, burden of disease and degree of 
response all influence prognosis, but objective quantifica-
tion is challenging, in principle requiring the generation 
of large numbers of regions of interest (ROIs) in 3-D on 



Page 3 of 13Doran et al. Insights into Imaging           (2024) 15:47  

multiple image contrasts and the derivation of quantita-
tive imaging biomarkers.

Manual analysis of this nature is impractical in the 
clinical workflow, and this is an area that is ripe for the 
use of artificial intelligence (AI). However, the creation 
of robust and generalisable automated analysis tools first 
requires the assembly of large and sufficiently diverse 
datasets to support model training and validation. Asso-
ciated clinical data and annotation — consisting of case 
report forms (CRFs) and images that have been seg-
mented by domain experts — need to be both complete 
for each subject and also presented homogeneously to AI 
models. The Machine Learning In MyelomA Response 
(MALIMAR) study [6], which contains 736 imaging ses-
sions for 432 data subjects, is designed to achieve this 
ambitious goal. MALIMAR comprises real-world data 
(RWD) retrospectively sourced at two different hospi-
tals, data from a previous prospective clinical study and 
images acquired prospectively for MALIMAR on healthy 
volunteers. It addresses detection, classification, assess-
ment of disease burden and the impact of AI on the radi-
ologist “reading” process.

The importance of data curation is often underplayed 
in the AI literature [7]. We report here on significant 
innovations in curation methodologies, made neces-
sary by the diversity of data sources in MALIMAR. The 
purpose of this article is to demonstrate how automated 
methods in conjunction with an integrated data reposi-
tory increased the robustness and quality of data for anal-
ysis. Challenges in sourcing and reconstructing historical 
datasets required development of algorithms to “clean” 
and “harmonise” data. XNAT helped us to allocate sub-
jects and imaging sessions to phases of the project, to 
share securely the results of analyses and to perform 
quality assurance programmatically in a way that was 
repeatable, auditable and self-documenting.

To date, few machine learning (ML) studies of WB-
MRI of myeloma with close to the scope of MALIMAR 
have been reported in the literature, the nearest compar-
ator being the multicentre pilot analysis of 102 patients 
recently published by Wennmann et al. [8], which incor-
porated both automated segmentation and radiomics. 
Pilot studies [9, 10] recently reported encouraging results 
for myeloma lesion segmentation in relatively small num-
bers of cases. Other groups [10–13] have used radiom-
ics methods for myeloma lesion classification on regions 
of interest (ROIs) already segmented by radiologists. 
Jerebko et  al. [14] developed an early computer-aided 
detection algorithm for vertebral column metastases in 
WB-MRI, and, more recently, He and Zhang [15] and 
Zhou et  al. [16] have used deep learning (DL) methods 
to classify MR images of myeloma patients, but without 
the use of DW-MRI. A preliminary DL analysis of some 

of the MALIMAR data, presented by Qaiser et  al. [17], 
assigned disease status to bone regions rather than seg-
menting individual lesions. Hwang and colleagues [18] 
considered the problem of fully automated segmenta-
tion of bone marrow, accounting for indistinct borders 
between the bone marrow and other tissues in the pres-
ence of disease. We have also previously developed meth-
ods for organ localisation in the type of Dixon WB-MRI 
used here [19, 20], and other modalities have also been 
investigated [21, 22].

Materials and methods
Data sources
Images for the observational MALIMAR study were 
drawn from two UK NHS institutions, the Royal Mars-
den NHS Foundation Trust (RM) and Imperial College 
NHS Trust (ICHT), acquired over the period 2011–2020. 
Data from four subject populations were included:

(a) Retrospective clinical data from RM patients
(b) Data from RM patients acquired as part of the pro-

spective Image-guided Theranostics in Multiple 
Myeloma (iTIMM) study (ClinicalTrials.gov identi-
fier: NCT02403102)

(c) Prospective data acquired for the MALIMAR study 
from RM healthy volunteers

(d) Retrospective clinical data from ICHT patients

Figure  1 shows the study CONSORT diagram. Note 
that a number of patients in population (b) also had clini-
cal scans performed outside of the iTIMM trial. When 
these were used in MALIMAR, this group of patients 
overlaps with population (a).

Data acquisition
Data, as originally acquired, consisted of WB-MRI 
examinations comprising scans at multiple “stations” 
(patient couch positions). Complete data volumes for 
further study were created by “composing” (or “stitch-
ing together”) data from these stations. All subjects had 
both Dixon T1-weighted imaging and DWI with multiple 
b-values plus associated ADC map. Supplementary Fig. 1 
illustrates the different scanners and protocols, together 
with the complete curation history and a more fine-
grained analysis of exclusions.

Data transfer and pseudonymisation
Data were pseudonymised at the site of the clinical 
acquisition and transferred to the XNAT platform at 
the Institute of Cancer Research. See the supplementary 
information for details.



Page 4 of 13Doran et al. Insights into Imaging           (2024) 15:47 

Disease patterns and allocation to project phases
The following presentations of disease seen at imaging 
were defined: diffuse (D), extramedullary (EM), para-
medullary (PM), focal (F) and micronodular (MN). These 
are not mutually exclusive, and some images show the 

presence of both focal and diffuse disease. For some 
patients, disease was considered inactive (I). The study 
contains both previously treated and treatment-naïve 
patients, the latter being coded with the “new diagno-
sis” (N) label. In addition, part of the imaged population 

Fig. 1 CONSORT diagram for MALIMAR study. Phase 1 scans were for model training, Phase 2 were for human‑in‑the‑loop testing of single 
time‑point WB‑MRI scans for detection of active disease and Phase 3 scans were for human‑in‑the‑loop testing of pre‑ and post‑treatment MRI 
scans for detection of active disease as well as quantification of disease for detection of response
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is made up of healthy volunteers (H). Given that disease 
may evolve and that some subjects contribute several ses-
sions to the study, the pattern of disease (coded as a com-
bination of the above letters) was assessed at the level of 
an individual imaging session and could change over time 
for any given subject. Table  1 shows the distribution of 
disease patterns, illustrating a large number of potential 
subpopulations to study, some with low prevalence.

Analysis was divided into project phases [6], where 
Phase 1 data are training samples and Phases 2 and 3 
contain validation data. For the purposes of allocation 
between phases, subjects from cohorts (a), (c) and (d) 
were coalesced into larger categories (focal, diffuse, inac-
tive and healthy — see Table 2). Phase 3 was composed 
entirely from cohort (b) iTIMM patients, and remaining 
subjects were allocated as described in the supplemen-
tary information.

Data cleaning
Data cleaning was semi-automatic; a processing script 
was launched for each imaging session, following 
which most steps were automatic except where manual 

intervention (managed by the script) was needed in iso-
lated cases to resolve certain of the correction issues 
described below. The entire processing chain was 
recorded as a Jupyter Notebook (see Supplementary 
Listing 2), and this was subsequently “crystalised” into a 
noninteractive HTML file and uploaded to XNAT as a 
“session resource” for the purposes of eventual auditing. 
The following aspects of the data cleaning are described 
in detail in the supplementary information:

• Consolidation of data and removal of extraneous MR 
sequences

• Correction of issues related to the vendor’s “composi-
tion” algorithm

• Harmonisation of field-of-view and spatial resolution
• Reformatting coronal Dixon data to transverse to 

provide a consistent input to ML algorithms
• Data upload to final location

Phase 1 segmentations
To support the ML objectives of Phase 1, two separate 
segmentation tasks were performed. A medical physicist 
(Th.B.) created approximate manual segmentation masks 
for 18 bony structures on each of a subset of 75 scans, 
and these served as “bounding regions” to train the algo-
rithm described in [17]. For a sample of 68 sessions allo-
cated to Phase 1, two senior radiologists (A.R., Ta.B.) and 
two trained radiology registrars (K.E., A.S.) segmented all 
focal active lesions on the high b-value diffusion images. 
Technical details of the implementation strategy are pro-
vided in the supplementary information.

Post-dating the start of MALIMAR, there have been 
rapid developments in the field of automated segmen-
tation, often based on DL, to the extent that impressive 
generic tools (e.g. [23, 24]) have now been reported. 
However, no such tools operating on MR data were 

Table 1 Disease patterns for Phases 1 and 2, specified on a per‑
session basis. (Equivalent data are unavailable for Phase 3 at the 
time of writing). An individual subject may contribute sessions in 
a number of different categories below

Key to symbols: D Diffuse, EM Extramedullary, PM Paramedullary, F Focal, H 
Healthy, I Inactive, MN Micronodular, N New diagnosis

Disease pattern No. of sessions 
Phase 1

No. of sessions 
Phase 2

No. of 
sessions 
Phases 1 + 2

F 96 88 184

I 63 95 158

F D 49 28 77

D 38 32 70

H 25 22 47

F EM 6 9 15

D N 5 8 13

F D PM 7 6 13

F D N 4 5 9

F N 6 2 8

F PM 4 2 6

F PM EM 2 4 6

F D PM EM 5 0 5

F D EM 2 1 3

MN 2 0 2

D EM 1 0 1

D MN 1 0 1

F MN 0 1 1

MN N 0 1 1

Total 316 304 620

Table 2 Disease categories for Phase 1 and Phase 2, specified on 
a per‑subject basis. (Equivalent data are unavailable for Phase 3 at 
the time of writing)

Key to symbols: D Diffuse, F Focal, I Inactive and H Healthy

Disease category No. of 
subjects 
Phase 1

No. of 
subjects 
Phase 2

No. of 
subjects 
Phases 1 + 2

D 73 72 145

F 60 62 122

I 21 41 62

H 25 22 47

Total 179 197 376
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available during the design and execution phases of the 
project.

Semantic labelling of disease
Each case was assessed by one of four senior radiolo-
gists (C.M., D.M.K., T.B. and A.R.), and clinical informa-
tion was reviewed by one of two senior haematologists 
(M.K., A.C.). For each of the 18 bony regions, the follow-
ing annotations were recorded: number of focal lesions, 
maximum lesion size, the presence of diffuse disease, the 
presence of inactive disease, whether the region appeared 
normal and the presence of any imaging artefact. See the 
supplementary information for further details.

Data aggregation
XNAT acted as the canonical record for the following 
data types for individual imaging sessions:

• Disease pattern and radiologist observations
• DICOM source images
• NIfTI representations of the DICOM data for train-

ing ML algorithms
• Electronic case report forms (eCRFs)
• Manual segmentations
• Data-cleaning reports
• Administrative data (e.g. completion status of anno-

tations)

At an overall project level, XNAT stored management 
data and research outputs:

• The project protocol
• Records of case allocations to project phases (both 

final spreadsheets and the Jupyter Notebooks that 
created them)

• Python scripts for curating the data
• ML outputs
• Meeting minutes
• Progress reports
• Conference submissions and publications

Programmatic QA of the entire curation process
Although individual processing steps described were 
automated, some workflows (e.g. segmentation and 
semantic annotation) were manual and initiated per 
session. Initial data gathering was performed by multi-
ple staff members manually retrieving data from PACS, 
with progress recorded via a set of spreadsheets. Final 
verification of data integrity and generation of metrics 
was performed by programmatic analysis of XNAT and 
spreadsheet data.

Results
Image retrieval
It was known at the planning stage of MALIMAR that 
issues existed with the data composition algorithm. 
Our initial intention was to retrieve original (uncom-
posed) DICOM series from the MRI unit’s research 
DVD archive at RM and to compose these data via 
an independent algorithm created by the MALIMAR 
team. However, this exercise was abandoned midway 
after the discovery that approximately 20% of sessions 
had incomplete original data (full data availability sur-
vey is reported in the supplementary information). The 
decision was thus taken to work with composed (clini-
cal standard of care) data from PACS, correcting any 
deficiencies as far as possible.

Variation in image sequence parameters
Figure  2 demonstrates the difference between the two 
different imaging protocols that were in use at the RM for 
the MAGNETOM Avanto scanner (Siemens Healthcare, 
Erlangen, Germany). The newer “transverse” Dixon pro-
tocol, shown in panels a–c, trades slower acquisition time 
and poorer signal-to-noise ratio for increased resolution 
in transverse slices (matching the DWI), compared with 
the previous coronal protocol (d–f).

Data cleaning
Figure 3 illustrates issues encountered with image com-
position. These were diagnostically insignificant but 
problematic for ML training data. Figure 3a is a graphi-
cal representation of incorrect slice spacings for a Dixon 
“water” dataset from PACS. Arrows in the inset enlarge-
ments demonstrate their impact. 3b is the corresponding 
summary report generated by our Python cleaning code. 
3c illustrates how slice-spacing errors in the b50 and 
b900 data from the same patient could differ both from 
the Dixon data and from each other. In 3d (for a differ-
ent patient), both the “water” and “fat” images have been 
reconstructed from the same in- and out-of-phase Dixon 
data and should be inherently co-registered. However, it 
is evident that the composition algorithm introduces an 
offset such that corresponding structures are not aligned. 
Moreover, this within-slice shift is not consistent even 
within a single patient but varies between stations.

Supplementary Figs. 2, 3, 4 and 5 provide further exam-
ples of data quality issues. The so-called fat-water swaps 
were encountered in approximately 10% of the imaging 
sessions used. These typically took one of three forms:

• Global mislabelling — Composed series labelled 
“fat” actually contained the Dixon “water” images 
and vice versa.
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• Station mislabelling — DICOM series for one or 
more of the original stations were labelled “fat” 
when actually containing the Dixon “water” images 
and vice versa, thus leading to a composed image in 
which one or more blocks had the wrong contrast.

• Local fat-water swap — A region within the volume 
of a single station was misidentified. Supplemen-
tary Fig. 5 illustrates this and also demonstrates the 
impact of implanted metal on Dixon and diffusion-
weighted imaging.

Fig. 2 Scans of the same patient made on the RM Siemens Avanto illustrating the two different protocols used in this study: a–c “transverse” Dixon 
protocol trades signal‑to‑noise ratio for increased resolution in transverse slices compared with (d–f) “coronal” protocol. a, b and f are the acquired 
series, while c, d and e are reformatted versions of the data
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For MALIMAR, the most expedient route to solve this 
issue was exhaustive checking of data by a member of the 
research team. However, recent work [25] suggests the 
possibility of automated detection and correction of the 
problem.

Several other types of artefacts were also observed, 
including motion, distortions and abnormally low image 
signal-to-noise ratio.

Results of segmentation
Figure  4 shows a visualisation of the results of manual 
segmentation of the bony structures. The results of the 
automated procedure are presented in [17]. Figure 5 illus-
trates focal lesion segmentation.

Discussion
MALIMAR combines prospectively acquired data, with 
a locked-down acquisition protocol, and variable “real-
world” data, whose use presents consistency challenges 

Fig. 3 a Representation of pattern of slice separation in source data prior to cleaning: light blue, contiguous slice data; white, slice underlap; dark 
blue, slice overlap. When these axially acquired slices are displayed in a coronal reformatting, image artefacts are evident, and these are highlighted 
by the arrows in the inset enlargements. b Summary report generated by the slice‑correction portion of the cleaning algorithm for the “water” 
images of the same patient as a. Note that overlapping slices (amber warning) can be corrected by interpolation, with no loss of information. 
Underlapping slices (red warning) represent missing data in the “composed” images. c Summary report and graphical representation of slice 
locations for the diffusion data of the same patient as a and b. Note the difference in underlap and overlap pattern between the composed versions 
of the two images series acquired with the same fields of view but different b‑values. d Examples from a different patient of the effect of image 
composition on the positions of corresponding structures on nominally co‑registered images. The small inset displays the location of the enlarged 
image region within the entire slice
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for ML [26]. Incompatibility between MRI data sources 
arises because of the following:

• It may be impossible to match protocols on a scan-
ner from one vendor with exact equivalents from 
another.

• Even from the same vendor, hardware and software 
capabilities vary between models (and sometimes 
within the same model).

• Scanners and software versions are updated.
• Knowledge, experience and clinical requirements 

evolve, leading to the use of different sequences.
• Logistical considerations dictate particular acquisi-

tion strategies in the clinic, and these may be differ-
ent between study sites.

• Protocols may mandate patient coverage (e.g. from 
skull vertex to knees in myeloma) rather than field 

Fig. 4 Example of an image segmentation (performed on the dataset of Fig. 2b and c) for MALIMAR Phase 1 as training data 
for an auto‑segmentation routine. Note the compromise solution of a crude spine and rib segmentation, rather than a detailed segmentation 
of individual vertebrae
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of view, and so the number of stations may vary 
between patients of different heights.

• Although not relevant for MALIMAR, running an 
identical pulse sequence at different field strengths 
may give rise to different image contrasts.

Thus, it is unrealistic for machine-learning researchers 
to expect real-world, multi-institutional data to be a pri-
ori compatible, and this leads to the need for significant 
curation and pre-processing.

Variable provenance means that anonymisation strat-
egy and methods of data upload need careful thought, 
and this is highly relevant for large multi-national and 
multi-institutional data curation efforts currently under-
way (e.g. The Cancer Imaging Archive (TCIA) and Imag-
ing Data Commons (IDC) in the USA and European 
Union Horizon 2020 projects CHAIMELEON, EuCan-
Image, ProCAncer-I and the recently inaugurated Euro-
pean Federation for Cancer Images (EUCAIM) https:// 
www. egi. eu/ proje ct/ eucaim/).

Curation strategies also need to be flexible enough to 
respond to situations that are discovered only after the 
study design has been finalised. MALIMAR exemplifies 
how, in the “AI era,” routine patients become research 
subjects retrospectively. Data are used for purposes that 
not only differ from the primary healthcare need but 

also had not even been formulated at the time of data 
acquisition. Such projects must be conducted within an 
appropriate ethical framework, and guidance has been 
issued by the UK’s Royal College of Radiologists [27]. 
There are increasing incentives for institutions to dupli-
cate all future patient data to a research archive separate 
from the hospital PACS. Indeed, many institutions — and 
even entire nations [28] — are going further and creating 
research copies of their entire historical PACS.

Correcting data to compensate for errors in the “com-
position” step consumed a significant length of time, and 
our findings argue strongly for retaining all original data. 
However, this research requirement has consequences 
for the clinical reporting workflow: either the PACS 
becomes cluttered or hanging protocols need to display 
only the relevant series in an appropriate layout to meet 
the needs of the reporting radiologists.

It was a priori undesirable that patients were scanned 
with two substantially different imaging protocols (trans-
verse and coronal Dixon images, as illustrated in Fig. 2). 
However, given that the coronal protocol accounted for 
almost 30% of sessions, it was deemed not feasible to 
remove these scans. The supplementary information lists 
strategies we considered to overcome this problem.

Curation via programmatic means aids repeatabil-
ity and can be made self-documenting. Automating the 

Fig. 5 Example of an image segmentation of focal lesions (for a different patient from Figs. 2, 3, 4)

https://www.egi.eu/project/eucaim/
https://www.egi.eu/project/eucaim/
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allocation of imaging sessions between project phases 
allowed us to fine-tune a complex algorithm and imple-
ment it without the risk of errors arising from diffi-
cult-to-replicate manual interventions. Via our novel 
combination of script and data platform, we aimed to 
make it straightforward to reanalyse the entire study 
from scratch, in the light of new methods or knowledge, 
with minimal human interaction, in a time governed only 
by computational power and data throughput. Given this 
ability, MALIMAR provides a highly useful dataset and 
framework for future work to isolate the impact of each 
of the data curation procedures on downstream machine 
learning models.

MALIMAR revealed significant shortcomings in data 
archiving that had existed historically even in a research-
active institution with an excellent MRI department. 
The data spanned an era in which the problem of a large 
(many thousands of DVDs) research data archive was 
already being addressed, and the findings reflect limi-
tations of the technology available at the time, which 
were incompatible with the pressures of a busy clinical 
unit. These historical archiving practices and the associ-
ated problems are not unique to RM and will be relevant 
for other projects using retrospective data, especially 
WB-MRI.

A limitation of the study is that all scanners were from 
the same manufacturer and had the same field strength.

Conclusions
The MALIMAR project addresses a problem of signifi-
cant unmet clinical need for which there was no large 
pre-existing curated dataset. We have demonstrated how 
multi-institutional retrospective data, acquired on differ-
ent scanner models and over an extended time window, 
give rise to “real-world” problems. Attention to detail is 
needed to maximise the utility of the data, but this task 
can be made easier by automated processing and pro-
grammatic QA. MALIMAR showcases the benefits of 
using a repository platform such as XNAT as an aggrega-
tor of data that eases the day-to-day management of mul-
ticentre trials, facilitates data sharing with robust access 
controls and enhances the quality and value of data. All 
of these aspects will prove vital in the coming years as 
the size and complexity of image datasets increase and as 
new data repositories at national and transnational scales 
come on-stream.
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Additional file 1: Supplementary Video 1. Complete 3‑D data for 
reformatted and “composed” image series, illustrating a case where there 
are severe slice contiguity issues. Uncorrected, as here, the images would 
act as confounders for training ML algorithms.

Additional file 2: Supplementary Video 2. Partially corrected 3‑D data 
for the case shown in Supplementary Video 1. Where data are missing 
then the correction is imperfect.

Additional file 3: Supplementary Figure 1. Detailed CONSORT diagram 
for MALIMAR study, augmented with data processing details and interme‑
diate staging points. Phase 1 scans were for model training; Phase 2 were 
for human‑in‑the‑loop testing of single time‑point MRI scans for detection 
of active disease and Phase 3 scans were for human‑in‑the‑loop testing of 
pre‑ and post‑treatment MRI scan for detection of active disease as well 
as quantification of disease for detection of response. Supplementary 
Figure 2. “Poster frame” accompaniment to videos of complete 3‑D data 
for reformatted “composed” image series, illustrating a case where there 
are severe slice contiguity issues. Uncorrected, the images would act 
as confounders for training ML algorithms. The original images can be 
partially corrected, but if data are missing then the correction is imperfect. 
Supplementary Figure 3. Reformatted “composed” image series from 
a patient illustrating a case with completely misordered station data. 
Supplementary Figure 4. Reformatted “composed” image series for two 
patients showing examples of the variations in field‑of‑view encountered. 
Supplementary Figure 5. Example of image with severe, but isolated, 
artefact due to presence of metal, with (inset) the corresponding b50 
diffusion‑weighted image. Other parts of the 3‑D dataset may be suit‑
able for machine learning. Note also (arrows) a local fat‑water swap in 
the Dixon reconstruction. Supplementary Listing 1. Jupyter notebook 
illustrating the algorithm used for allocating imaging sessions to different 
trial phases and the way that this was made “self‑documenting”. Due to 
constraints of trial management, the RMH and ICHT data were assigned as 
separate processes. Supplementary Listing 2. Jupyter notebook illustrat‑
ing the algorithm used for cleaning imaging sessions and the way that 
this was made “self‑documenting”. Note that the script refers to a set of 
underlying Python objects that were developed using a traditional Python 
coding methodology with the PyCharm IDE. At the point marked *, the 
Jupyter script launches an interactive editing tool to correct for image 
shifts. Arrows represent the order of the process flow.
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