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Intratumoral and peritumoral radiomics 
predict pathological response after neoadjuvant 
chemotherapy against advanced gastric cancer
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Abstract 

Background  To investigate whether intratumoral and peritumoral radiomics may predict pathological responses 
after neoadjuvant chemotherapy against advanced gastric cancer.

Methods  Clinical, pathological, and CT data from 231 patients with advanced gastric cancer who underwent neoad-
juvant chemotherapy at our hospital between July 2014 and February 2022 were retrospectively collected. Patients 
were randomly divided into a training group (n = 161) and a validation group (n = 70). The support vector machine 
classifier was used to establish radiomics models. A clinical model was established based on the selected clinical 
indicators. Finally, the radiomics and clinical models were combined to generate a radiomics–clinical model. ROC 
analyses were used to evaluate the prediction efficiency for each model. Calibration curves and decision curves were 
used to evaluate the optimal model.

Results  A total of 91 cases were recorded with good response and 140 with poor response. The radiomics model 
demonstrated that the AUC was higher in the combined model than in the intratumoral and peritumoral models 
(training group: 0.949, 0.943, and 0.846, respectively; validation group: 0.815, 0.778, and 0.701, respectively). Age, Bor-
rmann classification, and Lauren classification were used to construct the clinical model. Among the radiomics–clini-
cal models, the combined-clinical model showed the highest AUC (training group: 0.960; validation group: 0.843), 
which significantly improved prediction efficiency.

Conclusion  The peritumoral model provided additional value in the evaluation of pathological response after neo-
adjuvant chemotherapy against advanced gastric cancer, and the combined-clinical model showed the highest 
predictive efficiency.

Critical relevance statement  Intratumoral and peritumoral radiomics can noninvasively predict the pathologi-
cal response against advanced gastric cancer after neoadjuvant chemotherapy to guide early treatment decision 
and provide individual treatment for patients.

Key points 

1. Radiomics can predict pathological responses after neoadjuvant chemotherapy against advanced gastric cancer.

2. Peritumoral radiomics has additional predictive value.

3. Radiomics–clinical models can guide early treatment decisions and improve patient prognosis.
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Graphical Abstract

Background
Gastric cancer is the fifth most common cancer and 
third most common cause of cancer-related deaths 
worldwide [1]. Although the incidence of gastric can-
cer is constantly decreasing, in 2020, 1,089,103 people 
were diagnosed with gastric cancer worldwide, and 
China accounted for about 44% of the cases [2]. More 
than 80% of the cases were already in an advanced stage 
at the time of treatment, and prognosis was poor [3]. 
Neoadjuvant chemotherapy (NAC) can reduce tumor 
staging, increase R0 resection rate, reduce recur-
rence and metastasis, and thus improve prognosis [4], 
hence, NAC is now a recommended treatment option 
for patients with advanced gastric cancer [5]. Both the 
National Comprehensive Cancer Network (NCCN) [6] 
and the Chinese Society of Clinical Oncology (CSCO) 
[3] recommend NAC for patients with advanced gastric 
cancer. However, not all patients benefit from NAC, 
and at least 20% of patients fail to achieve pathologi-
cal remission after NAC [7], which exposes patients 
to potential side effects without any benefit, result-
ing in delayed surgery, tumor progression, and poor 

prognosis. Therefore, early determination of the path-
ological response to NAC is of great significance to 
reduce chemotherapy toxicity and guide individualized 
treatment strategies.

Radiomics analysis may be used to characterize 
tumor heterogeneity based on high-throughput image 
quantitative feature extraction, with good application 
potential in disease diagnosis, tumor staging, and prog-
nosis prediction [8–12]. Previous studies have shown 
that intratumoral radiomics models can effectively pre-
dict the pathological response of advanced gastric can-
cer after NAC [13–15]. In addition, certain features of 
the peritumoral region may be exploited to predict the 
tumor pathological response. Braman et al. [16] showed 
that peritumoral radiomics is of great significance in 
predicting the pathological response after NAC in dif-
ferent breast cancer subtypes. Hu et al. [17] established 
a model based on peritumoral radiomics features of 
esophagogastric junction cancer, which can effectively 
predict the pathological remission of tumors after 
NAC. Sun [18] and Khorrami et al. [19] confirmed the 
predictive ability of the peritumoral region.
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Previous radiomics studies on the pathological 
response of advanced gastric cancer after NAC have 
mainly focused on the intratumoral region [13–15], and 
no studies on the peritumoral region have been reported. 
Our hypothesis is that peritumoral radiomics may con-
tribute to the prediction of pathological responses after 
NAC in advanced gastric cancer. Therefore, this study 
aimed to explore the predictive value of peritumoral radi-
omics for pathological response after NAC in advanced 
gastric cancer and to establish intratumoral, peritumoral, 
and combined models based on enhanced CT. In addi-
tion, a clinical model was established and combined with 
a radiomics model to further improve the predictive effi-
cacy of pathological responses after NAC in advanced 
gastric cancer.

Methods
The study protocol was approved by the Medical Ethics 
Committee of Zhengzhou University and the need for 
informed consent was waived.

Patient selection
Data from 385 patients with advanced gastric cancer who 
underwent NAC at the First Affiliated Hospital of Zheng-
zhou University between July 2014 and February 2022 
were retrospectively collected. The following inclusion 
criteria were applied: (1) gastric cancer confirmed with 
pathological biopsy before NAC and clinical stage was 
cT2-4aNxM0; (2) abdominal enhanced CT examination 
performed within one week before NAC; (3) no distant 
metastasis; (4) gastrectomy performed after NAC was 
completed according to the established protocol; and (5) 
complete clinical, pathological, and CT data. The follow-
ing exclusion criteria were applied to the 385 patients: (1) 
history of previous abdominal surgery (n = 24); (2) pres-
ence of other malignant tumors (n = 17); (3) poor gastric 
filling or tumor could not be identified at CT (n = 75); 
(4) poor computed tomography (CT) image quality with 
many artifacts (n = 16); and (5) other antitumor ther-
apy before NAC (n = 22). Thus, a total of 231 patients 
remained for further analysis.

NAC regimens and pathological response assessment
Enrolled patients were treated according to the pre-
scribed treatment plan, which included oxaliplatin + S-1 
(SOX), 5-fluorouracil + leucovorin + oxaliplatin + doc-
etaxel (FLOT), and capecitabine + oxaliplatin (XELOX). 
Postoperative pathological specimens were graded 
according to the Becker grading system [20], as follows: 
grade 1a, no residual tumor cells; grade 1b, < 10% residual 
tumor cells; grade 2, 10–50% residual tumor cells; grade 
3, > 50% residual tumor cells. In this study, patients with 
grades 1a and 1b were classified as having good response 

(GR). Patients with grades 2 and 3 were classified as hav-
ing poor response (PR).

Clinical data
The clinical data collected in this study included sex, 
age, tumor location, Borrmann classification, clinical T 
stage (cT), clinical N stage (cN), tumor thickness, histo-
pathology, differentiation degree, Lauren classification, 
and levels of carcinoembryonic antigen (CEA), carbo-
hydrate antigen 125 (CA125), and carbohydrate antigen 
199 (CA199). The tumor location was classified as fun-
dus, body, or antrum (tumors of the gastroesophageal 
junction were not included), and the extent of gastric 
wall involvement was ≥ 2/3. Borrmann type I: The tumor 
was lumpy and protruded into the lumen. Borrmann type 
II: The center of the tumor is ulcerated and the bound-
ary is clear. Borrmann Type III: There are also ulcers 
formed with incomplete edges and blurred boundaries. 
Borrmann type IV: Diffuse thickening and stiffness of 
the gastric wall. cT and cN were evaluated according 
to the 8th edition of the American Joint Committee on 
Cancer (AJCC) criteria [21]. To measure tumor thick-
ness, the largest layer of the tumor was selected and 
measured at the thickest part. Histopathology included 
adenocarcinoma and non-adenocarcinoma; non-adeno-
carcinoma included signet ring cell carcinoma and muci-
nous adenocarcinoma. Lauren classification includes 
intestinal type, mixed type, and diffuse type. CEA, 
CA125, and CA199 were changed into dichotomous 
data (normal and elevated) according to the respective 
reference values (CEA ≤ 3.4 μg/L, CA125 ≤ 35 μg/L, and 
CA199 ≤ 27 μg/L).

CT image acquisition
All patients were scanned using a 64-slice CT scanner 
(Discovery CT 750 HD; GE Healthcare, Waukesha, WI, 
USA, or Siemens Sensation 64 CT; Siemens Healthcare, 
Forchheim, Germany). Patients were instructed to fast 
for at least 6  h before scanning and to consume 500–
1000 ml of water orally to dilate the stomach cavity before 
the examination. Patients were positioned supine and 
scanning ranged from the top of the diaphragm to the 
upper margin of the pubic symphysis for both plain and 
contrast-enhanced scans. First, a plain CT scan was per-
formed. During enhancement examination, a high-pres-
sure power injector (Urich REF XD 2060-Touch, Ulrich 
Medical) was used to inject the contrast agent iohexol 
(Shanghai Bolaike Xinyi Pharmaceutical Co., Ltd., iodine 
concentration 370  mg/mL) through the elbow vein at a 
flow rate of 3.5 mL/s and a dose of 1.5 mL/kg. The arte-
rial phase scan started 25 to 30 s, and the venous phase 
scan started 60 to 70 s after contrast agent injection, with 
the following scanning parameters: tube voltage 120 kV, 
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tube current 220–330 mA or automatic milliampere sec-
ond technology, field of view (FOV) 35–50  cm, matrix 
512 × 512, rotation time 0.5–0.8 s, pitch 1.375 or 1.1, and 
reconstruction layer thickness 2 mm.

ROI (region of interest) segmentation
Thin-layer images of patients in the venous phase were 
retrieved from the picture archiving and communication 
system (PACS) and stored in Digital Imaging and Com-
munications in Medicine (DICOM) format. Images were 
uploaded to the Dr. Wise Multimodal Research Platform 
(https://​keyan.​deepw​ise.​com). Region of interest (ROI) 
for gastric cancer was delineated layer-by-layer on the 
axial image by a radiologist with 3  years of experience 
(C.C.L.), and the delineation process was supervised by a 
radiologist with 5 years of experience (L.M.L.). Each layer 
of gastric cancer lesions was sketched along the edge of 
the lesion, and the obvious necrotic area was avoided 
as far as possible when delineating. After the outline of 
the lesion ROI was completed, a peripheral ring of 2 mm 
was automatically created using the automatic outward 
expansion function of the software (Fig.  1). To ensure 
reliability and repeatability of the radiomics features, 

ROIs from 30 randomly selected patients (training group: 
20, validation group: 10) were delineated again one 
month later by the same radiologists (C.C.L. and L.M.L.).

Radiomics feature extraction
After all ROIs were delineated, intratumoral, peritumoral, 
and combined radiomics features were automatically 
extracted using appropriate software. Image preprocess-
ing methods included the original image, wavelet trans-
form, Laplacian of gaussian transform (LoG), local binary 
pattern applied in 2D (LBP2D), local binary pattern 
applied in 3D (LBP3D), square, square root, logarithm, 
exponential, and gradient. Radiomics features included 
first-order features, shape features, gray-level co-occur-
rence matrix (GLCM), gray-level size zone matrix 
(GLSZM), gray-level run length matrix (GLRLM), gray-
level dependence matrix (GLDM), and neighborhood 
grayscale difference matrix (NGTDM). These features are 
commonly used classic features [22].

Radiomics feature selection
Feature selection was performed according to the follow-
ing three steps:

Fig. 1  ROI segmentation diagram. a–c A 61-year-old male patient with moderately differentiated advanced gastric adenocarcinoma. a The 
tumor was located in the gastric antrum, and the intratumoral ROI was delineated along the tumor edge. b The boundary was equidistant 
outward by 2 mm to form the peritumoral ROI. c Postoperative pathological picture: Massive chronic inflammatory cell infiltration, no residual 
tumor cells, grade 1a (HE × 200). d–f A 59-year-old male patient with moderately differentiated advanced gastric adenocarcinoma. d The tumor 
was located in the cardia, and the intratumoral ROI was delineated along the tumor edge. e Boundary was equidistant outward by 2 mm to form 
the peritumoral ROI. f Postoperative pathological picture: Proliferation of interstitial fibrous tissue and a small amount of tumor cell degeneration, 
grade 3 (HE × 200)

https://keyan.deepwise.com
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(1)	 The consistency of the extracted radiomics features 
was tested, and radiomics features with intraclass 
correlation coefficient (ICC) ≥ 0.80 were screened.

(2)	 The screened features were normalized using the 
following formula: z = (x − mean)/std, where std 
stands for standard deviation. Then, correlation 
analysis of the features was performed to alleviate 
redundancy between features, and the threshold of 
the correlation analysis was 0.55.

(3)	 Lasso was used to further reduce dimensionality 
and screen out features with larger absolute coeffi-
cients.

Model establishment
In the training group, influencing indicators related to 
pathological responses were screened using univariate 
analysis, and independent risk factors related to patho-
logical responses were screened using multivariate logis-
tic regression analysis. A clinical model was established 
based on independent risk factors, and the predicted 
probability of the model output was considered as the 
clinical score. In the validation group, the same clinical 
influencing indicators were used to establish and validate 
the clinical model.

Based on the selected radiomics features, SVM classifi-
ers [23] were used to establish intratumoral, peritumoral, 
and combined models, and the prediction probability 
output of the model was considered as the radiomics 
score (RS) for each model.

The predicted probabilities of the output of the radi-
omics and clinical models were combined, and a logistic 
regression analysis was performed to establish the radi-
omics–clinical model. The radiomics–clinical model 
included intratumoral-clinical, peritumoral-clinical, and 
combined-clinical models.

Statistical analysis
The Shapiro–Wilk test was used to analyze the normality 
of the measurement data using the SPSS 25.0 statistical 
analysis software. Non-normally distributed data were 
expressed as M (Q1, Q3). The Mann–Whitney U test 
was used to compare the measurement data between the 
training and validation groups, and the chi-square test or 
Fisher’s exact test was used to compare the count data. 
Statistical significance was set at p < 0.05.

The R software was used to draw receiver operating 
characteristic (ROC) curves for each model, and the 
area under curve (AUC), accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV) were used to evaluate the prediction effi-
ciency of the model. Hosmer–Lemeshow test were used 
to evaluate the correction ability of the model. In the 
Hosmer–Lemeshow test, p > 0.05 indicated no significant 

difference between the predicted and real value [22]. Cal-
ibration curves and decision curves were used to evaluate 
the optimal model.

The Delong test was used to compare the AUC of dif-
ferent models using MedCalc 19.0.2, and statistical sig-
nificance was set at p < 0.05.

Results
Baseline characteristics
A total of 231 patients with advanced gastric cancer were 
randomly divided into a training group (161 patients) 
and a validation group (70 cases) at a ratio of 7:3. Of 
these, 182 were male and 49 were female. Patient age 
ranged from 23 to 76  years, with a median of 61  years. 
Out of 161 cases in the training group, 63 cases had GR, 
accounting for 39.13%, and 98 cases had PR, accounting 
for 60.87%. A total of 70 cases comprised the validation 
group, including 28 cases with GR (40.00%) and 42 cases 
with PR (60.00%).

Clinical model
In the training group, univariate analysis showed that 
age, Borrmann classification, and Lauren classification 
were significantly different between patients with GR and 
those with PR (Table 1). Multivariate logistic regression 
analysis showed that age, Borrmann classification, and 
Lauren classification were independent risk factors for 
predicting pathological response after NAC in advanced 
gastric cancer (Table S1). Clinical models were estab-
lished based on the age, Borrmann classification, and 
Lauren classification.

Radiomics model
Based on the original and filtered images, 2107 radi-
omics features were extracted from intratumoral and 
peritumoral images, and 4214 radiomics features were 
extracted from the combined intratumoral and peritu-
moral images. Among the intratumoral, peritumoral, 
and combined radiomics features, 1618, 1778, and 3288 
features, respectively, were screened (ICC ≥ 0.80). After 
three feature selection steps, 36 radiomics features were 
included in the intratumoral model, 13 in the peritumoral 
model, and 29 in the combined model. The specific radi-
omics features are listed in Table S2. Based on the above 
features, an SVM classifier was used to establish intratu-
moral, peritumoral, and combined models.

Evaluation of model performance
The prediction probabilities of the intratumoral, peritu-
moral, and combined models were combined with the 
prediction probabilities of the clinical model, and the 
new prediction probabilities were obtained by logistic 
regression analysis to establish the intratumoral-clinical 
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Table 1  Comparison of clinical, pathological and imaging parameters between training and validation groups

GR Good response, PR Poor response, CEA Carcinoembryonic antigen, CA125 Carbohydrate antigen 125, CA199 Carbohydrate antigen 199
a χ2 value
b Z value
c Fisher’s exact probability method

Training group p value Validation group p value

GR (63) PR (98) GR (28) PR (42)

Gender 0.471a 0.062a

  Male 53 78 17 34

  Female 10 20 11 8

Age (years) 58.00 (52.00, 66.00) 62.00 (56.00, 69.00) 0.031b 61.00 (57.00, 65.75) 63.00 (58.00, 67.25) 0.387b

Tumor location 0.113c 0.079c

  Fundus 42 60 18 26

  Body 10 27 2 11

  Antrum 11 9 7 4

  ≥ 2/3 0 2 1 1

Borrmann 0.031c 0.907c

  I 3 5 2 4

  II 50 60 22 29

  III 10 33 4 8

  IV 0 0 0 1

Clinical T stage 0.688a 0.492c

  2 6 7 4 3

  3 43 64 16 29

  ≥ 4a 14 27 8 10

Clinical N stage 0.437a 0.411a

  N0 27 36 8 16

  N +  36 62 20 26

Thickness (mm) 13.82 (9.88, 16.16) 13.02 (10.08, 16.47) 0.609b 13.78 (11.03, 16.33) 13.16 (10.48, 16.87) 0.971b

Histopathology 0.091a 0.552a

  Adenocarcinoma 55 75 23 32

  Non-adenocarcinoma 8 23 5 10

Differentiation 0.102c 0.146a

  Well 1 0 0 0

  Moderate 38 48 12 11

  Poor 24 50 16 31

Lauren 0.001a 0.117a

  Intestinal type 44 41 17 15

  Mixed type 6 27 6 16

  Diffuse type 13 30 5 11

CEA 0.069a 0.188a

  Normal 49 63 18 33

  Elevated 14 35 10 9

CA125 0.942 0.383

  Normal 57 89 25 40

  Elevated 6 9 3 2

CA199 0.657 0.714

  Normal 51 82 23 33

  Elevated 12 16 5 9
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model, peritumoral-clinical model, and combined-clini-
cal model.

Seven models were established for this study. The AUC, 
accuracy, sensitivity, specificity, PPV, and NPV of each 
model for predicting pathological responses after NAC in 
advanced gastric cancer are shown in Table 2. The ROC 
curves for each model are shown in Fig. 2. The results of 
the Delong test for pairwise comparisons of all models in 
the training and validation groups are shown in Table 3. 
By observing the predictive efficacy index of the model, it 
can be seen that in the training and validation group, the 
predictive efficacy of the combined model is better than 
that of the single intratumoral or peritumoral model. 
After combining with the clinical model, the predictive 
efficacy of the radiomics–clinical model has an increas-
ing trend, among which the combined-clinical model has 
the best predictive performance. The AUC reached 0.960 
in the training group and 0.843 in the validation group. 
The calibration curve of the combined-clinical model 
showed good fit, and the decision curve showed the clini-
cal benefit of the model (Fig. 2). The Hosmer–Lemeshow 
test (Table S3) for each model showed good fit.

Discussion
The onset of gastric cancer is insidious and early symp-
toms lack specificity. Most patients are already at an 
advanced stage when they visit the hospital [24]. NAC 

provides the possibility for radical resection in these 
patients [25–28]. However, some patients still suffer 
from unnecessary chemotherapy toxicity and the sur-
vival rate after NAC is not improved [10, 29]. Currently, 
tumor regression grading (TRG) of postoperative patho-
logical specimens is a reliable indicator for evaluating 
prognosis of gastric cancer [30]; however, TRG can only 
be determined after surgery and cannot be used as the 
basis for guiding treatment. Therefore, it is very impor-
tant to accurately predict the pathological response to 
NAC before treatment to enhance individualized treat-
ment and clinical decision-making in patients with 
advanced gastric cancer. This study was based on pre-
NAC enhanced CT venous phase images, establishment 
of intratumoral, peritumoral, and combined models, 
and combination of the clinical model with the radiom-
ics model. The results showed that among the radiomics 
models, the combined model was more effective than the 
intratumoral and peritumoral models in predicting path-
ological responses after NAC. The peritumoral model 
provided additional value in evaluating the pathological 
response, and the combined-clinical model had the high-
est predictive efficiency.

Previous studies have demonstrated the value of intra-
tumoral models in predicting pathological responses 
after NAC in advanced gastric cancer. Most AUCs ranged 
from 0.621 to 0.770 [7, 13, 31, 32]. Our results showed 

Table 2  Efficacy of different models in predicting pathological responses after NAC in advanced gastric cancer in the training and 
validation groups

AUC​ Area under the curve, CI Confidence interval, ACC​ Accuracy, SEN Sensitivity, SPE Specificity, PPV Positive predictive value, NPV Negative predictive value

Model Intratumoral model Peritumoral model Combined model Clinical model Intratumoral-
clinical model

Peritumoral-
clinical model

Combined-
clinical 
model

Training group

  AUC​ 0.943 0.846 0.949 0.756 0.955 0.898 0.960

  95% CI 0.896–0.974 0.781–0.898 0.903–0.978 0.682–0.820 0.910–0.981 0.840–0.940 0.917–0.984

  p value  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001  < 0.0001

  ACC (%) 89.44 74.53 90.06 73.91 93.79 83.85 91.93

  SEN(%) 86.73 63.27 93.88 81.63 93.88 86.73 93.88

  SPE(%) 93.65 92.06 84.13 61.90 93.65 79.37 88.89

  PPV(%) 95.51 92.54 90.20 76.92 95.83 86.73 92.93

  NPV(%) 81.94 61.70 89.83 68.42 90.77 79.37 90.32

Validation group

  AUC​ 0.778 0.701 0.815 0.672 0.808 0.759 0.843

  95% CI 0.663–0.869 0.579–0.804 0.705–0.898 0.549–0.779 0.696–0.892 0.641–0.853 0.736–0.919

  p value  < 0.0001 0.002  < 0.0001 0.0093  < 0.0001  < 0.0001  < 0.0001

  ACC (%) 75.71 70.00 82.86 62.86 74.29 77.14 81.43

  SEN(%) 78.57 80.95 95.24 57.14 69.05 83.33 80.95

  SPE(%) 71.43 53.57 64.29 71.43 82.14 67.86 82.14

  PPV(%) 80.49 72.34 80.00 75.00 85.29 79.55 87.18

  NPV(%) 68.97 65.22 90.00 52.63 63.89 73.08 74.19
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that the AUC of the intratumoral model in the training 
and validation groups were 0.943 and 0.778, respectively. 
The AUC of the validation group was not significantly 
different from that of previous studies, which further 
confirmed the value of tumor heterogeneity reflected 
by intratumoral radiomics features in predicting patho-
logical responses after NAC. Notably, in our study, 3D 
delineation was used for image analysis. Compared with 
previous 2D delineation, this method can provide more 
comprehensive tumor information, extract more sta-
ble and accurate features, and monitor more detailed 
tumor heterogeneity information. This may be the reason 
why the AUC of this study is slightly higher than that of 

previous studies [7, 13, 31, 32]. The predictive perfor-
mance of the radiomics model is closely related to the 
appropriate classifier. Considering the complexity and 
nonlinearity of the relationship between radiomics fea-
tures and pathological responses, the SVM classifier was 
used to construct radiomics models in this study, which 
effectively and robustly solved the nonlinear problem.

The tumor immune microenvironment, which is 
important for tumor progression, metastasis, and treat-
ment effect, has attracted increasing attention [33–36]. 
A previous study [37] showed that peritumoral lympho-
cyte infiltration in gastric cancer was significantly corre-
lated with prognosis and chemotherapy response. When 

Fig. 2  The performance of different models. a ROC curves of each model in the training group. b ROC curves of each model in the validation 
group. c Calibration curve of optimal model. d Decision curve of optimal model
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infiltration of CD3 and CD8 cells into the tumor micro-
environment is lower, the prognosis of patients is good, 
but the chemotherapy response is poor [37]. Addition-
ally, peritumoral neutrophil infiltration can also pro-
mote tumor development, resulting in a low response 
to chemotherapy [38]. Liu et  al. [39] also reported that 
infiltration of CD20 + B cells around gastric cancer was 
may independently predict prognosis of gastric cancer. 
Patients with high immune cell infiltration have a shorter 
survival time but are more likely to benefit from chemo-
therapy. Radiomics analysis can monitor the immune cell 
microenvironment and reveal the relationship between 
peritumoral heterogeneity and pathological response, 
which may predict the efficacy of NAC in breast cancer 
[16, 40], cervical cancer [18], lung adenocarcinoma [19], 
and esophagogastric junction cancer [17]. However, peri-
tumoral models to predict pathological responses after 
NAC in advanced gastric cancer are rarely established. 
Our results showed that the AUC of the peritumoral 
model in the training and validation groups were 0.846 
and 0.701, respectively. When the intratumoral and peri-
tumoral models were combined, the predictive ability of 
the model further improved, reaching 0.949 in the train-
ing group and 0.815 in the validation group. Thus, the 
additional value of the peritumoral model in predicting 
pathological responses after NAC in advanced gastric 
cancer was confirmed.

Clinical indicators were also included in this study. The 
results of the training group showed that age, Borrmann 
classification, and Lauren classification were independent 
risk factors for poor response after NAC in advanced gas-
tric cancer. The median age was higher for the PR group 

than for the GR group, which was not consistent with 
results a previous studies based on the response evalua-
tion criteria for solid tumors (RECIST) [41]. We specu-
late that this is related to the decline of physical function 
in the elderly and the resistance to chemotherapy drugs 
[42]. Furthermore, the RECIST are limited due to the 
varying degree of gastric filling and low reproducibility of 
data measurements, which may bias the results [22, 43]. 
Studies have shown that Borrmann type III and IV gas-
tric cancers have a low survival rate and poor prognosis 
[44, 45], while TRG after NAC was also significantly cor-
related with prognosis [20]. In our study, the Borrmann 
classification showed statistically significant differences 
between GR and PR groups, which is consistent with 
results from previous studies. Patients with diffuse-type 
gastric cancer have a poor prognosis and are prone to 
relapse [46]. Our study also showed a statistically sig-
nificant difference in Lauren typing between GR and PR 
groups. Previous studies have shown that the degree of 
tumor differentiation, cT, cN, and other clinical indica-
tors were related to pathological response; however, these 
results remain controversial [13, 47, 48]. This may be due 
to a lack of large population trials or multicenter studies. 
In our study, the sample size of the validation group was 
smaller than that of the training group, so the independ-
ent risk factors in the training group were not replicated 
in the validation group. However, considering the clinical 
significance of these indicators, we used these indicators 
to build clinical models.

The limitations of this study are as follows: (1) it is a 
single-center retrospective study with confounding fac-
tors and limited generalization of results, which needs 

Table 3  p value of Delong test for any two models in the training and validation groups

Intratumoral model Peritumoral 
model

Combined model Clinical model Intratumoral-
clinical model

Peritumoral-
clinical 
model

Training group

  Peritumoral model 0.002

  Combined model 0.704 0.0001

  Clinical model  < 0.0001 0.082  < 0.0001

  Intratumoral-clinical model 0.430 0.001 0.794  < 0.0001

  Peritumoral-clinical model 0.059 0.010 0.020 0.0001 0.016

  Combined-clinical model 0.299 0.0001 0.315  < 0.0001 0.737 0.003

Validation group

  Peritumoral model 0.259

  Combined model 0.423 0.060

  Clinical model 0.245 0.747 0.130

  Intratumoral-clinical model 0.384 0.087 0.891 0.044

  Peritumoral-clinical model 0.788 0.195 0.432 0.137 0.366

  Combined-clinical model 0.167 0.015 0.366 0.022 0.401 0.126
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to be further validated in a multicenter prospective 
cohort; (2) delineation of ROI is subjective, and peritu-
moral expansion inevitably includes part of the gastric 
cavity contents, which may bias the results; an auto-
matic or semi-automatic image analysis method should 
be established to improve accuracy in the future; (3) 
different NAC regimens may bias the results, and the 
sample size should be expanded and stratified for anal-
ysis; (4) the baseline characteristics of patients, includ-
ing gender ratio and age range, are slightly different. 
Although the majority of gastric cancer patients are 
male, and big data studies show that cancer is getting 
younger, these differences may limit the study to some 
extent, and the sample size should be expanded for fur-
ther study in the future.

Conclusions
In conclusion, the peritumoral model has additional 
value in the evaluation of pathological responses after 
NAC in advanced gastric cancer. The combined model 
can effectively improve prediction efficiency. The com-
bined-clinical model has the highest prediction effi-
ciency, which can guide early treatment decisions and 
improve patient prognosis.
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