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Abstract 

Purpose To develop a CT‑based radiomics model combining with VAT and bowel features to improve the predictive 
efficacy of IFX therapy on the basis of bowel model.

Methods This retrospective study included 231 CD patients (training cohort, n = 112; internal validation cohort, n = 
48; external validation cohort, n = 71) from two tertiary centers. Machine‑learning VAT model and bowel model were 
developed separately to identify CD patients with primary nonresponse to IFX. A comprehensive model incorporat‑
ing VAT and bowel radiomics features was further established to verify whether CT features extracted from VAT would 
improve the predictive efficacy of bowel model. Area under the curve (AUC) and decision curve analysis were used 
to compare the prediction performance. Clinical utility was assessed by integrated differentiation improvement (IDI).

Results VAT model and bowel model exhibited comparable performance for identifying patients with primary 
nonresponse in both internal (AUC: VAT model vs bowel model, 0.737 (95% CI, 0.590–0.854) vs. 0.832 (95% CI, 0.750–
0.896)) and external validation cohort [AUC: VAT model vs. bowel model, 0.714 (95% CI, 0.595–0.815) vs. 0.799 (95% 
CI, 0.687–0.885)), exhibiting a relatively good net benefit. The comprehensive model incorporating VAT into bowel 
model yielded a satisfactory predictive efficacy in both internal (AUC, 0.840 (95% CI, 0.706–0.930)) and external valida‑
tion cohort (AUC, 0.833 (95% CI, 0.726–0.911)), significantly better than bowel alone (IDI = 4.2% and 3.7% in internal 
and external validation cohorts, both p < 0.05).

Conclusion VAT has an effect on IFX treatment response. It improves the performance for identification of CD 
patients at high risk of primary nonresponse to IFX therapy with selected features from RM.
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Critical relevance statement Our radiomics model (RM) for VAT‑bowel analysis captured the pathophysiological 
changes occurring in VAT and whole bowel lesion, which could help to identify CD patients who would not response 
to infliximab at the beginning of therapy.

Key points 

• Radiomics signatures with VAT and bowel alone or in combination predicting infliximab efficacy.

• VAT features contribute to the prediction of IFX treatment efficacy.

• Comprehensive model improved the performance compared with the bowel model alone.

Keywords Computed tomography enterography, Crohn’s disease, Infliximab therapy, Primary nonresponse, 
Radiomics

Graphical abstract

Introduction
Crohn’s disease (CD) is a subtype of inflammatory bowel 
disease (IBD), which results in progressive intestinal 
damage and disability [1]. Infliximab (IFX), a monoclo-
nal antibody selectively targeting tumor necrosis factor-α 
(TNF-α), offers mainstay for managing CD patients with 
moderate to severe inflammation and improves mucosal 
healing and clinical remission [2–4]. However, approxi-
mately 13–40% of CD patients resist to the initial IFX 
therapy (primary nonresponse, PNR) [5, 6], related to ele-
vated cost and even risk of severe side effects, and require 
the implementation of “precision medicine” [7, 8]. Thus, 

it is necessary to screen patients sensitive to IFX therapy 
in advance and develop prognostic tools for outcomes.

Although several risk factors have been identified to be 
associate with therapeutic nonresponse [2, 5, 7], conflict-
ing results or lack of validation still obstruct the strategy 
on improving therapeutic outcome, due to the unclear 
mechanisms of PNR. Recently, visceral adipose tissue 
(VAT), involved in the pathogenesis of CD and associated 
with more complex disease phenotype [9], has shown 
strong association with recurrence and postoperative 
complications [10, 11]. Besides, evidence indicates that 
VAT as source of proinflammatory substances associates 
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with chronic intestinal inflammation [12, 13]. Therefore, 
VAT might be a useful predictor for IFX response.

Computed tomography (CT) enables noninvasively 
measurement of VAT [14]. Previous studies have quanti-
tative analyzed metrics of VAT volume to clarify the rela-
tionship between adipose and therapeutic response [15]. 
Furthermore, radiomics can efficiently extract numerous 
imaging features imperceptible to the naked eyes [16] 
and allow more accurate identification of the features of 
bowel lesions in CD patients [17]. Therefore, the use of 
CT-based radiomics to extract effective features from 
both intestinal lesions and VAT may potentially enhanced 
pharmacotherapy response prediction.

Given the prior highlighted values of radiomics and 
the non-negligible role of VAT in disease progression, we 
aim to develop a comprehensive radiomics model (VAT-
bowel model) based on the pretreatment CT features of 
VAT and bowel features to compare with bowel model 
alone and to explore whether VAT can further improve 
the predictive efficacy on the basis of bowel model.

Methods
Patient and study design
In this retrospective study, a total of 231 patients with 
CD who underwent computed tomography enterography 
(CTE) before standardized IFX treatment for clinically 
and/or endoscopically active disease were consecutively 
recruited between January 2013 and December 2020 in 
two tertiary IBD centers under the institutional ethics 
review from both the Sixth Affiliated Hospital of Sun Yat-
Sen University (center 1) and the First Affiliated Hospital 
of Sun Yat-Sen University (center 2).

The inclusion criteria were as follows: (a) patients 
underwent CTE within 1 month prior to IFX therapy; 
(b) treated with regularly standardized IFX induction 
therapy (5 mg/kg at weeks 0–2 to 2–6 induction, week 14 
evaluation; (c) the absence of previous anti-TNF therapy; 
and (d) performed simple endoscopic score for Crohn’s 
disease (SES-CD) > 3 of standard endoscopy within 0.5 
months prior to IFX therapy. The exclusion criteria were 
as follows: (a) poor CTE image quality that hindered 
analysis; (b) history of enterotomy, which may influence 
the nature radiomic features; (c) lack of posttreatment 
endoscopic comparison; and (d) poorly defined intestinal 
wall and VAT due to severe effusion around the lesion.

According to the inclusion and exclusion criteria, 231 
patients with CD were included (Supplement Figure  1). 
Patients with CD who are at the First Affiliated Hospi-
tal of Sun Yat-Sen University between January 2013 and 
December 2020 were semirandomly allocated to train-
ing cohort and test cohort 1, maintaining a ratio of 7:3 
(112 patients:48 patients). Another 71 CD patients who 
underwent IFX treatment in the Sixth Affiliated Hospital 

of Sun Yat-Sen University between January 2018 and 
December 2020 were allocated as test cohort 2.

Definition of primary response and nonresponse 
to infliximab therapy
Patients with CD in the two centers received standard 
IFX induction at the weeks 0–2 to 2–6, with a dosage 
of 5 mg/kg. At week 14, clinical symptoms, endoscopy, 
laboratory examination, and anti-IFX drug levels were 
collected from each patient to assess the efficacy of IFX 
therapy. Additionally, information was collected on 
whether IFX was used as monotherapy or in combination 
with an immunomodulator. Patients who did not show 
satisfactory improvement in a global physician assess-
ment and required treatment changes such as dose esca-
lation, corticosteroid addition, agent switch, or surgery 
were defined as having PNR. Otherwise, they were clas-
sified as primary response to IFX (PR). Besides, patients 
categorized as PR also needed to conform to the decrease 
of 50% in SES-CD relative to the baseline as recom-
mended in expert consensus and prior reported clinical 
trials [18, 19]. Two gastroenterologists (C. Z. and H. Q.) 
retrospectively evaluated the SES-CD through the report 
description and endoscopic pictures.

Development and validation of VAT radiomics model
The study flowchart and the radiomics analysis workflow 
are shown in Fig.  1, which illustrates the procedure for 
the development of the VAT model, bowel model and 
VAT-bowel model, and details of the development.

Radiomics features extraction and selection
Given the extensive and intricate distribution of VAT, it 
was automatically segmented on CT images by utilizing 
a deep learning-based framework called nnU-Net [20], 
which has been widely used in medical image segmen-
tation task. To do so, two radiologists (Z.R. and Y.W.) 
scrutinized and modified the segmentation results with 
open-source software ITK-SNAP (version 3.4.0; https:// 
www. itksn ap. org) to determine the final volume of inter-
est (VOI) in this study. The process of VOI segmenta-
tion on two cases is shown in Fig. 2, and the details are 
described in Supplementary materials A1.

From each VOI on CT images, a total of 1130 radiom-
ics features were extracted with the following categories: 
shape features, first-order features, texture features, and 
these imaging features transformed by different filters. 
The feature extraction was performed in the Python envi-
ronment (version 3.6; https:// www. python. org/) using 
PyRadiomics toolkit (version 3.0.1; https:// pyrad iomics. 
readt hedocs. io/ en/ latest/ index. html). More details are 
provided in Supplementary materials A2.

https://www.itksnap.org
https://www.itksnap.org
https://www.python.org/
https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
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The reproducibility of the extracted radiomics features 
was assessed through inter- and intra-observer analysis with 
calculation of intraclass correlation coefficients (ICCs). Sub-
sequently, a refinement process was conducted to purify the 
radiomics features (Supplementary materials A3).

Radiomics model development and validation
Based on the selected features, a binary classification 
model was built for distinguishing between PR and PNR 
by using a support vector machine (SVM) classifier and 
detailed in Supplementary materials A4.

Fig. 1 The study flow chart (upper) and the radiomics analysis workflow (lower) (VAT model, radiomics model based on features extracted 
from visceral adipose tissue; bowel model, radiomics model based on features extracted from the inflamed bowel; VAT‑bowel model, a combination 
of the VAT model and bowel model)
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The validation of the VAT radiomics model was con-
ducted on the internal and external validation cohorts 
using the optimal subset of features and model param-
eters obtained from the training cohort. The final predic-
tion probability for each sample in the validation cohorts 
was derived by averaging the outputs of all models 
generated by the LOOCV strategy during the training 
phase. The development and validation of the radiomics 
model were performed in Python environment (version 
3.6; https:// www. python. org/) using scikit-learn toolkit 
(version 19.0; https:// scikit- learn. org/ stable).

Development and validation of bowel and VAT‑bowel 
radiomics models
In our previous study [17], a radiomics model based 
on the entire inflamed bowel in CTE images (bowel 
model) was established for identification of PNR to IFX 
therapy. To further improve its performance, radiom-
ics features of VAT would be added to the bowel model 
to construct a comprehensive (VAT-bowel) radiom-
ics model. The constructing process of both bowel and 
VAT-bowel radiomics model is referred to Fig. 1.

For the development of bowel model, the extrac-
tion and selection of bowel features were consistent 
with our previous study. For the development of VAT-
bowel model, we combined the selected VAT features 
and bowel features and further selected them by using 

LASSO to obtain the optimal subset of VAT-bowel 
features. Both models were built by utilizing the SVM 
classifier and the LOOCV strategy, following the same 
development and validation process as the VAT model.

Statistical analysis
Evaluation of sample size
The predictive performance of the VAT model was 
assessed by using receiver operating characteristic 
(ROC) analysis. The area under the ROC curve (AUC) 
and the corresponding 95% confidence interval (CI) 
were calculated.

A sample size of 48 patients (34 PR and 14 PNR) is 
required for the LOOCV modeling of IFX therapy predic-
tion based on the following conditions by using MedCalc 
Statistical Software (version 15.8; http:// www. medca lc. org/) 
and detailed in Supplementary material A5.

Predictive performance comparison of bowel 
and VAT‑bowel radiomics models
In order to explore whether and to what extent the effi-
cacy of the model could be improved when incorporating 
VAT features into our previously developed bowel model, 
a comparative analysis was conducted between the per-
formance of the bowel model and that of the VAT-bowel 
radiomics model using the following methods. DeLong’s 
test was employed to compare the AUCs of the models 

Fig. 2 The process of VOI segmentation on two cases, including automatic segmentation and radiologist’s modification. The dice similarity 
coefficients for cases 1 and 2 are 0.971 and 0.957, respectively. The red regions are the automatic segmentation results generated by the nnU‑net, 
while the green regions indicate the area, modified from radiologists (VOI, volume of interest)

https://www.python.org/
https://scikit-learn.org/stable
http://www.medcalc.org/
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when McNemar’s test was used to compare the accuracy. 
The integrated discriminant improvement (IDI) index 
was calculated to compare the incremental predictive 
utility between the two radiomics models. Additionally, 
the Hosmer-Lemeshow goodness-of-fit test was utilized 
to evaluate the calibration performance of the models. 
The clinical utility of each model was assessed by calcu-
lating the net benefit at different threshold probabilities 
and conducting a decision curve analysis.

A two-tailed p value less than 0.05 was considered 
statistically significant. All statistical analyses were 
performed with R statistical software (version 4.0.4; 
http:// www.r- proje ct. org/).

Results
Patient characteristics
During the follow-up period, 33 patients (33/112, 29.5%) 
from the training cohort and 36 patients (36/119, 28.1%) 
(14/48 from test cohort 1 and 22/71 from test cohort 2) 
from the total test cohort experienced IFX treatment. 
Four univariate analysis recognized clinical factors in 
PNR, including BMI, CRP, Hb, and ALB, and exhibited 
significant difference compared to PR in the training 
cohort (Table 1, p < 0.05).

Development and validation of VAT radiomics model
Radiomics features selection and predictive performance 
validation for the radiomics model
Based on LASSO algorithm, 12 features were selected for 
training or validation cohorts (Supplementary materials 
A6, Fig.  3). The correlation coefficients were shown in 
Table 2.

The VAT model alone could distinguish the PNR 
from PR group with a cut-off value of 0.280 (Fig. 4a and 
Table  3). The AUCs were 0.761 (95% CI, 0.672–0.839) 
in training cohort, 0.737 (95% CI, 0.590–0.854) in inter-
nal validation cohort, and 0.714 (95% CI, 0.595–0.815) 
in external validation cohort, respectively (all p < 0.005; 
Table 3; Fig. 5a–c). There were no significant differences 
in the AUCs among the three data cohorts according to 
DeLong’s test (all p > 0.500). With the Hosmer-Leme-
show test, the χ2 were 10.075 (p = 0.260), 13.76 (p = 
0.088) and 2.056 (p = 0.979) in the training and two vali-
dation cohorts (Fig.  5d–f). VAT model possessed a rel-
atively good net benefit in clinical utility over the three 
data cohorts, compared to the all positive and all negative 
curves (Fig. 5g–i).

Development and validation of bowel and VAT‑bowel 
radiomics models
Fourteen radiomics features were finally included in 
bowel model (Supplementary materials A7) with a cut-off 

vale of 0.190 (Fig. 4b). The bowel model reached a predic-
tive performance to AUCs of 0.832 (95% CI, 0.750–0.896) 
in training cohort, 0.784 (95% CI, 0.641–0.889) in inter-
nal validation cohort, and 0.799 (95% CI, 0.687–0.885) 
in external validation cohort (all p < 0.001), respectively 
(Table 3; Fig. 5a–c).

The finally selected 12 VAT radiomics features and 14 
bowel radiomics features were combined for the develop-
ment of VAT-bowel model, and 22 features with nonzero 
coefficients were subsequently retained from the total 
of 26 features according to LASSO with an optimal λ 
value of 0.006 (lnλ =  − 5.116; Supplementary Figure  2C; 
Supplementary Table  2 and Fig.  6a and b). The visual-
ized radiomics feature maps (overlaid on CT images) of 
two important texture features extracted from VAT and 
bowel from two patients (1 PNR and 1 PR) were shown in 
Fig. 6c. The VAT-bowel model showed the best predicted 
power (Fig. 4c) with AUCs of 0.873 (95% CI, 0.797–0.928) 
in the training cohort, 0.840 (95% CI, 0.706–0.930) in 
the internal validation cohort, and 0.833 (95% CI, 0.726–
0.911) in the external validation cohort (Table 3; Fig. 5a–
c). However, no significant differences were found from 
the AUCs among the three data cohorts according to 
DeLong’s test (all p > 0.500).

Predictive performance comparison between bowel 
and VAT‑bowel radiomics models
The VAT-bowel model demonstrated superior perfor-
mance over the bowel model for distinguishing PNR from 
PR, with higher AUC and accuracy in all data cohorts 
(Table 4 and Fig. 5). Although no significant differences 
were observed between the AUCs of the two models 
according to DeLong’s test (all p > 0.090), McNemar’s test 
revealed that the accuracy of the VAT-bowel model was 
significantly higher in training cohort (accuracy = 0.821 
vs. 0.732, p = 0.076), internal validation cohort (accu-
racy = 0.813 vs. 0.708, p = 0.070), and external validation 
cohort (accuracy = 0.817 vs. 0.690, p = 0.035), which sug-
gested good discrimination of VAT-bowel model.

For calibration, both models exhibited good fit in all 
data cohorts with p > 0.100 by Hosmer-Lemeshow test 
(Table  4). The calibration curves of VAT-bowel model 
were closer to the ideal calibration curves than that of the 
bowel model as shown in Fig. 5d–f, indicating a relatively 
good calibration power of VAT-bowel model.

In addition, the IDI indices also indicated that the VAT-
bowel model improved prediction efficacy compared to 
the bowel model in the training cohort (IDI = 0.031, p = 
0.016), internal validation cohort (IDI = 0.042, p = 0.024), 
and external validation cohort (IDI = 0.037, p = 0.032).

With regard to the clinical utility, the decision curves 
(Fig. 5g–i) showed that the VAT-bowel model possessed 

http://www.r-project.org/
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a slightly better net benefit overall than the bowel model 
in predicting the outcome of IFX therapy.

Discussion
In this study, we demonstrated that RM is able to capture 
the pathophysiological changes occurring in VAT. Based 
on features of RM, it is associated with the response to 
IFX and could potentially provide additional informa-
tion in predicting therapeutic response. Furthermore, we 
developed a comprehensive radiomics model combining 
with VAT and bowel features. Compared to using bowel-
RM alone, this integrated model yielded significant 
improvement in predictive ability with the IDI of 0.031 in 
training cohort and 0.042 and 0.037 in two independent 
validation cohorts, respectively (all p < 0.05).

Current knowledge on the use of VAT in CD remains 
limited. Numerous studies have already indicated a posi-
tive correlation between VAT and CD activity, as well 
as its ability to predict complications, recurrence, and 
suboptimal response to biologic therapies, despite the 
mechanisms remaining elusive [12]. The accumulating 
evidence suggests that the metabolically active visceral 
adipose compartment may serve as a possible source of 
proinflammatory substances [12, 21]. BMI was used to 
assess VAT. However, it was not suitable for CD patients 
because of the malnutrition-induced weight lost [22, 

Fig. 3 Heatmaps generated by unsupervised hierarchical clustering of the 12 selected features of the VAT model in the (a) training cohort 
and (b) total validation cohort, respectively. The feature values are standardized to the range of [0, 1] in order to achieve a clear view. Each row 
of the heatmap is one selected radiomics feature, and each column is a sample (PNR, red; PR, blue). At the top, generated dendrogram represents 
samples with similar information determined by clustering (PNR, primary nonresponse; PR, primary response to infliximab therapy; VAT model, 
radiomics model based on features extracted from visceral adipose tissue)

Table 2 The selected radiomics features of the VAT radiomics 
model and the corresponding coefficients

The VAT radiomics model was the model developed based on radiomics 
features extracted from visceral adipose tissue (VAT). The coefficient of each 
radiomics feature was generated by the least absolute shrinkage and selection 
operator algorithm and presented as absolute value. Each feature was named 
by concatenating the image type from which the feature was extracted, feature 
group and feature name by underline. For example, original_shape_Flatness was 
a feature extracted from the original image, shape group, and the feature name 
was Flatness. Glrlm, gray-level run length matrix; glszm, gray-level size zone 
matrix; glcm, gray-level co-occurrence matrix; gldm, gray-level dependence 
matrix; all features above belong to texture features

Radiomics feature Coefficient 
(absolute 
value)

original_shape_Flatness 0.067293

original_shape_Sphericity 0.047925

wavelet‑LHL_glrlm_LongRunLowGrayLevelEmphasis 0.035222

wavelet‑HHH_firstorder_Skewness 0.034753

wavelet‑HHH_glszm_LowGrayLevelZoneEmphasis 0.032765

wavelet‑HLL_glcm_InverseVariance 0.019269

wavelet‑HHL_glcm_MCC 0.011879

wavelet‑LHL_glcm_JointEnergy 0.008703

wavelet‑LLH_firstorder_Minimum 0.005895

wavelet‑LHH_glszm_LargeAreaLowGrayLevelEmphasis 0.005520

wavelet‑LLH_gldm_LargeDependenceHighGrayLevelEmphasis 0.005261

wavelet‑HHH_glrlm_ShortRunLowGrayLevelEmphasis 0.004115
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23]. The quantitative VAT analysis with manually out-
lined contours from several vertebral levels can fail to 
capture microstructure with important messages in dis-
ease progress, although it has been used as indicators in 
predicting treatment efficacy [24, 25]. Moreover, time-
consuming deficiencies in computing the area hinder its 
clinical applicability.

The mechanism underlying the correlation between 
adipose and inflammation of CD remains elusive. Studies 

have shown that adipose tissue plays a crucial role in the 
production of proinflammatory cytokines such as tumor 
necrosis factor-alpha (TNFα), interleukin-(IL)-6 (IL-6), 
and IL-8 (CXCL8) [26]. The presence of VAT is believed 
to establish a responsive immunological region sur-
rounding the irritated intestine. The maintenance of bal-
ance between the host’s immune system and commensal 
microbiota heavily relies on the integrity of the gastro-
intestinal epithelial barrier. The translocation of bacteria 

Fig. 4 Scatter plots of the predicted probabilities of the (a) VAT model, (b) bowel model, and (c) VAT‑bowel model for distinguishing PR from PNR 
on all data cohorts. A horizontal solid line is drawn at each plot map and indicates the optimal cut‑off value of 0.280, 0.190, and 0.268, respectively. 
The points above the solid line are classified as PNR (primary nonresponse) by the model, while those below the line are classified as PR (primary 
response) to infliximab therapy. The blue points represent the PR group confirmed by expert assessment; the red points then belong to the PNR 
group (VAT model, radiomics model based on features extracted from visceral adipose tissue; bowel model, radiomics model based on features 
extracted from the whole inflamed bowel; VAT‑bowel model, a combination of the VAT model and bowel model)

Table 3 Predictive performance of radiomics models based on different features in differentiating PNR from PR in the training and 
validation cohorts

Accuracy, sensitivity, and specificity of the radiomic model in training and validation cohorts were calculated with the cut-off value of 0.280 (VAT radiomics model), 
0.190 (bowel radiomics model), and 0.268 (VAT-bowel radiomics model), respectively, which maximizes the Youden index in the training cohort. p value is the 
significance level of comparison of AUC with that of random case (AUC = 0.5). PNR, primary nonresponse to infliximab therapy; PR, response to infliximab therapy. 
AUC, area under ROC curve; CI, confidence interval. VAT radiomics model, radiomics model based on the features extracted from visceral adipose tissue; bowel 
radiomics model, radiomics model based on the features extracted from the whole inflamed bowel; VAT-bowel radiomics model, a combination of the VAT and bowel 
radiomics models

Variable Accuracy Sensitivity Specificity AUC (95% CI) p

Training cohort (PNR/PR = 33/79)

 VAT radiomics model 0.705 0.727 0.696 0.761 (0.672–0.837) < 0.001

 Bowel radiomics model 0.732 0.848 0.684 0.832 (0.750–0.896) < 0.001

 VAT‑bowel radiomics model 0.821 0.909 0.785 0.873 (0.797–0.928) < 0.001

Internal validation cohort (PNR/PR = 14/34)

 VAT radiomics model 0.688 0.571 0.735 0.737 (0.590–0.854) 0.001

 Bowel radiomics model 0.708 0.857 0.647 0.784 (0.641–0.889) < 0.001

 VAT‑bowel radiomics model 0.813 0.714 0.853 0.840 (0.706–0.930) < 0.001

External validation cohort (PNR/PR = 22/49)

 VAT radiomics model 0.662 0.727 0.633 0.714 (0.595–0.815) 0.001

 Bowel radiomics model 0.690 0.590 0.735 0.799 (0.687–0.885) < 0.001

 VAT‑bowel model 0.817 0.636 0.898 0.833 (0.726–0.911) < 0.001



Page 10 of 14Wang et al. Insights into Imaging           (2024) 15:28 

into the mesenteric tissue leads to the development of 
mesenteric adipose and chronic inflammation, result-
ing in subsequent mucosal damage and inflammation 
[26]. High visceral adipose predicts complicated CD and 
disease exacerbation [24]. Our previous study also sub-
stantiates the utility of VAT as an indicator for assessing 
disease severity [9]. Therefore, we think that the VAT of 
CD expressing higher amounts of TNF-α can also affect 
the response to infliximab in patients with CD and may 
be acted as image features.

With the advent of medical artificial intelligence, it 
enables the comprehensive extraction of multidimen-
sional information from lesions. Radiomics quantifies 
image features using voxel values and their interrelation-
ships. In our study, morphological features such as flat-
ness and sphericity provide a quantitative description 
of the physical appearance of the lesion. It is worth to 
note that 88.9% (10/12) of the VAT features were wave-
let. The wavelet transform enables the decomposition of 
noise and useful signal into different scales, allowing for 

Fig. 5 Predictive performance of VAT model, bowel model, and VAT‑bowel model in the training cohort and internal and external validation 
cohorts. Plots in the first row are the ROC curves for the three models and show the performance to distinguish PNR from PR. The second row 
is the calibration curves of these three models in those three data cohorts, while plots in the third row are the results corresponding decision curve 
analysis (VAT model, radiomics model based on features extracted from visceral adipose tissue; bowel model, radiomics model based on features 
extracted from the whole inflamed bowel; VAT‑bowel model, a combination of the VAT model and bowel model; ROC, receiver operating 
characteristic; AUC, area under the receiver operator characteristic curve; PNR, primary nonresponse; PR, primary response to infliximab therapy)
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Fig. 6 Heatmaps generated by unsupervised hierarchical clustering of the 22 selected features of VAT‑bowel model in (a) training cohort 
and (b) the total validation cohort, and (c) examples of VAT and bowel feature maps overlaid on the CT images of four CD patients. The values 
of the heatmaps and feature maps are all standardized to the range of [0, 1], in order to achieve a clear view. In heatmaps (a and b), each row 
is one selected radiomics feature, and each column is a sample (PNR, red; PR, blue); the dendrogram at the top represents samples with similar 
information determined by clustering; the white arrows point to a VAT feature named “wavelet‑LHH_glszm_LargeAreaLowGrayLevelEmphasis” 
or a bowel feature named “wavelet‑LHL_glszm_LargeAreaEmphasis.” These two representative radiomics features are overlaid on CT images of four 
patients (cases a and b, with response to IFX therapy, predicted probabilities = 0.199 and 0.174; cases c and d, without response to IFX therapy, 
predicted probabilities = 0.622 and 0.523; VAT‑bowel model’s cut‑off value = 0.268) as shown in image (c). Both features demonstrate differences 
between patients in PR and PNR groups, with higher values from the PNR patients (cases c and d), suggesting more complex and coarse texture 
features of VAT and bowel. PNR, primary nonresponse; PR, primary response; IFX, infliximab; VAT, visceral adipose tissue; VAT‑bowel model, radiomics 
model based on features extracted from VAT and the whole inflamed bowel

Table 4 Predictive performance comparison of bowel and VAT‑bowel radiomics models in differentiating PNR from PR in the training 
and validation cohorts

PNR primary nonresponse to infliximab therapy, PR response to infliximab therapy. Bowel radiomics model, radiomics model based on the features extracted from 
the whole inflamed bowel; VAT-bowel radiomics model, radiomics model based on the features extracted from both visceral adipose tissue and the whole inflamed 
bowel. AUC, area under ROC curve; CI, confidence interval; IDI, integrated discriminant improvement. ap value is the significance level of the comparison of AUC 
between the bowel and VAT-bowel radiomics models according to DeLong’s test. bp value is the significance level of the comparison of accuracy between bowel and 
VAT-bowel radiomics models according to McNemar’s test. cp value is the significance level of the difference between the prediction probability and the true value 
for each model according to Hosmer-Lemeshow test. dp value is the significance level of the improvement (IDI > 0) in predictive performance of the new model (VAT-
bowel model) over the old model (bowel model)

Variable DeLong’s test McNemar’s test Hosmer‑
Lemeshow test

IDI

AUC (95% CI) Pa Accuracy (95% CI) Pb χ2 Pc Index (95% CI) Pd

Training cohort (PNR/PR = 33/79)

 Bowel radiomics model 0.832 (0.750–0.896) 0.165 0.732 (0.643–0.805) 0.076 11.056 0.199 0.031 (0.006–0.056) 0.016

 VAT‑bowel radiomics model 0.873 (0.797–0.928) 0.821 (0.740–0.881) 5.668 0.684

Internal validation cohort (PNR/PR = 14/34)

 Bowel radiomics model 0.784 (0.641–0.889) 0.098 0.708 (0.568–0.818) 0.070 5.850 0.664 0.042 (0.005–0.078) 0.024

 VAT‑bowel radiomics model 0.840 (0.706–0.930) 0.813 (0.681–0.898) 10.08 0.259

External validation cohort (PNR/PR = 22/49)

 Bowel radiomics model 0.799 (0.687–0.885) 0.376 0.690 (0.575–0.786) 0.035 9.139 0.331 0.037 (0.003–0.070) 0.032

 VAT‑bowel radiomics model 0.833 (0.726–0.911) 0.817 (0.711–0.890) 7.262 0.509



Page 12 of 14Wang et al. Insights into Imaging           (2024) 15:28 

the conversion of wavelet coefficients and thereby facili-
tating the distinction between useful signal and noise 
[27]. CD patients showed different VAT texture charac-
teristics from healthy people’s CT imaging. In medical 
images, the quantitative or qualitative changes of tex-
ture features often reflect the pathological changes of 
the body. Besides, it was reported that wavelet features 
were strongly associated with survival in patients with 
hepatocellular carcinoma and biological characteristics 
of ICC, which can also quantify intratumoral heteroge-
neity [28, 29]. The wavelet transformation offers possi-
bility to decompose special patterns, not visible to the 
naked eye, and enables the quantification of VAT het-
erogeneity, was caused from pathological variation or 
inflammatory cytokine infiltrations [30, 31]. Our study 
substantiated that VAT-RM can effectively capture these 
pathological changes in VAT in CD noninvasively and 
convert them into radiomic features, thereby reinforcing 
the evidence of mechanisms to impact VAT on revealing 
therapeutic efficacy and influencing strategy selection. 
However, it is also challenging to infer the connection 
between these characteristics and biological differences 
solely from the data presented in this study, thus neces-
sitating additional research on the underlying factors 
contributing to variations in radiomics features within 
adipose tissue.

Consistent with previous study [17], bowel RM 
served as a promising technique in tailoring treatment 
strategy in CD patients, exhibiting satisfactory perfor-
mance in predicting effectiveness and robustness, while 
peri-lesion microenvironment such as VAT was ignored 
[17]. In our study, the combined model consisting of 
VAT and bowel radiomics features outperformed bowel 
RM alone for identifying CD patients at high risk of 
PNR for IFX both in training and testing cohort. From 
a statistical point of view, although the lack of a signifi-
cant improvement in AUCs suggests that the overall 
performances of the two models are roughly equivalent, 
it is worth noting that the accuracies of the VAT-bowel 
RM tend to be higher at the chosen threshold, and 
the variations in the IDIs for the integrated model are 
meaningful. Moreover, VAT-bowel RM exhibits better 
goodness of fit and overall has a slightly better net ben-
efit than bowel RM alone. Our study showed that the 
comprehensive model was superior to the bowel RM 
alone, which could provide more information to judge 
the probability of achieving PNR before treatment in 
patient who intends to receive IFX treatment.

This study had several limitations. Although, MRE is a 
preferred examination for CD patients as it is radiative-free 
and can provide more biological information [32], we used 
CTE rather than magnetic resonance enterography (MRE) 
to develop the radiomic signature. In future prospective 

studies, however, a CT-based radiomics framework may 
facilitate artificial development in the field of MR through 
transfer learning. Secondly, the radiomics signatures were 
extracted from single-phase CT images, underutilizing 
the information in the CT images. We will integrate the 
radiomic information from plain, arterial, and venous CT 
images in further research. Lastly, the sample size in this 
study is still limited. Multicenter validation with a larger 
sample size of patients is essential to obtain higher-level 
evidence for future clinical applications.

In conclusion, VAT has effect on detection of IFX 
treatment response and improves the performance for 
identification of CD patients at high risk of primary non-
response to IFX therapy. We have conducted a CT-based 
radiomics model (RM), composed from influencing 
factors for VAT-bowel analysis in differentiation non-
response from response patients under IFX treatment. 
Our results suggested that comprehensive RM captured 
the pathological changes occurring in VAT and bowel 
lesions, which could help to identify CD patients who 
will be resistant to IFX at the beginning of therapy.
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in (A) VAT model, (B) bowel model and (C) VAT‑bowel model. In each plot, 
the x‑axis at the bottom represents , while the x‑axis at the top is the 
number of the rest radiomics features that vary with lambda. The vertical 
dashed line indicates the optimal lambda value [= ‑3.381, ‑3.194 and‑
5.116, respectively], resulting in 12, 14 and 22 radiomics features with non‑
zero coefficients for each model finally. (LASSO, least absolute shrinkage 
and selection operator; VAT model, radiomics model based on features 
extracted from visceral adipose tissue; bowel model, radiomics model 
based on features extracted from the whole inflamed bowel; VAT‑bowel 
model, a combination of the VAT model and bowel model).
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