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The effect of feature normalization methods 
in radiomics
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Abstract 

Objectives In radiomics, different feature normalization methods, such as z-Score or Min–Max, are currently utilized, 
but their specific impact on the model is unclear. We aimed to measure their effect on the predictive performance 
and the feature selection.

Methods We employed fifteen publicly available radiomics datasets to compare seven normalization methods. 
Using four feature selection and classifier methods, we used cross-validation to measure the area under the curve 
(AUC) of the resulting models, the agreement of selected features, and the model calibration. In addition, we assessed 
whether normalization before cross-validation introduces bias.

Results On average, the difference between the normalization methods was relatively small, with a gain 
of at most + 0.012 in AUC when comparing the z-Score (mean AUC: 0.707 ± 0.102) to no normalization (mean AUC: 
0.719 ± 0.107). However, on some datasets, the difference reached + 0.051. The z-Score performed best, while the tanh 
transformation showed the worst performance and even decreased the overall predictive performance. While 
quantile transformation performed, on average, slightly worse than the z-Score, it outperformed all other methods 
on one out of three datasets. The agreement between the features selected by different normalization methods 
was only mild, reaching at most 62%. Applying the normalization before cross-validation did not introduce significant 
bias.

Conclusion The choice of the feature normalization method influenced the predictive performance but depended 
strongly on the dataset. It strongly impacted the set of selected features.

Critical relevance statement Feature normalization plays a crucial role in the preprocessing and influences the pre-
dictive performance and the selected features, complicating feature interpretation.

Key points  
• The impact of feature normalization methods on radiomic models was measured.

• Normalization methods performed similarly on average, but differed more strongly on some datasets.

• Different methods led to different sets of selected features, impeding feature interpretation.

• Model calibration was not largely affected by the normalization method.
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Graphical Abstract

Introduction
Radiomics has emerged as a promising image analysis 
technique, providing insights for the characterization 
and quantification of radiological imaging and support-
ing diagnostic and prognostic tasks [1, 2]. Essentially, 
radiomics involves the application of a machine learning 
pipeline to process features extracted from radiological 
data [3–5]. The process comprises multiple steps, begin-
ning with acquisition, segmentation, feature extraction, 
data preprocessing, feature selection, and classification 
[6].

The data preprocessing step for the extracted features 
primarily aims to clean the data and enhance their suit-
ability for later processing. It encompasses various meth-
ods, such as imputing missing values, removing outliers, 
and harmonization [7]. An integral part of this process 
is feature normalization, also called feature standardiza-
tion or scaling, wherein the features are scaled to balance 
their numerical range. Because of the diversity of radio-
logical features extracted from imaging, which include 
morphological, intensity, and texture features, these 
features generally cannot be expected to be on simi-
lar scales. However, the presence of features on differ-
ent scales could introduce bias since features with larger 
values might exert a more substantial influence relative 

to those with smaller values during subsequent feature 
selection and classification. It may result in more weight 
being erroneously given to features with larger values. 
Additionally, it can also lead to complications during the 
classifier training, as feature selection and machine learn-
ing algorithms often make implicit assumptions about 
the data. For instance, the presence of features with very 
large values might result in slow convergence in the opti-
mizer underlying the least absolute shrinkage and selec-
tion operator (LASSO) feature selection [8] and can 
cause severe convergence errors in neural networks [9].

Several feature normalization methods are currently 
employed in radiomic studies [10]. The most prominent 
ones include z-Score, which scales each feature to have 
zero mean and a variance of one [11], and Min–Max, 
which linearly scales the features into the range of -1 
and 1 [12]. While other normalization methods, such as 
quantile and power transformation, exist [13], they were 
not widely utilized in radiomics [10]. Despite the impor-
tance of the feature normalization method, the effect of 
different normalization methods is currently unclear. The 
extent to which the feature normalization method affects 
the predictive performance of the classifier is uncertain, 
leaving the question of whether one method could lead 
to better-performing models unanswered. Moreover, it 
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is unknown whether features normalized differently can 
impact the feature selection method and, therefore, could 
lead to a change in the set of selected features.

Therefore, in this study, we aimed to measure the effect 
of different normalization methods on the overall predic-
tive performance and the feature selection methods.

Methods
We employed only previously published and publicly 
accessible datasets for which the corresponding ethical 
review boards had already approved. The ethical approval 
for this study was waived by the local Ethics Committee 
(Ethik-Kommission, Medizinische Fakultät der Univer-
sität Duisburg-Essen, Germany) due to its retrospective 
nature. This study was performed following the relevant 
guidelines and regulations.

Datasets
A total of 15 publicly available radiomic datasets were 
collected for this study (Table 1). Only datasets consist-
ing of features extracted in tabular form were included. 
All datasets were high-dimensional, meaning there were 
more features than samples, except for two datasets, 
Carvalho2018 and Saha2018.

Preprocessing
For this study, the features were further processed by 
removing non-radiomic features and merging all avail-
able data. Since a few datasets contained missing values 
imputation by feature mean was used prior to analysis 
(this concerned most notably the HosnyA, HosnyB, and 

HosnyC datasets, where overall 0.79%, 0.65%, and 0.19% 
values were missing. It affected nearly exclusively the 
exponential_ngtdm_contrast and exponential_glcm_cor-
relation features, most probably due to numeric over-
flow). Constant features and features with more than 25% 
missing values were removed completely.

Feature normalization
Seven different feature normalization methods were 
employed, including some commonly used in radiomics 
(Table 2): The z-Score, along with two robust variants of 
the z-Score based on interquartile ranges of (5,95) and 
(25,75), the Min–Max, the power, quantile, and tanh 
transformations. In addition, to establish a baseline, no 
normalization was employed in the analysis.

The z-Score normalization proceeds by centering the 
data to a mean of 0 and rescaling it to a variance of 1, 
ensuring that the data is standardized and comparable 
across different features. The robust variants first center  
the data using the median and subsequently scale it 
using the specified interquartile range, making them 
less sensitive to outliers. The Min–Max method line-
arly scales the data to -1 and 1. Furthermore, the power 
transformation, based on Yeo-Johnson, transforms the 
data monotonically to reduce skewness and improve 
its normality  [14]. Similarly, the quantile transforma-
tion normalizes the data based on quantiles to ensure 
uniform distribution of the values [15] . Lastly, the tanh 
transformation applies the hyperbolic tangent function 
to scale the data to a unit range while decreasing the 
influence of extreme values [16]).

Table 1 Overview of the datasets

N sample size, d number of features, DOI digital object identifier of the publication corresponding to the dataset

Dataset N d Modality Tumor type DOI

Arita2018 168 685 MRI Brain 10.1038/s41598-018–30273-4

Carvalho2018 262 118 FDG - PET NSCLC 10.1371/journal.pone.0192859

Hosny2018A 293 1005 CT NSCLC 10.1371/journal.pmed.1002711

Hosny2018B 211 1005 CT NSCLC 10.1371/journal.pmed.1002711

Hosny2018C 183 1005 CT NSCLC 10.1371/journal.pmed.1002711

Ramella2018 91 243 CT NSCLC 10.1371/journal.pone.0207455

Saha2018 922 530 DCE-MRI Breast 10.1038/s41416-018–0185-8

Lu2019 213 658 CT Ovarian cancer 10.1038/s41467-019–08718-9

Sasaki2019 138 588 MRI Brain 10.1038/s41598-019–50849-y

Toivonen2019 100 7106 MRI Prostate cancer 10.1371/journal.pone.0217702

Keek2020 273 1323 CT HNSCC 10.1371/journal.pone.0232639

Li2020 51 397 MRI Glioma 10.1371/journal.pone.0227703

Park2020 768 941 US Thyroid cancer 10.1371/journal.pone.0227315

Song2020 260 265 MRI Prostate cancer 10.1371/journal.pone.0237587

Veeraraghavan2020 150 201 DCE-MRI Breast 10.1038/s41598-020–72475-9
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Feature selection methods
Four well-performing feature selection methods were 
employed [17]: LASSO [18], extra trees (ET) [19], analy-
sis of variance (ANOVA) [20], and Bhattacharyya [21]. 
These methods determine feature importance using dis-
tinct approaches: LASSO applies a logistic regression 
with an L1-regularization term to identify key features, 
while Extra Trees constructs multiple decision trees and 
employs a voting mechanism. ANOVA assesses feature 
importance by comparing the variances between groups 
and within groups, whereas Bhattacharyya calculates the 
similarity of features interpreted as probability distribu-
tions. Since they score each feature according to their 
estimated relevance, a decision had to be made on how 
many of the highest-scoring features should be used for 
the subsequent classifier. The number of selected features 
was chosen from among N = 1, 2, 4, … 32, 64. The hyper-
parameter C for the LASSO, which balances the model 
fitting and the regularization, was set to C = 1. For the ET, 
100 trees were used.

Classifiers
Four classifiers were utilized [22]: Naive Bayes, logistic 
regression (LR), kernelized SVM (RBF-SVM), and ran-
dom forest (RF). The hyperparameters of each method 
were selected through a grid search approach. Specifi-
cally, for the LR, the regularization parameter was chosen 
from C = 1/64,1/16, 1/4, 0, 4, 16, 64, while for the random 
forest, the number of trees was chosen from N = 50, 125, 
250. For the kernelized RBF-SVM, the kernel width γ was 
set automatically to the inverse of the number of features, 
and C was chosen from C = 1/64,1/16, 1/4, 0, 4, 16, 64.

Training and evaluation
Training was performed using fivefold stratified cross-
validation (CV) with 100 repeats (Fig.  1). In each 
repeat, the data was first split randomly into five folds. 
Then, in turn, each fold was used once as a test fold, 
while the other four folds were used to determine the 

best-performing model using a grid search. Model train-
ing was performed by first applying a feature normaliza-
tion method only to the training folds. Then, a number of 
selected features, a feature selection method, a classifier, 
and its hyperparameter were fixed, and a corresponding 
model was trained on the four training folds. This model 
was then evaluated on the left-out test fold. The result-
ing predictions were then pooled, and the model’s perfor-
mance was then computed using AUC.

Predictive performance
During each repeat, the predictive performance of each 
normalization method was evaluated by determining the 
best-performing model using that specific method based 
on the AUC. The average AUC over all repeats was then 
used to rank each feature normalization method. In addi-
tion, the number of datasets where a method performed 
best was recorded. As a secondary measure, sensitiv-
ity and specificity of the models were determined using 
Youden’s method [23].

Feature agreement
Since normalization could impact which feature selec-
tion method performs best, we measured the agreement 
of the feature selection method of the best-performing 
model for each normalization method across all repeats. 
Even when the same feature selection method is used, 
feature normalization can influence the selected features. 
In addition, it is well-known that feature selection is 
unstable in data with high dimensionality [17, 24]. There-
fore, we measured the agreement of the selected features 
across all folds, and all repeats using the Intersection-
over-Union (also called the Jaccard index), which meas-
ures the degree of overlap between the selected features.

Model calibration
Brier score [25] and expected calibration error (ECE) [26] 
were employed to measure the calibration of the result-
ing models.

Table 2 Overview of the normalization methods, their parameters, and the source of implementation

Method Parameter Implementation

z-Score - “StandardScaler” from Scikit-learn v1.1.2

Robust z-Score (5,95) Quantile [5,95] “RobustScaler” from Scikit-learn v1.1.2

Robust z-Score (25,75) Quantile [25,75] “RobustScaler” from Scikit-learn v1.1.2

Min–Max Scale [-1, 1] “MinMaxScaler” from Scikit-learn v1.1.2

Power transformation - “PowerTransformer” from Scikit-learn v1.1.2

Quantile transformation - “QuantileTransformer” from Scikit-learn v1.1.2

Tanh transformation - Own implementation

None - -
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Bias from normalizing before cross‑validation
To understand whether normalizing all data incorrectly 
before training could lead to bias, we re-run the experi-
ment but scaled all data once up-front before splitting 
into folds. Accordingly, no feature normalization was 
applied during the CV. The predictive performance in 
terms of AUC was then used to compare the correct and 
the incorrect experiments. In addition, the differences in 
model calibration were measured.

Software
All experiments were performed using Python 3.10. Nor-
malization methods were utilized from the scikit-learn 
package v1.1.2 [27]. The code and data are available on 
github.1

Statistics
Descriptive statistics were reported as mean ± standard 
deviation. p values below 0.05 were considered to be 

statistically significant. Statistics were computed using 
Python 3.10 and the scipy module. Normalization meth-
ods were compared using a Friedman test and a post hoc 
Nemenyi test [28].

Results
Predictive performance
An effect of the normalization on the overall predic-
tive performance was visible; however, on average, the 
gain in AUC compared to not normalizing the features 
was at most + 0.012, which was attained when compar-
ing the z-Score (mean AUC: 0.707 ± 0.102) to no nor-
malization (mean AUC: 0.719 ± 0.107) (Fig.  2; Fig. S1 in 
Supplementary file 1). The method that performed best 
across all datasets was z-Score with a mean rank of 3.5, 
closely followed by Min–Max, the quantile transforma-
tion, and the two robust z-Scores methods (Fig. 2). Com-
pared to not scaling, the largest difference was + 0.051 in 
AUC, obtained by the robust z-Score (5,95) (mean AUC: 
0.719 ± 0.107). The worst method was the tanh transfor-
mation, which, on average, performed slightly worse than 
not scaling (mean AUC: 0.704 ± 0.104). A slightly larger 

Fig. 1 Flow diagram of the design of the experiments

1  https:// www. github. com/ aydin demir cioglu/ radNo rm

https://www.github.com/aydindemircioglu/radNorm
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gain could be seen in the model’s specificity (around 
0.01) but less so in the sensitivity of the resulting model 
(Fig. 2).

Regardless, no method could consistently outperform 
any other. Even the best-ranked z-Score was performing 
in AUC lower than the worst-ranked tanh on four data-
sets (Fig.  3a). When considering the method that most 
often performed best, the quantile transformation out-
performed all other methods on five datasets (5/15, 33%), 
while the best-ranked z-Score could only do so on one 
dataset (Fig. 3b).

A Friedman test indicated a significant difference 
between the feature normalization methods (p < 0.001); a 
post hoc Nemenyi test showed that the tanh transforma-
tion was performing significantly worse than the z-Score 
(p = 0.033), and the quantile transformation (p = 0.046) 
while no significant difference could be found for any 
other pair of feature normalization methods.

Feature agreement
Feature normalization also had a strong influence on 
the best-performing feature selection method and the 
selected features (Fig.  4). The highest amount of agree-
ment of feature selection methods was seen between the 
z-Score and the robust z-Score (5,95) (Fig.  4a). Regard-
ing the selected features, lower agreements were seen 
(Fig.  4b). The highest agreement of selected features 
was between the z-Score and the robust z-Score (5,95) 
method with an agreement of 62%. The quantile and 
power transformation resulted in vastly different selected 

features compared to the other methods, with less than 
21% agreement.

Model calibration
Neither the Brier score nor the ECE showed large differ-
ences on average when different methods were applied 
(up to a loss of 0.007), suggesting that model calibration 
is not highly dependent on feature normalization (Fig. 2).

Bias from normalizing before cross‑validation
Applying feature normalization once before cross-val-
idation did not lead to a clear bias since the mean dif-
ference in AUC was often close to ± 0.001. Only in the 
case of the tanh transformation a larger bias of + 0.022 
was observed (Fig. 5a). On certain datasets, often differ-
ences of up to 0.01 could be seen. The largest difference 
was for the tanh transformation on Keek2020, where the 
bias reached 0.022, and on Li2020, with a bias of 0.014 
(Fig.  5b). Similarly, no clear bias in the sensitivity and 
specificity of the resulting models and the model calibra-
tion were observed.

Discussion
Feature normalization is a central part of the radiomics 
pipeline, yet its impact on the feature selection and clas-
sifier is unclear. We employed several feature normaliza-
tion methods, including less commonly used methods 
like the power and quantile transformation, across mul-
tiple datasets to assess their influence on the predictive 
performance and the selected features.

Fig. 2 Overview of the best-performing models’ predictive performance and model calibration metrics averaged over all repeats. Numbers are 
reported as mean ± standard deviation
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Our result showed that the predictive performance 
depended on the feature normalization. On average, 
z-Score and its robust variants, Min–Max, and the 
quantile transformation performed best. Yet, there was 
no clear dominance of a single method over all others, 
and performance depended strongly on the dataset: for 

example, the quantile transformation outperformed 
all other methods on five datasets. In comparison, the 
worst-performing tanh transformation did well on two 
datasets, even though over all datasets it was signifi-
cantly worse than the z-Score and the quantile trans-
formation. Furthermore, the simple Min–Max method 

Fig. 3 a Mean rank of the feature normalization methods; mean gain, and maximum gain compared to applying no normalization. b Counts 
of wins and losses between the normalization methods



Page 8 of 11Demircioğlu  Insights into Imaging            (2024) 15:2 

performed quite similarly to the more complex Yeo-
Johnson power transformation. These results indicate 
that multiple methods should be tested if the goal is the 
highest predictive performance. A similar observation 
has been made in the context of feature selection meth-
ods [17, 29].

We also observed a strong effect of the feature nor-
malization method on the feature selection. First, the 
normalization method impacted what feature selection 
method performed best. It seemingly did not depend 
on the predictive performance because even though the 
models using Min–Max and z-Score performed relatively 
close, the feature selection methods agreed only in about 
70% across all repeats. The situation worsened when we 
compared the selected features across different folds. 
For example, the quantile transformation selected only 
around 15% of the same features the z-Score method did, 
even though both performed nearly equally well.

These observations have a very distinct impact on 
feature interpretation: If models were trained similarly 
but differed only on the feature normalization method, 
the conclusion on the important features can be widely 
different. A similar observation was already made for 
statistically similar performing models and is comple-
mentary to our results [30].

In contrast, the feature normalization method did 
not largely influence model calibration. We could not 
see any considerable difference in the Brier score or the 
ECE on average. This observation could mean that the 
calibration mainly depended on the classifier, not the 
feature normalization. However, one has to be careful 
since our study did not employ external datasets, where 
such an effect might be seen.

Surprisingly, applying feature normalization before 
cross-validation did not lead to a significant bias for the 
z-Score and the Min–Max methods. It is in stark contrast 
to applying feature selection before cross-validation [31]. 
Nonetheless, using it within the CV is advisable to avoid 
any risk of obtaining biased results.

Although feature normalization is known to be of 
importance, only a few dedicated studies have been con-
ducted in the context of radiomics: Haga et  al. consid-
ered three normalization methods, Min–Max, z-Score, 
and principal component analysis (PCA), in a cohort 
of patients with lung cancer [32]. Their results indicate 
that z-Score and PCA performed best, both better than 
Min–Max (gain in AUC of + 0.064). However, since they 
only consider a single dataset and a single modality (CT), 
one cannot deduce more general statements from this 
study. Yet, our results confirm their observation since 
z-Score performed best with a maximum gain of + 0.051. 
Contrary to Haga et  al., we did not consider PCA since 
it is not commonly applied in radiomics since PCA cre-
ates new features because doing so obstructs any feature 
interpretation, a critical issue in radiomics.

Castaldo et  al. considered multiple feature normali-
zation methods for predicting the receptor status of 
breast cancer patients and stated that the normalization 
method does influence the resulting model [33]. They 
also considered the correlation of the transformed fea-
ture (compared to the original scaling). They concluded 
that z-Score and Min–Max do not change the features 
as much as transformations like quantile or whitening 
do. This effect can also be seen in our results because 
the features selected when using the (non-linear) power 
and quantile transformations were not similar to those 

Fig. 4 Feature agreement of the best-performing models across repeats. a Agreement of feature selection methods of the best-performing models 
(in %). b Feature agreement of the selected features of the best-performing models, measured via Intersection-over-Union (in %)
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selected by the (linear) z-Score or Min–Max. They also 
demonstrated that the best normalization method 
depends on the dataset, which aligns with our results, 
even though their dataset was also not high-dimensional 
since the number of features (d = 36) was lower than the 
number of samples (N = 91).

Other studies only considered normalization meth-
ods as part of the radiomics pipeline. Wan et al. com-
pared three methods (Min–Max, z-Score, and mean 
normalization) in MRI of solid solitary pulmonary 
lesions and concluded that there is no large difference 
between them [34]. Even though they only analyzed a 
single dataset with a low sample size (N = 132), this is 

in line with our results. Koyuncu et al. considered two 
methods, Min–Max and z-Score, to detect COVID-19 
in X-ray images and concluded that Min–Max per-
formed better [35]. Even though our study showed that, 
on average, z-Score performs better, Min–Max per-
formed best on three datasets, showing that Min–Max 
can indeed outperform z-Score. Castaldo et  al. con-
sider z-Score, quantile transformation, and a whitening 
method in patients with breast cancer [36]; they con-
clude that using quantiles performs best, although the 
sample size of their data is rather small (N = 36). Gianni 
et  al. used different image and feature normalization 
methods to harmonize the features extracted from 

Fig. 5 Differences of the best-performing models when applying feature normalization incorrectly before cross-validation compared to applying it 
correctly. a Differences averaged over all repeats. b Differences in AUC for each dataset. Numbers are reported as mean ± standard deviation
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rectal MRIs [37]; they also indicated that z-Score is one 
of the best-performing methods.

In the machine learning context, Singh et al. compared 
several normalization methods and concluded that the 
best are z-Score and a variant called Pareto scaling, where 
the normalization is performed by dividing by the square 
root of the standard deviation [38]. Unlike our results, 
they stated that z-Score and its variants performed bet-
ter than Min–Max. However, it has to be noted that the 
datasets used by Singh et  al. were all low-dimensional 
(meaning that the number of samples exceeded the num-
ber of features) and partly synthetic. Radiomics data-
sets are very different in that they are nearly exclusively 
high-dimensional since many features are extracted, and 
the sample sizes are rather small. In addition, they often 
contain many correlated features [30]. Similarly, a recent 
study by de Amorim et al. considered five different nor-
malization methods on 82 low-dimensional datasets [39]. 
In that study, the focus was on the interaction between 
the normalization and the classification methods. They 
concluded that z-Score normalization performed overall 
best, yet no single normalization method outperforms all 
other. This result was also observed in our study.

Based on our results, we recommend radiomic studies 
to test multiple feature normalization methods to obtain 
the highest predictive performance. If computational 
time is restricted, z-Score, Min–Max, and the quantile 
transformation should be tested.

We applied feature normalization to all features; how-
ever, in feature engineering, each feature is often nor-
malized separately [7]. This approach is unsuitable for 
radiomics because of the many features involved in radi-
omic datasets. Yet, normalizing differently based on the 
type of features, i.e., morphological, intensity, or textural, 
and the type of image preprocessing could improve the 
predictive performance. In addition, our study only con-
sidered the classical radiomic pipeline; alternatives exist; 
for example, the feature selection might be dropped in 
favor of a classifier that handles feature selection implic-
itly, like Xgboost or random forest. Also, deep learning-
based radiomics is more often used, and the features 
extracted from deep networks may have a different qual-
ity than those we used. In these cases, feature normali-
zation might behave differently and should be studied in 
future work.

Several limitations apply to our study: We could only 
obtain datasets for which no external data were avail-
able (except for the two Hosny2018A and Hosny2018B 
datasets). However, the effect of different normalization 
methods on external data would be highly interesting 

regarding reproducibility and, therefore, the clinical 
applicability of the models. Given the lack of external 
data, we employed a simple CV with a higher number of 
repeats which could exhibit bias. Nested cross-validation 
would yield possibly unbiased results; however, it is com-
putationally much more costly. Similarly, the AUC, sen-
sitivity and specificity were determined using the pooled 
validation sets. It might be biased towards the validation 
set and generalize less to new data. We confined our-
selves to more common normalization methods. Other 
methods have been defined in the literature and could 
be useful in the high-dimensional setting and should be 
tested in future studies as well.

In summary, our study has shown that, on average, fea-
ture normalization has only a minor effect on prediction 
performance and model calibration; however, this effect 
depends on the dataset. It exerts more influence on the 
feature selection methods.
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