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CT radiomics to predict micropapillary and solid 
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Abstract 

Objectives  To develop and validate a machine learning model using 18F-FDG PET/CT radiomics signature and clinical 
features to predict the presence of micropapillary and solid (MP/S) components in lung adenocarcinoma.

Methods  Eight hundred and forty-six patients who underwent preoperative PET/CT with pathologically con-
firmed adenocarcinoma were enrolled. After segmentation, 1688 radiomics features were extracted from PET/CT 
and selected to construct predictive models. Then, we developed a nomogram based on PET/CT radiomics integrated 
with clinical features. Receiver operating curves, calibration curves, and decision curve analysis (DCA) were performed 
for diagnostics assessment and test of the developed models for distinguishing patients with MP/S components 
from the patients without.

Results  PET/CT radiomics-clinical combined model could well distinguish patients with MP/S components 
from those without MP/S components (AUC = 0.87), which performed better than PET (AUC = 0.829, p < 0.05) or CT 
(AUC = 0.827, p < 0.05) radiomics models in the training cohort. In test cohorts, radiomics-clinical combined model 
outperformed the PET radiomics model in test cohort 1 (AUC = 0.859 vs 0.799, p < 0.05) and the CT radiomics model 
in test cohort 2 (AUC = 0.880 vs 0.829, p < 0.05). Calibration curve indicated good coherence between all model pre-
diction and the actual observation in training and test cohorts. DCA revealed PET/CT radiomics-clinical model exerted 
the highest clinical benefit.

Conclusion  18F-FDG PET/CT radiomics signatures could achieve promising prediction efficiency to identify the pres-
ence of MP/S components in adenocarcinoma patients to help the clinician decide on personalized treatment 
and surveillance strategies. The PET/CT radiomics-clinical combined model performed best.

Critical relevance statement  18F-FDG PET/CT radiomics signatures could achieve promising prediction efficiency 
to identify the presence of micropapillary and solid components in adenocarcinoma patients to help the clinician 
decide on personalized treatment and surveillance strategies.
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Introduction
Lung cancer is the leading cause of death due to cancer 
globally, in which adenocarcinoma is the most common 
subtype [1]. Because of remarkable heterogeneity in ade-
nocarcinoma, the International Association for the Study 
of Lung Cancer/American Thoracic Society/European 
Respiratory Society (IASLC/ATS/ERS) classified inva-
sive lung adenocarcinoma into five subtypes, including 
lepidic, acinar, papillary, micropapillary, and solid [2]. 
Numerous studies reported that lung adenocarcinoma 
with micropapillary and solid (MP/S) predominant sub-
types was related to poor prognosis [3, 4]. More impor-
tantly, patients with MP/S components accounting for 5% 
or greater would carry a high risk of early locoregional 
recurrence, who were performed with limited resec-
tion, but not lobectomy [5, 6]. Therefore, preoperative 

predictions of MP/S pattern in lung adenocarcinoma 
could help surgeons decide surgical strategies.

Biopsy is an optional method, but the sample obtained 
is only a portion of heterogeneous tumor, which cannot 
represent the whole tumor properties due to sampling 
error [7]. Non-invasive imaging can provide features of 
the whole tumors, containing structural and metabolic 
information spatiotemporally. 18F-fluorodeoxyglucose 
(FDG) positron emission tomography-computed tomog-
raphy (PET/CT) has been widely applied to diagnose, 
stage, assess therapeutic efficacy, and predict the prog-
nosis of lung cancer [8–11]. Emerging studies found 
that the tumor size, nodule type, ill-defined margin, and 
maximum standardized uptake value (SUVmax) derived 
from 18F-FDG PET/CT were associated with MP/S pat-
tern in lung adenocarcinoma [3, 12–15]. However, 

Key points 

• 18F-FDG PET/CT radiomics signature is valuable to identify the presence of MP/S components in lung adenocarci-
noma non-invasively.

• Gender and N stage are independent predictors of differentiation in patients with or without MP/S components.

• The nomogram integrating 18F-FDG PET/CT radiomics and clinical characteristics improves predictive performance.
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these characteristics cannot reflect tumor heterogene-
ity. It is urgent to develop a more effective method to 
predict MP/S components in lung adenocarcinoma 
preoperatively.

Radiomics is the high-throughput extraction of quan-
titative medical image features, which provides detailed 
characteristics of tumor heterogeneity, offering a promis-
ing opportunity [16, 17]. Some studies found that quanti-
tative CT features based on radiomics could distinguish 
MP/S components in lung adenocarcinoma. Neverthe-
less, the accuracy of the radiomics model was moder-
ate [18, 19]. CT combining PET image information may 
increase the prediction accuracy of MP/S components 
in tumor. Recently, 18F-FDG PET radiomics has been 
reported to predict the metabolic status and heterogene-
ity in lung adenocarcinoma [20]. However, as far as we 
know, no predictive model has been reported to be devel-
oped based on PET/CT radiomics to predict MP/S com-
ponents in lung adenocarcinoma.

In this study, we aimed to develop and validate a 
machine learning model by combining 18F-FDG PET/CT 
radiomics signature with clinical features to predict the 
presence of MP/S components in lung adenocarcinoma.

Materials and methods
Patients
This retrospective study was approved by the Ethi-
cal Committee of Daping Hospital, Army Medical 

University (No.2022174), and the requirement for writ-
ten informed consent was waived. Eight hundred and 
forty-six patients with pathologically confirmed invasive 
lung adenocarcinoma from January 2012 to December 
2020 were enrolled. The classification of pathology is 
according to the 2011 IASLC/ATS/ERS classification of 
lung adenocarcinoma. Patients were classified into with 
MP/S group (MP/S component exceeded 5%) and with-
out MP/S group (MP/S component less than 5%), based 
on the pathological analysis. The inclusion criteria were 
as follows: (1) pathologically confirmed invasive adeno-
carcinoma; (2) no radiotherapy, chemotherapy, or biopsy 
was received before 18F-FDG PET/CT scan; (3) within 
2 weeks after PET/CT scan, the operation was done; and 
(4) patients were 18 years of age or older. The exclusion 
criteria were as follows: (1) poor image quality, (2) the 
lesion with 18F-FDG uptake values lower than or equal 
to the background, and (3) with history of other malig-
nancy. Figure 1a shows the patient screening process.

PET/CT imaging
Before scanning, all patients fasted > 6  h, with a blood 
glucose level < 10  mmol/L. Then, 18F-FDG was injected 
intravenously with the dose of 3.7  MBq/kg. Then, 
patients underwent PET/CT (Biograph 64 HD, Siemens 
Healthcare) scanning after 60 min from the vertex to the 
proximal legs. CT scan was firstly performed with the 
parameters of CT scan 120-kV voltage, 130-mA tube 

Fig. 1  The workflow of this study. a Study flowchart. b Radiomics workflow
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current, and 5-mm slice thickness. Whereafter, PET scan 
was conducted, scanning at 90  s/bed position and 4–6 
bed positions. PET images were reconstructed by TrueD 
software on the Siemens workstation and fused with CT 
images.

Image preprocessing, segmentation, and feature 
extraction
The volume of interest (VOI) was segmented by ITK-
SNAP 3.8.0 software (www.​itksn​ap.​org). Two expe-
rienced nuclear medicine physicians (J.S. and L.Z.), 
without knowing the clinical and pathological results, 
semi-automatically delineated boundaries of the tumor to 
define the VOI (threshold = 40% SUVmax). Then, SUV-
max and SUVavg of tumor VOIs were calculated in the 
PET images. For CT segmentation, VOI of the tumor was 
delineated on the lung window (window width = 1500 
HU, window level =  − 700 HU). Then, the Pyradiom-
ics 3.1.0 software was used to preprocess the images by 
resampling the isotropic voxel into 1 × 1 × 1 mm with lin-
ear interpolation. Finally, there are 1688 totally extracted 
radiomics features from each VOI including PET and CT 
images. To make features reproducible, an interclass cor-
relation coefficient (ICC) greater than 0.75 indicates sat-
isfactory agreement [21].

Radiomics feature selection and model construction
The 846 patients were divided into training cohort, test 
cohort 1 and test cohort 2 at 6:2:2 randomly. Before 
selection, all features were normalized. A Mann–Whit-
ney U validation was performed to remove the redundant 
features for initial feature selection. Then, regarding the 
dependence between features, a Pearson correlation anal-
ysis was done to exclude the features that the correlation 
coefficient was greater than 0.9. Subsequently, the least 
absolute shrinkage and selection operator (LASSO) algo-
rithm was performed [22], and tenfold cross-validation 
was utilized to select the most distinguishable features. 
The rad-score was figured out by summing the selected 
features weighted by the corresponding coefficients. PET 
or CT rad-score means summing the selected PET or 
CT features weighted by the corresponding coefficients, 
respectively.

Radiomics‑clinical model construction
Gender, age, smoking, TNM stage, nodule type, air 
bronchogram, vacuole sign, pleural adhesion, shape 
(regular, irregular), maximum length of the tumor, 
interface (tumor lung interface: clear, unclear), SUV-
max, SUVavg, and tumor metabolic volume (MTV) 
were collected. Nodule types were divided into three 
types, containing pure ground glass nodule (GGN), 
mixed GGN, and solid nodule based on thin-section 

unenhanced CT images. A pure GGN was defined as a 
nodule occupied by ground-glass opacity without solid 
regions. A mixed GGN was defined as a nodule that 
obscured underlying vascular signs and where < 50% 
of the nodule was observed at the mediastinal win-
dow. When more than 50% of a nodule was seen at the 
mediastinal window, a solid nodule was defined. The 
vacuole sign refers to a focal oval or round lucent area 
(typically < 5 mm). Two experienced nuclear medicine 
physicians (W.Z., R.X.) analyzed the PET/CT imaging 
features independently, without knowing the clinical 
data. These clinical features were compared to explore 
the distinguishing clinical features between two groups 
in training and test cohorts. Then, a multivariate logis-
tic regression was used to develop a clinical-radiomics 
model to identify the presence of MP/S components 
in lung adenocarcinoma by combining rad-scores with 
selected clinical features. Receiver operating curves 
(ROCs) were adopted to assess the predictive per-
formance of models to identify the presence of MP/S 
components in lung adenocarcinoma. Subsequently, 
based on the radiomics-clinical model, we established 
a nomogram. Hosmer–Lemeshow validation and cali-
bration curves were performed to analyze the calibra-
tion of nomogram. Decision curve analysis (DCA) was 
adopted to evaluate the clinical practicability of these 
models.

Statistics
Statistics were performed using the SPSS software (ver-
sion 25.0, IBM Corp., Armonk, NY) and R 4.1.1 (http://​
www.R-​proje​ct.​org). The Kolmogorov–Smirnov and 
Levene tests were used to determine the normality and 
homogeneity of the variance, respectively. Independent 
t-tests or Mann–Whitney U tests were used to compare 
the continuous variables, and the chi-square tests or 
Fisher’s exact tests were used to compare the categori-
cal variables. The Delong validation was used to compare 
the area under the curve (AUC) of the developed models. 
The level of significance for intergroup difference was set 
at p < 0.05.

Results
Patient characteristics
The baseline clinical characteristics of patients with or 
without MP/S components are shown in Table  1. Gen-
der, smoking, T stage, N stage, nodule type, tumor size, 
SUVmax, SUVavg, and MTV exhibited significant differ-
ence between patients with or without MP/S in the train-
ing and test cohorts. In the training set, pleural adhesion 
(p = 0.014) and clear tumor–lung interface (p = 0.001) 
were more common in patients with MP/S components 

http://www.itksnap.org
http://www.R-project.org
http://www.R-project.org
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than those without MP/S, but not in the test cohorts 
(p > 0.05). There were no significant differences in age, air 
bronchogram, vacuole sign, and shape between patients 
with or without MP/S components (p > 0.05).

Radiomics feature selection and signature construction
We totally extracted 1688 features from PET/CT 
images. The mean ICC value was 0.909, suggesting 
excellent inter-observer reproducibility and consistency 

Table 1  Demographic and clinical characteristics of IAC patients with or without the presence of MP/S components

Medians (interquartile range) on behalf of maximum length, SUVmax, SUVavg, and MTV, because they did not comply with normal distribution

p < 0.05 showed significant difference

Clinical features Training cohort (n = 500) Test cohort 1 (n = 176) Test cohort 2 (n = 170)

MP/S < 5% MP/S ≥ 5% p value MP/S < 5% MP/S ≥ 5% p value MP/S < 5% MP/S ≥ 5% p value

Gender  < 0.001  < 0.001 0.158

  Male 76 (34.2%) 178 (64.0%) 24 (33.8%) 70 (66.7%) 31 (45.6%) 59 (57.8%)

  Female 146 (65.8%) 100 (36.0%) 47 (66.2%) 35 (33.3%) 37 (54.4%) 43 (42.2%)

Age (years) 59.1 (8.70) 59.6 (9.50) 0.526 62.2 (9.08) 58.8 (9.64) 0.018 62.5 (9.52) 61.1 (9.33) 0.348

Smoking  < 0.001  < 0.001 0.034

  Current or ever 67 (30.2%) 142 (51.1%) 18 (25.4%) 56 (53.3%) 22 (32.4%) 51 (50.0%)

  Never 155 (69.8%) 136 (48.9%) 53 (74.6%) 49 (46.7%) 46 (67.6%) 51 (50.0%)

T stage  < 0.001  < 0.001  < 0.001

  T1 163 (73.4%) 121 (43.5%) 52 (73.2%) 39 (37.1%) 49 (72.1%) 32 (31.4%)

  T2 53 (23.9%) 115 (41.4%) 17 (23.9%) 53 (50.5%) 15 (22.1%) 47 (46.1%)

  T3 4 (1.80%) 24 (8.63%) 1 (1.41%) 10 (9.52%) 4 (5.88%) 15 (14.7%)

  T4 2 (0.90%) 18 (6.47%) 1 (1.41%) 3 (2.86%) 0 (0.00%) 8 (7.84%)

N stage  < 0.001  < 0.001  < 0.001

  N0 200 (90.1%) 154 (55.4%) 65 (91.5%) 63 (60.0%) 60 (88.2%) 56 (54.9%)

  N1 10 (4.50%) 47 (16.9%) 3 (4.23%) 13 (12.4%) 4 (5.88%) 14 (13.7%)

  N2 10 (4.50%) 72 (25.9%) 3 (4.23%) 27 (25.7%) 3 (4.41%) 31 (30.4%)

  N3 2 (0.90%) 5 (1.80%) 0 (0.00%) 2 (1.90%) 1 (1.47%) 1 (0.98%)

Nodule type  < 0.001  < 0.001  < 0.001

  pGGN 20 (9.01%) 1 (0.36%) 9 (12.7%) 0 (0.00%) 7 (10.3%) 1 (0.98%)

  mGGN 78 (35.1%) 13 (4.68%) 21 (29.6%) 2 (1.90%) 22 (32.4%) 4 (3.92%)

  Solid 124 (55.9%) 264 (95.0%) 41 (57.7%) 103 (98.1%) 39 (57.4%) 97 (95.1%)

Air bronchogram 0.587 0.322 0.421

  ( +) 55 (24.8%) 62 (22.3%) 24 (33.8%) 27 (25.7%) 17 (25.0%) 19 (18.6%)

  ( −) 167 (75.2%) 216 (77.7%) 47 (66.2%) 78 (74.3%) 51 (75.0%) 83 (81.4%)

Vacuole sign 0.707 0.806 0.325

  ( +) 30 (13.5%) 42 (15.1%) 11 (15.5%) 19 (18.1%) 8 (11.8%) 19 (18.6%)

  ( −) 192 (86.5%) 236 (84.9%) 60 (84.5%) 86 (81.9%) 60 (88.2%) 83 (81.4%)

Pleural adhesion 0.014 0.423 0.276

  ( +) 129 (58.1%) 192 (69.1%) 43 (60.6%) 71 (67.6%) 41 (60.3%) 71 (69.6%)

  ( −) 93 (41.9%) 86 (30.9%) 28 (39.4%) 34 (32.4%) 27 (39.7%) 31 (30.4%)

Shape 0.079 0.027 1

  Regular 47 (21.2%) 41 (14.7%) 18 (25.4%) 12 (11.4%) 19 (27.9%) 28 (27.5%)

  Irregular 175 (78.8%) 237 (85.3%) 53 (74.6%) 93 (88.6%) 49 (72.1%) 74 (72.5%)

  Maximum 
length

2.00 [1.50; 2.60] 2.80 [2.10; 3.80]  < 0.001 2.00 [1.60; 2.55] 2.80 [2.20; 3.60]  < 0.001 2.05 [1.60; 2.70] 3.00 [2.30; 4.10]  < 0.001

Interface 0.001 0.327 0.096

  Clear 75 (33.8%) 136 (48.9%) 27 (38.0%) 49 (46.7%) 25 (36.8%) 52 (51.0%)

  Unclear 147 (66.2%) 142 (51.1%) 44 (62.0%) 56 (53.3%) 43 (63.2%) 50 (49.0%)

SUVmax 2.56 [1.23; 5.69] 9.39 [5.85; 14.3]  < 0.001 3.35 [1.65; 6.73] 9.30 [5.45; 15.3]  < 0.001 3.06 [1.30; 5.36] 10.2 [5.94; 14.0]  < 0.001

SUVavg 1.48 [0.76; 3.30] 5.48 [3.42; 8.55]  < 0.001 2.00 [0.98; 4.08] 5.55 [3.24; 8.39]  < 0.001 1.81 [0.87; 3.31] 6.20 [3.68; 8.38]  < 0.001

MTV 1.67 [1.07; 3.48] 4.61 [2.12; 10.8]  < 0.001 1.82 [1.17; 3.22] 4.33 [2.05; 8.85]  < 0.001 2.09 [0.89; 3.57] 4.63 [2.42; 14.4]  < 0.001
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of VOI drawing and feature extraction. U-test and 
Pearson correlation coefficient analysis were adopted to 
dimensionality reduction, resulting in 58 CT radiom-
ics features and 89 PET radiomics features left. Subse-
quently, LASSO was performed to select the remaining 
features deeply. Ten radiomics features were retained 
for the PET model, while nine radiomics features were 
selected for the CT model (Fig. 2, Table S1, S2). Then, 
we constructed PET and CT predictive signatures by 
nonlinear SVM method, respectively. Figure  5a and 
Table 2 exhibit the performance of CT radiomics model 
and PET radiomics model. No significant differences 

between the CT model and PET model in training and 
test cohorts were found for distinguishing patients with 
or without MP/S components by Delong test analysis 
(p = 0.8783 in training cohort, p = 0.1892 in test cohort 
1, p = 0.4189 in test cohort 2). The radiomics feature 
score obtained in SVM model of each patient was seen 
as rad-score. Raincloud plot showed the rad-score dis-
tributions of the patients in training and test cohorts, 
suggesting that patients with MP/S components had 
higher rad-score than those without MP/S compo-
nents, with a discriminant ability (Fig. 3).

Fig. 2  Radiomics feature selection. CT (a) and PET (c) radiomics features were selected by the LASSO model. The retained features after selection 
and their corresponding coefficients for CT (b) and PET (d) radiomics

Table 2  The performance of three models in training and test cohorts

AUC​ area under the curve, 95% CI 95% confidence interval, SEN sensitivity, SPE specificity, ACC​ accuracy, PPV positive predictive value, NPV negative predictive value

AUC (95%CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%)

Training cohort

  PET model 0.829 (0.794–0.866) 81.65 71.17 77.00 78.01 75.60

  CT model 0.827 (0.791–0.865) 58.56 94.24 78.40 74.01 89.04

  Combined model 0.870 (0.840–0.902) 79.86 80.18 80.00 83.46 76.07

Test cohort 1

  PET model 0.799 (0.732–0.868) 84.76 69.01 78.41 80.18 75.38

  CT model 0.833 (0.772–0.893) 87.62 67.60 79.55 78.69 80.00

  Combined model 0.859 (0.800–0.918) 89.52 73.24 82.95 83.19 82.54

Test cohort 2

  PET model 0.854 (0.791–0.917) 90.20 70.59 82.35 82.14 82.76

  CT model 0.829 (0.763–0.895) 83.33 72.06 78.82 81.73 74.24

  Combined model 0.880 (0.826–0.934) 86.27 79.41 83.53 86.27 79.41
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Construction and validation of the nomogram
In combination with clinical variables, we further devel-
oped a combined model by logistic regression. The 
gender and N stage were independent predictors of 
differentiation in patients with or without MP/S com-
ponents in the clinical-radiomics combined model by 
multivariate logistic regression analysis (Table S3). Fig-
ure 4 shows the nomogram based on rad-score and clini-
cal features. The results revealed that radiomics-clinical 
combined model could well distinguish patients with 
MP/S components from those without MP/S compo-
nents (AUC = 0.87), which performed better than PET 
radiomics model (AUC = 0.829, p < 0.05) or CT radiom-
ics model (AUC = 0.827, p < 0.05) in training cohort. In 
test cohorts, the radiomics-clinical combined model 
performed better than the PET radiomics model in test 
cohort 1 (AUC = 0.859 vs 0.799, p < 0.05) and CT radiom-
ics model in test cohort 2 (AUC = 0.880 vs 0.829, p < 0.05) 
(Fig. 5a, Table S4). The calibration curve indicated good 
coherence between all model prediction and the actual 

observation in training and test cohorts (Fig. 5b, p > 0.05). 
Subsequently, DCA was adopted to evaluate the clinical 
application of the three developed models. The results of 
DCA revealed PET/CT radiomics-clinical model exerted 
the highest clinical benefit to distinguish patients with 
MP/S from those without MP/S components (Fig. 5c).

Discussion
Recently, lung adenocarcinoma with or without MP/S 
components has been drawing attention, which is asso-
ciated with poor prognosis, and can influence surgical 
strategies [3, 23–26]. Therefore, it is important to predict 
the presence of MP/S components in lung adenocarci-
noma preoperatively for optimal surgical strategies and 
whether to receive aggressive postoperative adjuvant 
therapy. Herein, we successfully developed a PET/CT 
radiomics signature and constructed a model by com-
bining radiomics with clinical features to distinguish 
patients with MP/S components from those without 
MP/S components, which exhibited good performance. 

Fig. 3  Raincloud plot visualizes the prediction probability of CT and PET radiomics signature. It shows the rad-score distribution of patients 
in training cohort (a) and test cohorts (b, c)

Fig. 4  Nomogram based on PET/CT rad-score and clinical features



Page 8 of 11Zhou et al. Insights into Imaging            (2024) 15:5 

These findings suggest that the method to identify the 
presence of MP/S components by integrating PET/CT 
radiomics and clinical features could be potentially fea-
sible in clinics.

Accumulating studies found that MP/S subtypes 
manifested as predictors for higher aggressive and 
worse prognosis [3, 24, 25]. Our results showed that 
the presence of MP/S components in lung adenocarci-
noma was significantly associated with pleural invasion 
(p = 0.014) and metastasis of lymph node (p < 0.001), 
which were consistent with the previous studies 

[27–29]. Furthermore, with the increase of the use of 
sublobar resection, the optimal strategy for early-stage 
NSCLC patients is essential. Based on the results of a 
prospective multi-institutional study on the relation-
ship between radiologic and pathologic findings in 
peripheral lung cancer, the general indication for sublo-
bar resection in cases with radiological invasive lesions 
is a lesion size ≤ 2  cm. But some reports also demon-
strated small (≤ 2 cm) early-stage lung adenocarcinoma 
patients with MP/S components accounting for 5% or 
greater would carry a high risk of early locoregional 

Fig. 5  Diagnostic assessment and test of three models for distinguishing the patients with MP/S components from the patients without. ROC 
analysis (a), calibration curves (b), and decision curve analysis (c) of three models for identifying the presence of MP/S components in training 
and test cohorts
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recurrence, who were performed with limited resec-
tion, but not lobectomy [5, 6]. In addition, in inoper-
able lung adenocarcinoma, determining the presence of 
MP/S is also important because biopsy may not reflect 
all features of the tumor due to tumor heterogeneity 
[18]. Therefore, preoperative predictions of MP/S com-
ponents in lung adenocarcinoma could help surgeons 
decide on personalized treatment and surveillance 
strategies.

So far, few researches have studied the imaging-based 
prediction of MP/S components, which were all sub-
jective studies based on qualitative CT and PET/CT 
variables. The results showed radiologic characteristics 
like tumor size > 2.5  cm, a solid nodule, and high 18F-
FDG uptake were useful to detect the presence of MP/S 
components [3, 12, 30, 31]. In our study, patients with 
MP/S components showed higher 18F-FDG uptake, 
solid-predominant tumor, and larger tumor size than 
those without, which was consistent with the previous 
studies. Moreover, due to the aggressive behavior of 
MP/S patterns, tumors with the presence of MP/S com-
ponents were related to lymphatic invasion. Therefore, 
lymph node involvement was more common in tumors 
with MP/S components than those without MP/S com-
ponents [32, 33]. Our results showed the MP/S < 5% 
with a tendency to have a lower TNM stage, whereas 
the MP/S > 5% with more frequent lymph node metas-
tasis. As for demographics, patients with MP/S pat-
terns were found to be associated with males [3, 27], 
which was confirmed by our results.

Allowing for intratumor heterogeneity, radiom-
ics containing abundant quantitative medical imaging 
features can provide a more detailed characterization 
of tumor heterogeneity, which reflects comprehensive 
quantification of disease phenotypes [17, 34]. Emerg-
ing studies found that quantitative CT features based 
on radiomics could distinguish MP/S components in 
lung adenocarcinoma. Nevertheless, the accuracy of 
the CT radiomics model was moderate [18, 19]. Add-
ing metabolic information to CT images may increase 
the prediction accuracy of MP/S components in lung 
adenocarcinoma [35]. In our study, the performance 
of CT and PET radiomics models was good. Further, 
we established PET/CT radiomics-clinical combined 
model, including gender, N stage, CT rad-score, and 
PET rad-score. The combined model performed bet-
ter than CT or PET radiomics models to identify the 
presence of MP/S components. Then, we adopt two 
test cohorts to validate the performance of the devel-
oped models. The performance of developed models in 
the two test cohorts remained stable, which indicated 
good generalizability of these models. Taken together, 

18F-FDG PET/CT radiomics-clinical model could iden-
tify the presence of MP/S components in lung adeno-
carcinoma with high performance.

This study had some limitations. First, this was a 
retrospective, single-center study, which was limited 
by biases like incomplete data acquisition and patient 
selection. Prospective, multi-center study is necessary 
in the future. Second, external validation was not per-
formed. However, we conducted internal validation 
using two test cohorts. The performance of developed 
models in the two test cohorts remained stable, which 
indicated good generalizability of these models. Third, 
the indication for sublobar resection in cases with a 
tumor size is less than 2 cm in general. But in this study, 
part of the patients with MP/S components enrolled 
in our study exceeded 2  cm, which may influence 
the results of the radiomics analysis. Study enrolling 
patients with tumor size eligible for sublobar resection 
is further needed.

In conclusion, we developed an optimal PET/CT 
radiomics signature and constructed a model to iden-
tify the presence of MP/S components in lung ade-
nocarcinoma by combining radiomics with clinical 
features, with a good performance. This study suggests 
18F-FDG PET/CT radiomics signatures could achieve 
promising prediction efficiency to identify the presence 
of MP/S components in lung adenocarcinoma patients 
to help the clinician decide on personalized treatment 
and surveillance strategies.
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