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Abstract 

Purpose To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve 
research quality of radiomics studies.

Methods We conducted an online modified Delphi study with a group of international experts. It was performed in three 
consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to iden‑
tify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eli‑
gible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert 
panel opinion and their rank‑sum based conversion to importance scores, the category and item weights were calculated.

Result In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final 
METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order 
of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, 

†Burak Kocak and Tugba Akinci D’Antonoli are co‑first authors and 
contributed equally to this work.

*Correspondence:
Tugba Akinci D’Antonoli
tugba.akincidantonoli@unibas.ch
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13244-023-01572-w&domain=pdf
http://orcid.org/0000-0002-7307-396X
http://orcid.org/0000-0002-7237-711X
http://orcid.org/0000-0003-1658-6598
http://orcid.org/0000-0002-5932-2392
http://orcid.org/0000-0002-3244-3864
http://orcid.org/0000-0002-0026-9101
http://orcid.org/0000-0001-6359-0763
http://orcid.org/0000-0001-8734-6482
http://orcid.org/0000-0002-8533-5090
http://orcid.org/0000-0001-9249-8624
http://orcid.org/0000-0002-7053-6471
http://orcid.org/0000-0002-3808-0785
http://orcid.org/0000-0001-7604-5625
http://orcid.org/0000-0001-8390-7721
http://orcid.org/0000-0001-7010-3812
http://orcid.org/0000-0001-9729-2756
http://orcid.org/0000-0003-0349-5590
http://orcid.org/0000-0003-4232-476X
http://orcid.org/0000-0001-9248-1398
http://orcid.org/0000-0002-4003-3320
http://orcid.org/0000-0003-4806-9413
http://orcid.org/0000-0002-1878-0290
http://orcid.org/0000-0001-5052-8231
http://orcid.org/0000-0002-0904-5147
http://orcid.org/0000-0003-3651-2529
http://orcid.org/0000-0002-5333-5993
http://orcid.org/0000-0002-3449-8017
http://orcid.org/0000-0003-2731-933X
http://orcid.org/0000-0001-7654-8011
http://orcid.org/0000-0001-9022-6000
http://orcid.org/0000-0001-9960-5648
http://orcid.org/0000-0001-6785-5167
http://orcid.org/0000-0002-8234-010X
http://orcid.org/0000-0001-6800-9878
http://orcid.org/0000-0003-1891-7477
http://orcid.org/0000-0002-5588-1867
http://orcid.org/0000-0003-3298-2072
http://orcid.org/0000-0001-6572-5369
http://orcid.org/0000-0002-6160-3011
http://orcid.org/0000-0003-4785-6394
http://orcid.org/0000-0002-0105-935X
http://orcid.org/0000-0003-0111-9540
http://orcid.org/0000-0001-6545-9427
http://orcid.org/0000-0001-5512-5810
http://orcid.org/0000-0001-6644-274X
http://orcid.org/0000-0002-7905-5789
http://orcid.org/0000-0001-6183-4429
http://orcid.org/0000-0001-7811-4612
http://orcid.org/0000-0001-7639-8172
http://orcid.org/0000-0002-9515-5616
http://orcid.org/0000-0003-0447-0918
http://orcid.org/0000-0002-6084-0656
http://orcid.org/0000-0002-8995-1210
http://orcid.org/0000-0003-0350-1794
http://orcid.org/0000-0003-1610-2397
http://orcid.org/0000-0002-6507-0531
http://orcid.org/0000-0001-9284-4830
http://orcid.org/0000-0002-0851-9953
http://orcid.org/0000-0002-0342-9545
http://orcid.org/0000-0002-1452-1574


Page 2 of 18Kocak et al. Insights into Imaging            (2024) 15:8 

feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were 
developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community.

Conclusion In this work, we developed a scoring tool for assessing the methodological quality of the radiom‑
ics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover 
methodological variations, it provides a well‑constructed framework for the key methodological concepts to assess 
the quality of radiomic research papers.

Critical relevance statement A quality assessment tool, METhodological RadiomICs Score (METRICS), is made 
available by a large group of international domain experts, with transparent methodology, aiming at evaluating 
and improving research quality in radiomics and machine learning.

Key points  
• A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large 
international expert panel and a modified Delphi protocol.

• The proposed scoring tool presents expert opinion‑based importance weights of categories and items with a trans‑
parent methodology for the first time.

• METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning‑based pipelines.

• A web application has been developed to help with the calculation of the METRICS score (https:// metri cssco re. 
github. io/ metri cs/ METRI CS. html) and a repository created to collect feedback from the radiomics community (https:// 
github. com/ metri cssco re/ metri cs).

Keywords Radiomics, Deep learning, Artificial intelligence, Machine learning, Guideline

Graphical Abstract
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Introduction
Radiomics is an evolving field of image analysis tech-
nique for extracting quantitative features from medical 
images with the premise of building predictive mod-
els and assisting clinical decision-making [1]. Since its 
introduction into medicine more than a decade ago, an 
exponential number of radiomics-related articles have 
been published yearly [2]. However, a growing transla-
tional gap exists between radiomics research and clini-
cal practice [3, 4]. One of the main reasons for this issue 
is the poor quality of research methodology, includ-
ing but not limited to, poor study design, inadequate 
description of image segmentation, feature extraction 
or model building methodology, lack of generalizability, 
lack of data, and model and code sharing practices, all 
of which ultimately limit the reproducibility of the pro-
posed radiomics models [3, 5–9].

In 2017, Lambin et  al. [10] proposed the radiomics 
quality score (RQS), a set of assessment criteria covering 
the radiomics workflow to improve the quality of radiom-
ics research. Since then, many systematic reviews have 
been published applying the RQS to published research 
to examine the quality of radiomics studies [11]. Never-
theless, some RQS item definitions may lead to ambigu-
ity and the applicability of the items can be limited based 
on different characteristics of the study design, which 
may negatively affect the reproducibility of the score even 
among experts in the field [11–13]. In addition, as shown 
previously [12], a high RQS score does not always guar-
antee high quality of a study or lack of significant bias 
[14]. Furthermore, this assessment system was developed 
by a small group of researchers and the development pro-
cess was not detailed in-depth in terms of how it deals 
with the relative importance of each item that contrib-
utes to overall radiomics research quality.

Recently, the CheckList for EvaluAtion of Radiom-
ics Research (CLEAR) guideline for reporting radiomics 
studies that covers the entire life cycle of optimal radiom-
ics research was published and endorsed by the European 
Society of Radiology (ESR) and European Society of Med-
ical Imaging Informatics (EuSoMII) [15]. The CLEAR 
reporting guideline has great potential to improve the 
quality of reporting in radiomics papers, which would 
ultimately lead to an improvement in research quality. 
Nevertheless, reporting guidelines are not assessment 
tools or instruments for measuring research quality [16, 
17]. Thus, the need remains for an easy-to-use, reproduc-
ible assessment system for radiomics research. In this 
paper, we propose a new quality assessment tool, METh-
odological RadiomICs Score (METRICS), which was 
developed by a large group of international experts in the 
field and is easy to use, specifically aimed at improving 
methodological quality of radiomics research.

Material and methods
Design and development
As there is no guidance for developing scoring sys-
tems, the recommendations for developing report-
ing guidelines were followed [18]. Therefore, a 
steering committee (T.A.D., B.K., and R.C.) was 
established first to organize and coordinate the 
development of METRICS.

To develop the METRICS tool, an online modified 
Delphi study with a group of international experts was 
planned. The process was organized in three stages. 
The steering committee members conducted the first 
stage (Stage#1), consisting of item preparation. The sec-
ond stage (Stage#2) was held with the participation of a 
group of panelists from the EuSoMII Radiomics Audit-
ing Group for discussion of the items to be voted on. The 
third stage (Stage#3) was carried out in four rounds by 
two separate groups of panelists to determine the MET-
RICS items and their weights. The first three rounds of 
Stage#3 were aimed at determining which methodologi-
cal items were eligible for METRICS. The items’ weights 
were then determined in the final round of Stage#3. Fol-
lowing each round, the panelists received structured 
feedback on the preceding round to reconcile individual 
opinions.

The surveys were open for at least 2 weeks in each 
round in Stage#3, and a reminder e-mail was sent 1 week, 
3 days, and 1 day before the deadline. When necessary 
(e.g., when overlapping with major conferences or holi-
days), deadlines were extended to ensure a reasonable 
number of panelists was achieved.

The modified Delphi surveys were carried out using a 
computer-assisted web interviewing (CAWI) system, i.e., 
Google Forms (Google LLC). For online group discus-
sions, online platforms, i.e., Google Docs (Google LLC) 
or WhatsApp (Meta Platforms Inc.), were used.

To simplify the calculation of the METRICS score, the 
development of an online calculation tool was planned. 
A GitHub repository was also planned for providing 
updates and gathering community feedback.

Anonymity
Although the panelists voted independently, the voting 
rounds of the modified Delphi exercise were not anony-
mous to track panelists’ participation. Only the organiz-
ers had access to the panelists’ data, and they preserved 
the anonymity of the votes and their respective com-
ments during and after the voting tasks (i.e., when feed-
back was provided after rounds).

Informed consent
At the start of the Delphi questions, participants’ 
informed consent was requested using the same form. 
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Participants may have opted out of the study at any 
time. Those who indicated a desire to decline the sur-
vey were to be deleted from future invitations. Only 
while the round was active, panelists could withdraw 
their votes.

Consensus criteria
The vote for “strongly agree” and “agree” accounted 
for agreement and “strongly disagree” and “disagree” 
accounted for disagreement. The “neutral” votes were 
not included in either decision. The consensus was 
defined a priori as either agreement (agreement ≥75%) 
or disagreement (disagreement ≥75%) [19]. If there was 
no agreement or disagreement, it was referred to as "no 
consensus," and they were voted again. If “no consensus” 
items did not achieve agreement in the next voting, they 
were removed from the tool. The consensus items with 
disagreement were removed from the tool without fur-
ther discussion.

Recruitment of participants
Individuals having significant experience in radiomics, 
machine learning, deep learning, informatics, or related 
editorial tasks from various countries were invited via an 
e-mail describing the development plan of the METRICS 
tool and explaining its purpose. Members of the EuSoMII 
Radiomics Auditing Group (Group#1 panelists) were 
assigned to discussion panels in Stage#2 and Round#3 
of Stage#3. Other invitees (Group#2 panelists) were 
assigned to modified Delphi voting rounds (i.e., Round#1, 
Round#2, and Round#4 of Stage#3).

Modified Delphi
Stage#1 (preparation)
To identify potential items, a thorough and systematic 
literature review was conducted. Two members of the 
steering committee performed an independent literature 
search in PubMed using the following syntax to find the 
relevant checklists, guidelines, or tools: (radiomics) AND 
((checklist) OR (guideline)). The search date was January 
24, 2023. All entries and related publications, if accessible 
by the readers, were assessed to determine the currently 
available tools. All eligible documents found were inde-
pendently evaluated by the entire steering committee to 
develop the initial template of METRICS.

Participants were requested to consider the follow-
ing principles: i, there should be no overlap between 
items; ii, an ideal study should be able to achieve a per-
fect score (i.e., all points available or 100%), meaning that 
items should not be mutually exclusive; iii, items must 
be objectively defined, to increase reproducibility; iv, not 
only hand-crafted but also studies based on deep learning 

should be considered and item conditionality should be 
assessed accordingly; v, since this is a methodological 
scoring system, the items should be mainly related to 
the “Material and methods” and “Results” sections of a 
research paper; vi, while items should also aim at improv-
ing the methodological reproducibility and transparency 
of the studies, METRICS is not a reporting checklist; and 
vii, items should point out potential bias sources and help 
users to avoid them.

Considering the principles defined above, an initial 
draft was created with three organizers of the METRICS 
project. For any disagreement among the organizers, the 
decisions were made based on a majority vote.

Stage#2 (discussion with Group#1 panelists)
The items prepared by the organizers were presented to 
the EuSoMII Radiomics Auditing Group with the same 
principles and discussed online. This stage was an open 
discussion and not anonymous. The panelists were free to 
suggest adding, removing, merging, and modifying items.

Stage#3 (modified Delphi rounds)

Round#1 (item selection) On a 5-point Likert scale 
(strongly agree; agree; neutral; disagree; strongly disa-
gree), the Group#2 panelists were asked to rate the extent 
to which they agreed with the inclusion of each item on 
the METRICS tool. With a text box, participants were 
further asked for suggestions on the item’s name and def-
inition. In addition, a text box was provided at the end of 
each section for participants to suggest additional items. 
After this round, the Group#2 panelists were provided 
with a statistical summary of each item from Round#1, 
along with anonymous comments.

Round#2 (continued for item selection) The same 
panelists as in Round#1 were invited to participate in 
Round#2. Panelists who were invited but did not respond 
to Round#1 were also invited to participate in Round#2. 
Using the same structure as Round#1, panelists were also 
presented with items that reached no consensus as well 
as new item or items suggested in previous round. They 
were asked to use the same 5-point Likert scale to express 
their level of agreement with the inclusion of each item 
in the METRICS tool. No new item proposal was asked 
in this round. After Round#2, the same panelists were 
provided with a statistical summary of each item from 
Round#2, along with anonymized comments.

Round#3 (group discussion with EuSoMII Radiom-
ics Auditing Group) The purpose of Round#3 was to 
discuss the results of the previous rounds, modify if 
necessary, and finalize the items to be included in the 
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METRICS tool. It was held on online platforms (Google 
Docs and WhatsApp Group). All Group#1 panelists 
were invited. The discussion included both agreed and 
unresolved topics. Any modification proposals were dis-
cussed and items were edited in consensus by the steer-
ing committee.

Round#4 (ranking of finalized items to determine the 
weights) Group#2 panelists who participated in at least 
one of the first two rounds (Round#1 and Round#2) 
were invited to this round. The panelists were asked to 
rank the categories and then all items within each cate-
gory in order of their importance in radiomics research. 
After Round#4, the same panelists were provided with 
an anonymized statistical summary of each item and 
category.

Pilot testing We invited Group#1 panelists to test the 
usability and understandability of the online checklist. 
Also, the final METRICS tool was tested on studies from 
the literature, including a sample of different pipeline 
designs and aims (i.e., handcrafted radiomics, deep radi-
omics, and end-to-end deep learning; lesion characteri-
zation and region of interest segmentation).

Statistical analysis
Descriptive statistics (i.e., median, interquartile range, 
percentage) were used to present the results. The ranks 
derived from hierarchical (i.e., multi-tiered) ranking with 
expert panel opinion were aggregated using their median 
value. Using the rank-sum method [20, 21], median ranks 
were first converted to importance scores with the follow-
ing formula: Score = (N+1) - Rank, where N is the total 
number of categories or total number of items within a 
category. The category weights were then rescaled to 
1. The final weights of each item were computed as the 
product of the category and item weights (e.g., [weight 
of Category A] x [weight of Item#1 in Category A]). The 
items within the respective category went through the 
same rescaling procedure. The final METRICS score was 
calculated on a percentage scale, accounting for the con-
ditionality of items and categories.

Results
All key study steps are summarized with a flowchart in 
Fig. 1.

Modified Delphi
In total, the 3 steering committee members invited 61 
experts to participate in this study, 56 of which accepted 
the invitation. In detail, 14 experts from the EuSoMII 

Radiomics Auditing Group (Group#1) accepted the invi-
tation to participate in panel discussions (i.e., discussions 
at Stage#2 and Round#3 of Stage#3), together with the 
steering committee members. Furthermore, 42 experts 
(Group#2) accepted the invitation to perform Delphi 
voting (i.e., rating in Round#1 and Round#2; ranking in 
Round#4 of Stage#3). Country data of all participants is 
presented in Fig. 2.

The literature search resulted in 58 publications. After 
independent evaluation of the content of these publica-
tions by steering committee members, 16 relevant check-
lists, guidelines, or quality scoring tools were identified 
as potentially useful for designing a new quality scoring 
tool [7, 10, 22–35]. Based on the results of this literature 
review and previous experience, 33 items were initially 
drafted. These items were then reduced to 30 after dis-
cussion with the Group#1 panelists in Stage#2, as three 
were considered unclear or partly overlapping with other 
entries, with which they were merged.

The 30 items obtained after Stage#2 discussion were 
presented to the Group#2 panelists for the first round of 
the Delphi survey, which was completed by 40 of the 42 
panelists. The consensus for an agreement was achieved 
for 26 items, while 4 items failed to achieve any consen-
sus. No item reached the consensus threshold for disa-
greement. There was one new item proposal that was 
added to the list after discussion by the steering commit-
tee (item#17, robustness assessment of end-to-end deep 
learning pipelines). A summary of the votes in Delphi 
Round#1 is presented in Fig.  3. The highest agreement 
(100%) was achieved by item#21 (i.e., consideration of 
uncertainty).

Following the Round#1, 4 items with no consensus and 
1 newly proposed item were presented to the Group#2 
panelists in Round#2 of the Delphi process. In this round, 
41 of the 42 panelists participated. The consensus for an 
agreement was achieved for 4 items. There was no con-
sensus on 1 item about prospective data collection, which 
was therefore removed from the list. There was no disa-
greement with consensus. A summary of the votes in 
Round#2 is presented in Fig. 3.

All Group#1 panelists were invited to Round#3 for 
the panel discussion by the steering committee mem-
bers. A small number of minor modifications were 
made to the item definitions at this time. The agree-
ment was achieved for all 30 items within 9 categories.

The final Delphi round, Round#4, consisted of rank-
ing of all 9 categories and the 30 items divided by cat-
egory. This was performed by all 42 of the Group#2 
panelists. Total category rank counts as assigned by 
panelists is presented in Fig. 4. A summary of the cat-
egory and item ranks in Round#4 is presented in Figs 5 
and 6, respectively.
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Weights calculated for categories and items are pre-
sented in Fig.  7. For categories, the highest and low-
est weights belonged to study design and open science, 
respectively. According to their final weights, top 5 
items with highest weights were as follows: item#3 (i.e., 

high-quality reference standard with a clear definition; 
weight, 0.0919); item#27 (i.e., external testing; weight, 
0.0749); item#2 (i.e., eligibility criteria that describe a 
representative study population; weight, 0.0735); item#11 
(i.e., appropriate use of image preprocessing techniques 

Fig. 1 Key steps in the development of METRICS. Boxes related to stages and rounds are color‑coded based on the main group of panelists 
involved. Dotted lines indicate the participation of organizers in the discussions in the relevant rounds as panelists. *Including organizers (i.e., 
steering committee members)
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with transparent description; weight, 0.0622); and 
item#18 (i.e., proper data partitioning process; weight, 
0.0599). The lowest weights belonged to the three items 
of category “open science” and were as follows: item#28 
(i.e., data availability; weight, 0.0075), item#29 (i.e., code 
availability; weight, 0.0075), and item#30 (i.e., model 
availability; weight, 0.0075).

Anonymized individual votes and ranks obtained in the 
Round#1, Round#2, and Round#4 of the Stage#3 are pre-
sented in Supplementary file 1.

Finalized METRICS tool
The final METRICS tool included 30 items within 9 cat-
egories and is presented in Table  1 with relative item 
weights. It also accounts for different study pipelines by 

including several conditional items. Figures 8 and 9 pre-
sent a flow diagram to exemplify their usage in practice.

A user-friendly online calculation tool was prepared 
to streamline the calculation of the METRICS score 
(https:// metri cssco re. github. io/ metri cs/ METRI CS. html). 
It also allows printing (paper and PDF) and export-
ing (Excel spreadsheet). Supplementary file 2 (without 
explanation) and Supplementary file 3 (with explanation) 
allow downloading the METRICS tool in table format. 
However, the use of the online tool mentioned above is 
highly recommended, as the final METRICS percentage 
score is based on the maximum achievable absolute score 
after accounting for item conditionality. This calculation 
can be performed automatically by the web-based tools 
(both online and offline versions). Supplementary file 4 

Fig. 2 Country of panelists. a World map for distribution of 59 panelists including three organizers by country. b Countries by groups. Group#1, 
EuSoMII auditing group including three organizers participated in discussions at Stage#2 and Round#3 of Stage#3; Group#2, voters participated 
in Round#1, Round#2, and Round#4 of Stage#3. In case of multiple countries, the country of the first affiliation was considered

https://metricsscore.github.io/metrics/METRICS.html
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Fig. 3 Rates from modified Delphi Round#1 and Round#2 of Stage#3. The number of the items matches those of the final METRICS tool. Item#X, 
i.e., prospective data collection, stands for the excluded item from the final METRICS tool. Please note Item#17 is missing in Round#1, which 
is the proposed item in Round#1 to be voted in Round#2
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includes evaluation examples from the literature, cover-
ing the use of METRICS on different radiomics pipeline 
designs.

A GitHub repository was set up for the METRICS tool 
(https:// github. com/ metri cssco re/ metri cs). The discus-
sion function was activated to receive community feed-
back to improve it in the future. Also, an offline version of 
the calculation tool can be downloaded from this reposi-
tory, which requires no setup or installation but directly 
starts working on common web browsers such as Google 

Chrome (recommended; Google LLC). The online calcula-
tion tool and potential updates can also be accessed via this 
repository.

Total score categories
To improve the comprehensibility of the METRICS total 
score, we propose the use of 5 arbitrary categories as a 
representation of gradually increasing quality, namely, 0 
≤ score < 20%, “very low”; 20 ≤ score < 40%, “low”; 40 ≤ 
score < 60%, “moderate”; 60 ≤ score < 80%, “good”; and 

Fig. 4 Histogram plots depicting total category rank counts as assigned by panelists. The closer a rank is to 1, the greater its relative importance

https://github.com/metricsscore/metrics
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80 ≤ score ≤ 100%, “excellent” quality. However, these 
categories should be validated through future systematic 
reviews using METRICS and used as a complement of 
the METRICS quantitative score and not as its substitute.

Discussion
In this work, we developed a scoring tool for assess-
ing the methodologic quality of the radiomics research, 
i.e., METRICS, based on the input of a diverse and large 
international panel with 59 participants. Our study was 
conducted in 3 consecutive stages, with 4 rounds of the 
modified Delphi exercise in the last stage. Based on pan-
elist ratings, 30 items within 9 categories were ultimately 
included in the METRICS tool. The weights of these 
items were then calculated using a hierarchical ranking of 
categories and items based on the rank-based assessment 
by the Delphi panelists. A web application was developed 
to automate the calculation of the METRICS score, and a 
repository was created to collect feedback from the radi-
omics research community.

There have been only few tools proposed to assess the 
methodological quality of radiomics research in the lit-
erature, e.g., the RQS [10]. Despite the fact that the RQS 
was published as part of a review article, it has received so 
much attention from the community that it became the 
de facto standard for evaluating radiomics methodology 
[11]. Although it was developed and published by leading 
radiomics researchers, it lacked methodological transpar-
ency in terms of how it was developed and how the scores 
for each item were assigned. The first and most widely 
used version was designed to evaluate traditional radiom-
ics and modeling in general and thus does not apply to 
deep learning workflows. Although not directly related to 

radiomics, the Must AI Criteria-10 (MAIC-10) checklist 
can be used to evaluate the quality of artificial intelligence 
(AI) and medical imaging studies [36]. It aims to simplify 
the process while overcoming some of the limitations of 
other published checklists in the fields of artificial intelli-
gence and medical imaging. MAIC-10 is a very short and 
simple tool that covers a wide range of concepts. Accord-
ing to the authors of MAIC-10, unlike other checklists or 
quality scoring tools, it was designed to provide a quantita-
tive, objective, and reproducible quality score with a broad 
scope of applications across studies on AI in medical imag-
ing. MAIC-10 achieved a high correlation score to Check-
list for Artificial Intelligence in Medical Imaging (CLAIM) 
[27], a widely used 42-item reporting checklist, despite 
being tested on a small number of publications from the 
journal in which it was published. It was also proposed as 
the most reproducible checklist in terms of intra-observer 
reproducibility, with CLAIM taking second place. How-
ever, the MAIC-10 scores are unweighted, namely ignoring 
the relative importance of each item and simply assigning a 
score of 1 for adherence. Such a simple scoring strategy was 
also used for the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) checklist as well [37]. A recent radiomics-spe-
cific reporting checklist, the CLEAR checklist, was devel-
oped by an international initiative led by a group of experts 
and endorsed by ESR and EuSoMII [15]. Although CLEAR 
was designed primarily as a reporting tool and not a meth-
odological guide, it still provides useful information about 
the methodology. Furthermore, it has a shortened version 
called CLEAR-S that focuses solely on methodological 
aspects and open science, with no score or weights. There 
are also reporting checklists for AI and medical imaging 

Fig. 5 Box plots for rank statistics of categories. The closer a rank is to 1, the greater its importance. Shaded bars depict interquartile range
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that were not specifically designed for radiomics, such as 
CLAIM [27]. CLAIM is a highly cited checklist that pro-
vides guidance for reporting and methodology. However, 
the current version of the CLAIM was created by a rela-
tively small group of scientists with no formal methodology 
for determining item eligibility, such as the Delphi method; 
nevertheless, there is a further initiative ongoing to update 
CLAIM [38]. Of note, a recent article provides a compre-
hensive review of available guidelines that can be used in AI 
research and medical imaging [39].

To develop the proposed scoring system, we used a 
modified Delphi method with an international group of 
panelists and defined weights of each item to present a 
more nuanced way of assessment. As a result, the cate-
gory “Study design” had the highest weight and thus the 
biggest effect on the final score. This result is such that 
adhering to all items of the category may already allow 
a METRICS score ranging between 20% and 25%, con-
sidering all possible conditionals. It includes three items 
as follows: i, adherence to radiomics and/or machine 

Fig. 6 Box plots for rank statistics of items. The closer a rank is to 1, the greater its importance. Shaded bars depict interquartile range
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learning-specific checklists or guidelines; ii, eligibility 
criteria that describe a representative study population; 
and iii, high-quality reference standard with a clear def-
inition. The first item was introduced as a new concept 
in comparison to the RQS [10] and MAIC-10 [36] tools. 
The authors of the MAIC-10 checklist included the study 
design as a single item and defined it as a very broad con-
cept. While most of their 10 items were discussed in at 
least half of the studies evaluated as part of the MAIC-
10, the study design was not defined in any of the stud-
ies evaluated. Previously, the CLEAR checklist [15] and, 
to a lesser extent, CLAIM [27] drew attention to some of 
these concepts in terms of reporting.

It may appear surprising that the category related to 
open science practices had the lowest weight and thus the 
lowest effect on the final score. This result, however, should 
be intended to only reflect relative weights between MET-
RICS categories and by no means as a general disregard for 
open science. The very presence of these items in MET-
RICS, after all, attests that panelists reached a consensus 
on the necessity of their inclusion. As widely known, radi-
omic studies suffer from significant reproducibility and 
replicability issues, which have been mainly attributed to 
the lack of data, code, and model sharing practices leading 
to poor generalizability [8, 40–42]. The METRICS authors 
strongly believe that open science practices should be 

Fig. 7 Weights of METRICS categories and items. Each category has a different color and those colors are matched between right and left panels
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followed in order to address these limitations and facilitate 
radiomics implementation into clinical practice. The dis-
crepancy between these considerations and the assigned 
weights may be attributable to the assessment that proper 
study design “comes first”. In other words, if the study’s 
aims and methodological steps are flawed, data and model 
availability becomes a secondary concern as these studies 
would still lack value in the clinical setting. It should also 

be noted that reproducibility, replicability, and generaliz-
ability are complex, intertwined topics and not exclusive to 
the field of radiomics, and reliable solutions to satisfacto-
rily address them are still being investigated [43]. We con-
sider that scoring highly on METRICS will not only mean 
an experiment has been correctly designed and presented 
but that these same aspects will also ultimately improve its 
reproducibility, replicability, and generalizability.

Table 1 METRICS tool

a Conditional for studies including region/volume of interest labeling
b Conditional for studies using fully automated segmentation
c Conditional for the hand-crafted radiomics
d Conditional for tabular data use
e Conditional on the use of end-to-end deep learning
f Score is simply the weight if present and 0 otherwise
g Proposed total score categories: 0 ≤ score < 20%, “very low”; 20 ≤ score < 40%, “low”; 40 ≤ score < 60%, “moderate”; 60 ≤ score < 80%, “good”; and 80 ≤ score  
≤ 100%, “excellent” quality

Categories No. Items Weights Scoref

Study design #1 Adherence to radiomics and/or machine learning‑specific checklists or guidelines 0.0368

#2 Eligibility criteria that describe a representative study population 0.0735

#3 High‑quality reference standard with a clear definition 0.0919

Imaging data #4 Multi‑center 0.0438

#5 Clinical translatability of the imaging data source for radiomics analysis 0.0292

#6 Imaging protocol with acquisition parameters 0.0438

#7 The interval between imaging used and reference standard 0.0292

Segmentationa #8 Transparent description of segmentation methodology 0.0337

#9 Formal evaluation of fully automated  segmentationb 0.0225

#10 Test set segmentation masks produced by a single reader or automated tool 0.0112

Image processing and fea‑
ture extraction

#11 Appropriate use of image preprocessing techniques with transparent description 0.0622

#12 Use of standardized feature extraction  softwarec 0.0311

#13 Transparent reporting of feature extraction parameters, otherwise providing a default 
configuration statement

0.0415

Feature processing #14 Removal of non‑robust  featuresd 0.0200

#15 Removal of redundant  featuresd 0.0200

#16 Appropriateness of dimensionality compared to data  sized 0.0300

#17 Robustness assessment of end‑to‑end deep learning  pipelinese 0.0200

Preparation for modeling #18 Proper data partitioning process 0.0599

#19 Handling of confounding factors 0.0300

Metrics and comparison #20 Use of appropriate performance evaluation metrics for task 0.0352

#21 Consideration of uncertainty 0.0234

#22 Calibration assessment 0.0176

#23 Use of uni‑parametric imaging or proof of its inferiority 0.0117

#24 Comparison with a non‑radiomic approach or proof of added clinical value 0.0293

#25 Comparison with simple or classical statistical models 0.0176

Testing #26 Internal testing 0.0375

#27 External testing 0.0749

Open science #28 Data availability 0.0075

#29 Code availability 0.0075

#30 Model availability 0.0075

Total METRICS score (should be given as percentage)

Quality  categoryg
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Even though an item focused on the role of prospec-
tive study design/data collection was initially included, 
the panelists were unable to reach an agreement on it, and 
it is not present in the final METRICS tool. The RQS, on 
the other hand, places a strong emphasis on prospective 
studies, particularly those registered in trial databases, 
and awards the studies with the highest score of the tool 
for this item [10]. Based on the feedback of the panelists 
during Round#1 of Stage#3, the most likely reason for 
this would be that radiomics research requires large data 
sets, which are difficult to achieve with prospective stud-
ies when compared to retrospective design and data sets. 

Another issue raised by panelists was the potential penali-
zation of large retrospective data sets in comparison to 
prospective studies with small data sets. Therefore, despite 
its undoubtedly high importance in clinical research, the 
role and added value of prospective data collection cur-
rently remain uncertain in radiomics and artificial intel-
ligence research within the medical imaging domain and 
could be secondary compared to other considerations on 
overall data labeling and management as established by the 
METRICS expert panel. It would be worthwhile to receive 
community feedback on this and other topics in the future, 
which may contribute to future revisions of METRICS.

Fig. 8 Use of conditions for the “Segmentation” section. Please note, the term “segmentation” refers to either fine (e.g., semantic, or pixel‑based) 
or rough (e.g., cropping or bounding box) delineation of a region or volume of interest within an image or image stack for model training 
or evaluation. Studies can also be performed without such annotations, for example, using class labels that are assigned either to the entire image, 
volume, exam, or patient or with unsupervised approaches that require no labeling at all (e.g., clustering models)

Fig. 9 Use of conditions related to the sections “Image processing and feature extraction’’ and “Feature processing”. Please note the flowchart 
assumes a single pipeline is used in a given study. However, different techniques might coexist in a single study. For instance, a study might include 
both hand‑crafted feature extraction and end‑to‑end deep learning for comparison purposes, in such a case, all conditions can be selected as “Yes”
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It should be noted that METRICS not only has the 
potential to improve the quality of the radiomic research 
papers but also to serve as a development model for 
future standardization and evaluation tools. Neverthe-
less, to facilitate clinical translation of radiomics, further 
endeavors and standardization projects are still required. 
Examples of previous standardization attempts include 
the IBSI [28] and the CLEAR checklist [15]. These efforts 
should also include altering the attitudes of academic 
journals towards negative results, i.e., statistically non-
significant results [3, 6], promoting the use of checklists 
and quality scoring tools [44], and fostering the conduct 
of reproducibility studies. Particular attention should 
also be posed to trending research practices which 
may not only be unrealistic for the clinical setting but 
also methodologically inappropriate, such as the use of 
radiomics-based nomograms [45]. Finally, METRICS is 
explicitly targeted at the research setting, while commer-
cially available products based on radiomics and machine 
learning have to account for further issues such as regula-
tory demands and liability for potential mistakes, which 
are outside the scope of the tool we developed.

Our work has several distinguishing features and 
strengths compared to the previously available tool. 
First, some RQS items, such as requirement for phan-
tom-based test-retest experiments or scanning at multi-
ple time points should not be expected in all radiomics 
studies. Second, we assigned weights for items and cat-
egories based on expert ranking and not arbitrarily. This 
was one of the main goals of the study as there has been 
no previous work on radiomics quality scoring that has 
presented a transparent methodology for assigning item 
weights. Third, the METRICS tool considers not only 
hand-crafted radiomics but also deep learning-based 
radiomics. Fourth, both Group#1 and Group#2 had a 
large number of panelists. Furthermore, the panel was 
diverse in terms of country and domain expertise. This 
was necessary to reduce noise in calculations. Fifth, 
panelist participation in the Delphi rounds was also 
very high, with a minimum of 95% (40 of 42). Sixth, we 
created an easy-to-use web application to streamline 
scoring. This was crucial because METRICS contains 
conditional items that cover all aspects of radiom-
ics, which may make the calculation difficult on paper. 
Finally, we established a living repository to discuss the 
METRICS tool and its content and receive feedback in 
order to improve them in the future.

There are however several limitations to declare. First, 
our modified Delphi procedure was not completely anon-
ymous and the steering committee had access to identi-
ties, which was a deviation from the standard Delphi 
exercise. We chose this approach to ensure panelist par-
ticipation. Nevertheless, we kept the votes and comments 

anonymous for other panelists. Second, a systematic or 
quantitative strategy, such as considering publication 
metrics, was not employed in the selection of the pan-
elists (particularly, the Group#2 panelists). Our efforts 
were focused on assembling a diverse group of knowl-
edgeable figures in the fields of radiomics and informat-
ics, including editors and members of editorial boards 
from publications that commonly publish works relat-
ing to these topics. To represent different stakeholders in 
medical imaging, the panelists also included prominent 
figures having strong backgrounds in both radiology and 
nuclear medicine, as well as non-physicians. Geographi-
cal location of the panelists was not a factor in their 
participation; as a result, the representation of different 
countries within the author group presents some degree 
of imbalance. Third, the ranking in Round#4 of Stage#3 
did not account for potential items of equal importance. 
An analytical hierarchy process and pairwise voting could 
have been an alternative approach that takes equality into 
account. However, by this method, the number of ques-
tions would have been doubled in Round#4, which might 
have caused fatigue and had negative effects on the scor-
ing process. Fourth, during tool development, the need 
for conditional items became apparent, even if their use 
may complicate the scoring process. In reality, radiomic 
research involves numerous methodological variations 
and nuances that could be overlooked with a fixed item 
list. However, the availability of online and offline auto-
mated calculation tools should help mitigate this limita-
tion. Fifth, the conditionality of the items or categories 
was not taken into account when calculating weights. 
Dynamic weights would have necessitated calculations 
of all possible conditional combinations and, as a result, 
multiple rankings, which is impractical and of limited 
value as differences are expected to be small compared to 
the current METRICS tool. Sixth, the number of items in 
each category varied. Nonetheless, the weighting process 
accounted for this to avoid biases in the final tool due 
to item number within categories. Seventh, the order of 
the items and categories in the Delphi rounds was fixed, 
which may have an influence on ranking and introduce 
bias. Alternatively, the order of these could have been 
randomized during voting, and this could have been done 
independently for each panelist as well. Finally, the repro-
ducibility of the METRICS was not evaluated. Such an 
analysis necessitates a dedicated study design by incor-
poration of other tools for comparison, which should be 
performed in a future investigation.

In conclusion, we developed a scoring tool for a com-
prehensive assessment of the methodologic quality 
of the radiomics research, i.e., METRICS, with a large 
international panel of experts and by using a modi-
fied Delphi protocol. With its flexible format to cover 
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all methodological variations, it provides a well-con-
structed framework for the key methodological con-
cepts to assess the quality of the radiomic research 
papers. A web application was developed to help with 
the calculation of the METRICS score, and a reposi-
tory was created to collect feedback from the radiomics 
community. We hope that the researchers would ben-
efit from this tool when designing their studies, assess-
ing the methodological quality of papers in systematic 
reviews, and that journals would adopt the METRICS 
quality scoring tool for peer review. Comments and 
contributions to this tool are welcome through its 
repository to improve it in the future.
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