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Abstract 

Objective To establish a model for predicting lymph node metastasis in bladder cancer (BCa) patients.

Methods We retroactively enrolled 239 patients who underwent three-phase CT and resection for BCa in two cent-
ers (training set, n = 185; external test set, n = 54). We reviewed the clinical characteristics and CT features to identify 
significant predictors to construct a clinical model. We extracted the hand-crafted radiomics features and deep learn-
ing features of the lesions. We used the Minimum Redundancy Maximum Relevance algorithm and the least absolute 
shrinkage and selection operator logistic regression algorithm to screen features. We used nine classifiers to establish 
the radiomics machine learning signatures. To compensate for the uneven distribution of the data, we used the syn-
thetic minority over-sampling technique to retrain each machine-learning classifier. We constructed the combined 
model using the top-performing radiomics signature and clinical model, and finally presented as a nomogram. We 
evaluated the combined model’s performance using the area under the receiver operating characteristic, accuracy, 
calibration curves, and decision curve analysis. We used the Kaplan–Meier survival curve to analyze the prognosis 
of BCa patients.

Results The combined model incorporating radiomics signature and clinical model achieved an area 
under the receiver operating characteristic of 0.834 (95% CI: 0.659–1.000) for the external test set. The calibration 
curves and decision curve analysis demonstrated exceptional calibration and promising clinical use. The combined 
model showed good risk stratification performance for progression-free survival.

Conclusion The proposed CT-based combined model is effective and reliable for predicting lymph node status 
of BCa patients preoperatively.

Critical relevance statement Bladder cancer is a type of urogenital cancer that has a high morbidity and mortal-
ity rate. Lymph node metastasis is an independent risk factor for death in bladder cancer patients. This study aimed 
to investigate the performance of a deep learning radiomics model for preoperatively predicting lymph node metas-
tasis in bladder cancer patients.
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Key points  

• Conventional imaging is not sufficiently accurate to determine lymph node status.

• Deep learning radiomics model accurately predicted bladder cancer lymph node metastasis.

• The proposed method showed satisfactory patient risk stratification for progression-free survival.

Keywords Deep learning, Nomogram, Urinary bladder neoplasms, Lymphatic metastasis, Computed tomography

Graphical Abstract

Background
Bladder cancer (BCa) is a type of urogenital cancer that has 
a high morbidity and mortality rate [1]. The most common 
metastatic sites are lymph nodes (LN) [2]. Lymph node 
metastasis (LNM) affects the survival rate of BCa patients. 
For BCa patients with LNM, the 5-year cancer-specific sur-
vival rate was 27.7% [3], which is observably lower than that 
of patients without LNM. As a result, accurate preopera-
tive prediction of LNM is of significance for disease staging, 
therapy selection, and survival prediction [4]. Examinations 
such as ultrasonography, CT, and MRI are all commonly 
used to diagnose BCa, however, their efficacy in identify-
ing metastatic malignant LN is unsatisfactory [5]. Needle 
biopsy is an effective but invasive method; furthermore, the 
sample selection of the nodes can sometimes cause false 
negatives [6]. Because of the limitations of current diagnos-
tic methods, there is an essential requirement for a non-
invasive and precise method to predict LNM with BCa.

Three-phase CT has become an important clinical 
examination tool because of its economical and rapid 
imaging. Grobmyer et  al. [7] evaluated LNM based on 
the size of retroperitoneal and pelvic LN captured in CT 
images, obtaining a diagnostic sensitivity of only 40%, 
thereby failing to meet the requirements of clinical preci-
sion diagnosis and treatment.

Heterogeneity exists within tumors and is expressed 
on various spatial scales, including the genetic, cellular, 
molecular, and radiological level [8]. Thus, we often need 
to obtain a portion of the tumor tissue by invasive meth-
ods. Radiomics — the high-throughput capture and anal-
ysis of a vast amount of advanced quantitative imaging 
features from digital medical images — is a potential non-
invasive approach to analyze the entire tumor [9]. While 
radiomics can quantify heterogeneity within tumors, 
partial volume effects may lead to inaccurate quantifi-
cation of heterogeneity in small lesions. Hatt et  al. [10] 
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demonstrated that radiomics texture features achieved rel-
atively poor prognostic accuracy for tumors < 10  cm3. Both 
positive and negative LN tumors are small, so radiomics 
may not be appropriate for LN analysis. Thus, the objective 
of our research was to develop a LNM prediction model 
based on three-phase CT images of primary lesions.

Deep learning (DL) has been widely used in medical 
imaging as the most effective method for learning feature 
expressions [11]. This technique can enable more accurate 
correlation between radiomics models and disease char-
acteristic prediction. Nevertheless, the use of CT-based 
hand-crafted radiomics (HCR) features and DL features 
to predict the LNM of BCa has not yet been studied.

We aim to build a deep learning radiomics model 
based on three-phase CT using a two-center dataset 
to accurately predict the LNM status for BCa patients 
preoperatively.

Methods
Patient selection
This retrospective research was approved by the hospi-
tal’s review board, waiving the requirement for patient 
informed consent. We selected BCa patients who were 
treated between March 2008 and June 2022 in accord-
ance with our inclusion and exclusion criteria. Patients 
were subject to the following inclusion criteria: (a) patho-
logically confirmed urothelial carcinoma; (b) standard 
pelvic three-phase CT performed < 20  days before sur-
gery; (c) extended pelvic lymph node dissection (up to the 
aortic bifurcation); (d) adequate follow-up examinations. 
The following were the exclusion criteria: (a) patients 
with other tumor disease simultaneously; (b) incomplete 
clinical or imaging data; (c) patients who were given pre-
operative care, such as chemotherapy, radiotherapy, or 
immunotherapy. Ultimately, we included 239 patients in 
our research: we used data collected from 185 patients of 
the Affiliated Hospital of Qingdao University as the train-
ing set, and data collected from 54 patients of Shandong 
Provincial Hospital Affiliated to Shandong First Medical 
University as the external test set.

We gathered the following clinical information from 
medical records and CT images: patient age, patient gen-
der, tumor location, shape (cauliflower-like, papillary, or 
mound-like lesions), size, calcification (yes or no), cystic 
necrosis (yes or no), boundary (clear or unclear), num-
ber (solitary or multiple), stalk (absent or present), CT 
reported T stage, CT reported LN status, and CT value 
of lesions in the three phases (corticomedullary-phase, 
nephrographic-phase, and excretory-phase). Patients 
with observable abdominal LN > 10  mm or pelvic 
LN > 8 mm in the maximal short-axis diameter were con-
sidered as clinically LN-positive [12]. Two experienced 

radiologists reviewed the CT images and resolved any 
discrepant interpretations through discussion.

CT image acquisition
All patients underwent three-phase CT examination. 
Supplementary Table S1 displays the CT acquisition 
settings. The three-phase (corticomedullary-phase, 
nephrographic-phase, and excretory-phase) images were 
acquired at 25 s, 75 s, and 300 s after the bolus-triggering 
threshold of 120 HU had been reached at the thoracoab-
dominal aorta junction, respectively.

Lesion segmentation and feature extraction
The flow of radiomics is shown in Fig.  1. A radiologist 
manually performed the region of interest (ROI) seg-
mentation for all tumor lesions using the ITK-SNAP 
software (version 3.8.0, http:// www. itksn ap. org) [13]. The 
maximum extent of the ROI was outlined layer by layer 
along the edge of the lesion, avoiding vesical stones and 
ureters. The 3D-ROI is then automatically generated by 
the software. After a month, the same radiologist ran-
domly selected 94 patients for a second ROI manual 
segmentation to assess intraobserver reliability. Another 
radiologist performed ROI manual segmentation in the 
same way for the interobserver agreement assessment. 
Radiomics features with intra-/inter-observer correlation 
coefficients (ICCs) > 0.8 were included in the follow-up 
study.

We used the deep convolution network ResNet18 
to extract the DL features with the stochastic gradient 
descent optimizer for training [14]. We pre-trained the 
model on the Onekey platform for transfer learning.

We processed the radiomics features using the combat 
compensation methodology to eliminate the influence of 
different protocols and CT scanners in the two centers, 
while retaining texture pattern characteristics [15].

Radiomics signature development
We unified all radiomics features according to z-score. 
We then dimensionally reduced the features before build-
ing the model. First, we used the Minimum Redundancy 
Maximum Relevance (mRMR) algorithm to retain 50 fea-
tures with high correlation and low redundancy. Then, 
we used the least absolute shrinkage and selection opera-
tor (LASSO) logistic regression algorithm to reduce the 
dimensionality and retain 12 features showing the best 
predictive potential. Finally, we used nine machine-
learning classifiers to develop machine-learning signa-
tures: support vector machine (SVM), logistic regression 
(LR), Extreme Gradient Boosting (XGBoost), NaiveBayes, 
Adaptive Boosting (AdaBoost), Light Gradient Boosting 
Machine (LightGBM), k-nearest neighbor (KNN), Multi-
layer Perceptron (MLP), and GradientBoosting. Initially, 

http://www.itksnap.org
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we trained each machine-learning signature without sub-
sampling, then retrained them using the synthetic minor-
ity oversampling technique (SMOTE) [16].

Combined model construction
We applied univariate logistic regression to screen clini-
cal characteristics and CT features related to LNM 
of BCa. Then, we input the features with p < 0.05 into 
the multivariate logistic regression to create the clini-
cal model. We used backward stepwise selection with a 
likelihood ratio test and Akaike’s information criterion 
as the stopping rule. We created the combined model by 
incorporating the risk factors of the clinical model and 
the radiomics signature achieving the best predictive per-
formance. The combined model presented as a radiomics 
nomogram. We used the area under the receiver operat-
ing characteristic curve (AUC) and accuracy to judge the 
performance of the clinical model, radiomics signatures, 
and combined model. We used calibration curves to test 
the models’ fitting and decision curve analysis (DCA) to 
judge the clinical dependability and practicability of the 
models.

Clinical endpoints and follow‑up surveillance
For the first two years after surgery, patients were subject 
to routine imaging methods every 3–6 months, and then 

annually. The observed index was progression-free sur-
vival (PFS). PFS refers to the time between surgery and 
the survival endpoint, such as detection of tumor recur-
rence in imaging data, lesion metastasis, the date of the 
last follow-up, or death. The deadline for follow-up was 
June 30, 2022. We used Kaplan–Meier survival curves to 
analyze the prognosis and the log-rank test to assess dif-
ferences in survival curves.

Statistical analysis
We used SPSS 26.0 software, R software (version 4.2.2, 
www.r- proje ct. org), and Python (version3.9.7, www. 
python. org) for statistical analysis. We compared cat-
egorical variables using the chi-square test or Fisher’s 
exact test. We analyzed continuous variables using the 
independent sample t-test or the Mann–Whitney U test. 
We regarded p < 0.05 as statistically significant.

Results
Clinical feature selection and clinical model construction
Table  1 details the clinical information and CT features 
of the patients with BCa in the training and test sets. The 
results of univariate and multivariate logistic regression 
were shown in Table  2. Univariate logistic regression 
analysis revealed that three clinical characteristics sub-
stantially contributed to the prediction of LN status in 

Fig. 1 Flowchart of the radiomics analysis

http://www.r-project.org
http://www.python.org
http://www.python.org
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Table 1 Baseline information of the patients

Training set (n = 185) External test set (n = 54) p

Age (years) 68.04 ± 10.00 64.37 ± 12.53 0.052

Gender Male 155 48 0.356

Female 30 6

Location Bladder triangle 52 12 0.390

Other part of the bladder 133 42

Shape Cauliflower-like 95 31  < 0.001

Papillary 31 19

Mound-like 59 4

Size 4.44 ± 2.17 2.58 ± 1.12  < 0.001

Calcification No 156 46 0.878

Yes 29 8

Cystic necrosis No 153 49 0.151

Yes 32 5

Tumor boundary Clear 115 49  < 0.001

Unclear 70 5

Number Solitary 149 43 0.882

Multiple 36 11

Stalk absent 148 27  < 0.001

present 37 27

CT reported T stage Ta-T2 138 45 0.182

T3-T4 47 9

CT reported LN status N0 161 47 0.998

N1-3 24 7

CT value in corticomedullary phase 64.17 ± 24.87 75.87 ± 21.52 0.002

CT value in nephrographic phase 75.86 ± 20.93 81.52 ± 17.11 0.071

CT value in excretory phase 74.75 ± 17.98 90.35 ± 50.67 0.030

Table 2 Logistic regression analysis of the risk factors for LNM

OR odds ratio, CI confidence interval

Univariate logistic analysis Multivariate logistic analysis

OR (95%CI) p OR (95%CI) p

Age 1.000 (0.965–1.037) 0.992

Gender 1.217 (0.479–3.095) 0.679

Location 1.037 (0.909–1.184) 0.588

Shape 1.104 (0.742–1.642) 0.625

Size 0.954 (0.807–1.128) 0.584

Calcification 0.777 (0.275–2.191) 0.633

Cystic necrosis 1.367 (0.559–3.342) 0.494

Tumor boundary 1.253 (0.606–2.589) 0.543

Number 0.597 (0.303–1.177) 0.137

Stalk 0.178 (0.041–0.776) 0.022 0.160 (0.032–0.802) 0.026

CT reported T stage 3.662 (1.721–7.794) 0.001 2.009 (0.833–4.848) 0.120

CT reported LN status 16.190 (6.001–43.683) 0 17.049 (5.986–48.558) 0

CT value in corticomedullary phase 0.990 (0.974–1.006) 0.203

CT value in nephrographic phase 0.999 (0.982–1.017) 0.935

CT value in excretory phase 1.000 (0.980–1.020) 0.995
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BCa patients: stalk presence, CT reported T stage, and 
CT reported LN status (each having p < 0.05). According 
to the results of the multivariate logistic regression, stalk 
presence and CT-reported LN status were independent 
predictors of LNM in BCa. The clinical model’s AUC val-
ues were 0.764 (95% CI: 0.697–0.831) in the training set 
and 0.624 (95% CI: 0.402–0.846) in the external test set.

Radiomics signature building and testing
In total, 2645 HCR features were extracted from each 
ROI (ICCs > 0.8). We combined 2645 HCR features 
and 384 DL features and included them in subsequent 
experiments. We used mRMR to retain 50 features, 
then we used LASSO to reduce the dimension of the 
dataset and select eight HCR features and four DL 
features to build the subsequent radiomics signatures 
(Fig.  2). Tables  3 and 4 show the forecasting ability of 
all radiomics machine learning signatures without and 
with SMOTE. For the external test set, the NaiveBayes 
classifier trained with the combined HCR-DL features 
achieved the highest AUC of 0.764 (95% CI: 0.604–
0.924) without using the SMOTE algorithm. Using the 
SMOTE algorithm, the LightGBM classifier trained 
with the combined HCR-DL features achieves the best 
performance, with an AUC of 0.893 (95% CI: 0.769–
1.000) on the external test set. Overall, the SMOTE 

algorithm improved the AUC result of five radiomics 
signatures: SVM, LR, XGBoost, LightGBM, and Gradi-
entBoosting; and slightly reduced the AUC of four radi-
omics signatures: NaiveBayes, AdaBoost, KNN, and MLP.

Construction and effectiveness of the combined model
To offer doctors a convenient tool for preoperative pre-
diction of LNM in BCa patients, the combined model 
was presented as a nomogram. We constructed the 
combined model by integrating the top-performing 
radiomics signature (LightGBM-SMOTE) and the clini-
cal factor of significant importance (Fig.  3A). Table  5 
shows the predictive performance of the combined 
model for the training set and external test set. For the 
external test set, the AUC of combined model (AUC: 
0.834, 95% CI: 0.659–1.000) was lower than that of the 
radiomics signature (AUC: 0.893, 95% CI: 0.769–1.000). 
However, combined model achieved a higher predic-
tion accuracy (0.870) than the radiomics signature 
(0.852) on the external test set. Figure 3B and C display 
the calibration curves of combined model, revealing 
that it was suitable for both sets. The DCA demon-
strated that combined model provided better clinical 
utility than the radiomics signature (Fig.  3D). There-
fore, the combined model achieves the best clinically 
applicable performance.

Fig. 2 Features were selected by LASSO regression model. a The 12 features with non-zero coefficients and the roles of each feature 
that contributed to the model are shown. b Tuning parameter (λ) selection in the LASSO model. c The coefficients have been plotted vs. log(λ)
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Risk stratification
Figure  4 shows the Kaplan–Meier survival curves based 
on the pathologically confirmed LN status model and 

combined model-predicted patient PFS. Over the total 
cohort and training set, combined model successfully strati-
fies the risk of patients (log rank p < 0.05, respectively).

Table 3 The predictive performance results of radiomics machine learning signatures without SMOTE

AUC  area under the receiver operating characteristic curve, CI confidence interval, ACC  accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV 
negative predictive value

Set Classifier AUC (95%CI) ACC SEN SPE PPV NPV

Training SVM 0.932 (0.889–0.975) 0.795 0 1.000 0 0.795

LR 0.749 (0.660–0.839) 0.811 0.105 0.993 0.800 0.811

XGBoost 1 (1.000–1.000) 0.995 0.974 1.000 1.000 0.993

NaiveBayes 0.720 (0.631–0.809) 0.373 1.000 0.211 0.247 1

AdaBoost 0.879 (0.828–0.930) 0.854 0.447 0.959 0.739 0.870

LightGBM 0.932 (0.888–0.977) 0.805 0.053 1.000 1.000 0.803

KNN 0.781 (0.715–0.848) 0.805 0.237 0.952 0.563 0.828

MLP 0.745 (0.657–0.833) 0.795 0 1.000 0 0.795

GradientBoosting 0.945 (0.895–0.996) 0.843 0.237 1.000 1.000 0.835

External test SVM 0.659 (0.465–0.853) 0.815 0 1.000 0 0.815

LR 0.689 (0.480–0.897) 0.815 0 1.000 0 0.815

XGBoost 0.720 (0.524–0.917) 0.815 0 1.000 0 0.815

NaiveBayes 0.764 (0.604–0.924) 0.704 0.700 0.705 0.350 0.912

AdaBoost 0.699 (0.510–0.888) 0.815 0.100 0.977 0.500 0.827

LightGBM 0.639 (0.447–0.830) 0.815 0 1.000 0 0.815

KNN 0.682 (0.531–0.833) 0.796 0 0.977 0 0.811

MLP 0.727 (0.570–0.884) 0.815 0 1.000 0 0.815

GradientBoosting 0.616 (0.385–0.847) 0.815 0 1.000 0 0.815

Table 4 The predictive performance results of radiomics machine learning signatures with SMOTE

AUC  area under the receiver operating characteristic curve, CI confidence interval, ACC  accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV 
negative predictive value

Set Classifier AUC (95%CI) ACC SEN SPE PPV NPV

Training SVM 0.908 (0.873–0.943) 0.847 0.925 0.769 0.800 0.911

LR 0.765 (0.711–0.819) 0.714 0.748 0.680 0.700 0.730

XGBoost 1 (1.000–1.000) 0.997 1.000 0.993 0.993 1.000

NaiveBayes 0.815 (0.767–0.863) 0.616 0.993 0.238 0.566 0.972

AdaBoost 0.887 (0.850–0.924) 0.793 0.871 0.714 0.753 0.847

LightGBM 0.969 (0.951–0.987) 0.915 0.918 0.912 0.912 0.918

KNN 0.959 (0.941–0.977) 0.820 0.980 0.660 0.742 0.970

MLP 0.827 (0.780–0.874) 0.718 0.810 0.626 0.684 0.767

GradientBoosting 0.962 (0.943–0.981) 0.864 0.891 0.837 0.845 0.885

External test SVM 0.686 (0.486–0.887) 0.833 0.500 0.909 0.556 0.889

LR 0.727 (0.529–0.925) 0.759 0 0.932 0 0.804

XGBoost 0.782 (0.641–0.922) 0.815 0.200 0.955 0.500 0.840

NaiveBayes 0.759 (0.596–0.923) 0.741 0.600 0.773 0.375 0.895

AdaBoost 0.676 (0.456–0.896) 0.759 0.400 0.841 0.364 0.860

LightGBM 0.893 (0.769–1.000) 0.852 0.400 0.955 0.667 0.875

KNN 0.673 (0.523–0.823) 0.593 0.500 0.614 0.227 0.844

MLP 0.727 (0.575–0.880) 0.759 0.300 0.864 0.333 0.844

GradientBoosting 0.807 (0.631–0.982) 0.815 0.500 0.886 0.500 0.886
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Fig. 3 (a) Nomogram (b, c) Calibration curve of the nomogram in the training set and external test set, respectively. d DCA for the nomogram
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Discussion
LNM is an independent risk factor for death in BCa 
patients [17, 18]. The presence or absence of LNM sig-
nificantly influences the selection of treatment strate-
gies and prognosis [19]. In our study, we established 
and validated the combined model visualized as a nom-
ogram that demonstrated excellent predictive perfor-
mance. The combined model performs well in both the 
training (AUC: 0.980, 95% CI: 0.967–0.993) and exter-
nal testing (AUC: 0.834, 95% CI: 0.659–1.000) sets, sug-
gesting the potential to build a more generalized model 
for wider clinical use. For the external test set, the com-
bined model had the highest predictive accuracy, indi-
cating that it had less prediction error compared with 
other models. Precise prediction guides the selection 
of patients who require perioperative systemic chemo-
therapy integrated with extended LN dissection [20]. 
Furthermore, the combined model successfully strati-
fies patients into high-risk and low-risk, thereby suit-
ably predicting PFS.

Radiology (e.g., CT and MRI) is now suggested for pre-
operative lymph nodal staging of BCa. Daneshmand et al. 
[21] found that the detection of metastatic malignant LN 
by CT or MRI relies on the LN’s size and has a sensitivity 
of only 31–45%, thus leading to the understaging of many 
patients. Therefore, judging the status of LN by the size is 
inaccurate because enlarged nodes may be the result of 
reactive hyperplasia, whereas small nodes may be posi-
tive for metastasis [22].

In previous studies, Tian et  al. [23] screened low-
dimensional clinical information such as age, grade, 
tumor size, and T-stage to develop a nomogram to pre-
dict LNM of BCa, achieving an AUC value of 0.704 for 
the test set. In our study, multivariate logistic analysis 
indicated that stalk presence and CT-reported LN sta-
tus improve the construction of the clinical model. The 
AUC values of the clinical model were only 0.764 (95%CI: 
0.697–0.831) for the training set and 0.624 (95CI: 0.402–
0.846) for the external test set. This suggests that low-
dimensional clinical information and visual features 
reflect only a small portion of the data in images and 

miss a significant quantity of detail with respect to lesion 
heterogeneity.

Radiomics has recently been proposed as a progres-
sive computational methodology to extract quantitative 
descriptors from images of tumors [24]. Its application 
to vast amounts of medical images supports the diagno-
sis and treatment selection, and eliminates some of the 
shortcomings of traditional diagnostic approaches [25]. 
DL is one of the latest trends in artificial intelligence 
research [26], achieving revolutionary advances in com-
puter vision and machine learning, and many notable 
breakthroughs in multiple fields. Li et al. [27] developed 
and validated a deep learning radiomics nomogram for 
CT images to predict LN status in gastric cancer, achiev-
ing promising discrimination performance on the test 
set (AUC: 0.821, 95% CI: 0.722–0.920). Wang et al [28]. 
built a nomogram based on DL and radiomics signatures 
to predict the axillary LNM in breast cancer, achieving 
high test set performance (AUC: 0.90, 95% CI:0.80–0.99). 
Thus, previous research demonstrates that combining 
conventional radiomics features with DL features is a 
promising approach for LNM assessment.

In our study, the radiomics signature contained eight 
HCR features and four DL features, “A_wavelet.HHL_
firstorder_Uniformity” demonstrated the greatest con-
tribution among all the features. The wavelet features 
reflected the heterogeneity within tumors and better 
represented the image information [29]. Wavelet features 
allowed better outcome prediction and were a principal 
component in developing the radiomic signatures [30]. 
Convolutional neural networks also provided informa-
tion related to LNM. As shown in Fig.  5, the activation 
maps highlighted the areas of the lesions associated with 
the LN status of BCa. We conclude that the yellow high-
lighted areas are strongly related to lesion metastasis in 
the activation maps.

Radiomics analysis, like other data-mining techniques, 
has dimensionality constraints [31]. Although the inte-
gration of feature screening methods and machine learn-
ing classifiers has reduced the dimensionality in big 
datasets, unsupervised clustering of imaging subtypes 

Table 5 Results of combined model, radiomics signature, and the clinical model predictive ability for LNM status

AUC  area under the receiver operating characteristic curve, CI confidence interval, ACC  accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV 
negative predictive value

Set Model AUC (95%CI) ACC SEN SPE PPV NPV

Training Combined model 0.980 (0.967–0.993) 0.932 0.939 0.925 0.926 0.938

Radiomics signature 0.969 (0.951–0.987) 0.915 0.918 0.912 0.912 0.918

Clinical model 0.764 (0.697–0.831) 0.843 0.395 0.959 0.714 0.860

External test Combined model 0.834 (0.659–1.000) 0.870 0.400 0.977 0.800 0.878

Radiomics signature 0.893 (0.769–1.000) 0.852 0.400 0.955 0.667 0.875

Clinical model 0.624 (0.402–0.846) 0.833 0.300 0.955 0.600 0.857
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Fig. 4 Survival analysis of the (a) pathologically confirmed LN status model (without LNM vs. with LNM) and (d) nomogram (low risk vs. high risk) 
in the total cohort. Survival analysis of the (b, c) pathologically confirmed LN status model and (e, f) nomogram in the training and external test sets, 
respectively. The nomogram showed significant differences for risk stratification in the total cohort and training set (log rank p < 0.05, respectively), 
but showed no statistical significance in the external test set (log rank p > 0.05, respectively)

Fig. 5 Activation maps of the deep convolutional neural networks for BCa LNM vs. non-LNM (reflecting the significant areas related to the risk 
of LNM) were obtained from three-phase CT. The yellow highlighted areas show strongly correspond with LNM predictions. The activation maps 
with LNM have a large range of yellow highlighted areas
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hinders accurate LN status prediction [32]. We com-
bined the widely used mRMR and LASSO feature screen-
ing approaches with nine machine learning classifiers to 
determine the best radiomics machine learning signature 
to predict LN status. We determined that the LightGBM 
classifier retrained using SMOTE demonstrated excellent 
prediction ability. mRMR is an innovative feature screen-
ing method that uses more plausible coefficients and less 
redundancy to screen radiological features [33]. LASSO 
is a feature screening approach for avoiding over-fitting 
when building the model [34]. LightGBM is a classical 
machine learning algorithm for prediction [35]. Previ-
ous research showed that 25–30% of BCa patients who 
underwent radical cystectomy and pelvic lymph node 
dissection had LNM [36–38]. This is consistent with our 
data, where approximately one-fifth of all BCa patients 
showed LNM. Therefore, considering this unavoidable 
data imbalance, we used the SMOTE to retrain each 
machine-learning algorithm [39]. The AUCs of five of 
the nine machine learning signatures were improved by 
incorporating the SMOTE algorithm.

Patients with LNM had a poor prognosis. Many stud-
ies showed that the pathological status of pelvic LN is 
the independent predictor of death in BCa patients [40, 
41]. Previous investigations showed that the prognosis of 
patients can be predicted by radiomics. Piotr et  al. [42] 
discovered that radiomics features had prognostic value 
in predicting the overall survival of BCa patients. We 
tested combined model ’s ability to forecast the prog-
nosis of BCa patients. We found that combined model 
showed excellent risk stratification performance in the 
total cohort, suggesting that our model is promising for 
long-term management of BCa patients. However, the 
combined model showed no risk stratification differ-
ence for the external test set. A likely reason for this is 
that selection bias occurred in our external test set. In 
the training set, less than 8% (3/38) patients with patho-
logically confirmed LNM had PFS > 30 months, while in 
the external test set, 40% (4/10) patients with LNM had 
PFS > 30 months.

Our research still has several limitations. First, this 
was a retrospective study, and our results may be influ-
enced by selection bias. Second, our study used manual 
segmentation to delineate the ROI, which may lead to 
deviations. Therefore, we intend to use automatic seg-
mentation in future research [43]. Third, our data were 
gathered from two centers and varying CT scanners, 
so we used the combat compensation method to elimi-
nate the negative influence of different protocols and 
CT scanners. Fourth, in order to standardize the devel-
opment of predictive models, we referenced the Trans-
parent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis (TRIPOD) [44] 

guideline and chose the type 3 to separate the training set 
and external test set. After that, we will try to group the 
patients randomly to explore whether the performance 
of the model is improved. Finally, we extracted radiom-
ics features only from CT images, it’s uncertain whether 
multiparametric MRI is more helpful. In future studies, 
we will expand the sample size, in cooperation with inter-
national centers and add multidimensional data (e.g., 
MRI, ultrasound, genomics and pathology) to study the 
relationship between BCa lesions and LNM to improve 
the stability and generalization of the predictive models.

Conclusion
Our proposed combined model using three-phase CT 
images is a non-invasive, readily available, and effective 
LNM prediction tool for BCa patients. We recommend 
its inclusion in BCa predictive models for improved 
monitoring and adjuvant clinical trial design to narrow 
the gap between radiology and precision healthcare.
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