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Abstract 

Background Intrahepatic cholangiocarcinoma (iCCA) is an aggressive primary liver cancer with dismal outcome, 
high Ki-67 expression is associated with active progression and poor prognosis of iCCA, the application of MRE 
in the prediction of iCCA Ki-67 expression has not yet been investigated until now. We aimed to evaluate the value 
of magnetic resonance elastography (MRE) in assessing Ki-67 expression for iCCA.

Results In the whole cohort, 97 patients (57 high Ki-67 and 40 low Ki-67; 58 males, 39 females; mean age, 58.89 years, 
ranges 36–70 years) were included. At the multivariate analysis, tumor stiffness (odds ratio (OR) = 1.669 [95% CI: 
1.307–2.131], p < 0.001) and tumor apparent diffusion coefficient (ADC) (OR = 0.030 [95% CI: 0.002, 0.476], p = 0.013) 
were independent significant variables associated with Ki-67. Areas under the curve of tumor stiffness for the iden-
tification of high Ki-67 were 0.796 (95% CI 0.702, 0.871). Tumor stiffness was moderately correlated with Ki-67 level 
(r = 0.593, p < 0.001). When both predictive variables of tumor stiffness and ADC were integrated, the best perfor-
mance was achieved with area under the curve values of 0.864 (95% CI 0.780–0.926).

Conclusion MRE-based tumor stiffness correlated with Ki-67 in iCCA and could be investigated as a potential prognos-
tic biomarker. The combined model incorporating both tumor stiffness and ADC increased the predictive performance.

Critical relevance statement MRE-based tumor stiffness might be a surrogate imaging biomarker to predict Ki-67 
expression in intrahepatic cholangiocarcinoma patients, reflecting tumor cellular proliferation. The combined model 
incorporating both tumor stiffness and apparent diffusion coefficient increased the predictive performance.

Key points  
• MRE-based tumor stiffness shows a significant correlation with Ki-67.

• The combined model incorporating tumor stiffness and apparent diffusion coefficient demonstrated an optimized 
predictive performance for Ki-67 expression.

• MRE-based tumor stiffness could be investigated as a potential prognostic biomarker for intrahepatic cholangiocarcinoma.
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Graphical Abstract

Introduction
Intrahepatic cholangiocarcinoma (iCCA) is the second 
most common primary liver cancer after hepatocellular 
carcinoma with an increasing incidence worldwide [1–
3]. Surgical resection of the primary tumor site offers the 
best chance to prolong the survival time of patients [4]. 
Unfortunately, because of its high recurrence and metas-
tasis rates, the five-year survival rate after surgery is only 
20–40% [5–7]. Ki-67 is a nuclear antigen associated with 
cell proliferation, which is an important biomarker for 
biological behaviors relating to the development, pro-
gression, and metastasis in various malignant tumors 
[8–10]. High Ki-67 level is reported to be correlated 
with poor survival in cholangiocarcinoma, which can 
be used to evaluate the biological behavior and prog-
nosis in iCCA [11–14]. Hence, Ki-67 may be a valuable 
biomarker for prognosis prediction in iCCA. Until now, 
liver biopsy is necessary for the preoperative measure-
ment of Ki-67. But as an invasive procedure, biopsy may 
lead to potential complications, and its results are often 
inconsistent with post-operative pathology because of 
the heterogeneity of tumors and limited sampling. For 
these reasons, it is crucial to search for accurate, mini-
mally invasive, and even non-invasive methods to pre-
dict the Ki-67 expression before surgery.

Due to the diverse information provided and the 
emerging functional imaging technique, MRI is consid-
ered to be the preferred imaging means for the diagnosis 
and assessment of liver lesions [15]. However, it is dif-
ficult to determine the level of Ki-67 by conventional 
techniques [11, 16]. Magnetic resonance elastography 
(MRE) is an emerging functional technique capable of 
quantifying tissue mechanical properties in vivo [17, 18], 
which shows acknowledged diagnostic performance in 
staging liver fibrosis [19]. Nowadays, it has been more 
and more widely applied in the characterization, treat-
ment monitoring, and prognosis evaluation of liver can-
cers [18, 20]. However, the application of MRE in the 
prediction of iCCA Ki-67 expression has not yet been 
investigated until now.

Therefore, the purpose of this study was to evaluate 
the correlation of MRE-based tumor stiffness and Ki-67 
expression in iCCA.

Materials and methods
Participants
This study prospectively enrolled consecutive adult 
participants who were suspected of having iCCA based 
on previous CT or ultrasonography examinations and 
were referred to our hospital for liver surgery between 
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January 2021 and April  2022. The study was approved 
by the institutional review board and written informed 
consent was obtained from each participant. Par-
ticipants with no contraindications for gadopentetate 
dimeglumine underwent contrast-enhanced MRI 
examination with MRE sequence in our institute, all 
patients should fast 4–6  h prior to the examination. 
All patients included underwent liver surgery. Exclu-
sion criteria were (1) previous history of local or sys-
temic oncologic treatment; (2) lesions pathologically 
diagnosed as other tumors rather than iCCA; (3) small 
tumors less than 1  cm (to avoid incorrect tumor stiff-
ness measurements); (4) lesions located subcapsular 
(areas within 1  cm from the liver capsule); (5) time 
interval between MR scan and surgery more than 
1  month; and (6) difficult to measure stiffness values 
because of poor image quality. The flowchart of the 
inclusion and exclusion criteria is presented in Fig. 1.

Image acquisition
The two-dimensional MRE examinations were acquired 
with a standard commercial equipment at a 3.0-T MRI 
scanner (uMR 770, United Imaging Healthcare, Shang-
hai, China). The shear wave frequency was set as 60 Hz. A 

passive pneumatic driver located on the right lobe of the 
liver and centered at the level of the xiphisternum was uti-
lized to generate mechanical vibrations and produce propa-
gating shear waves in the imaging region. The 2D-MRE 
scanning protocol was based on an axial spin-echo echo-
planner-imaging sequence and the detailed scanning 
parameters are as follows: TR: 1000.2  ms, TE: 44.6  ms, 
flip angle: 90°, field of view: 420 × 420  mm2, slice thick-
ness: 8 mm, matrix: 256 × 256, bandwidth: 1500 Hz, scan-
ning time: 10 s. MRE sequence was performed during one 
breath-hold at end-expiration. The magnitude, phase, wave, 
and elastographic images were transferred offline and the 
parametric maps were generated with a custom software 
package (MRE Quant, Mayo Clinic, Rochester, MN).

Other conventional sequences consisted of a breath-
hold T2-weighted fat-suppressed fast spin-echo sequence, 
T1-weighted in-phase, and opposed-phase gradient echo 
sequence, respiratory-triggering single-shot spin-echo 
echoplanar diffusion-weighted imaging (DWI) with b val-
ues of 0, 50, and 500  s/mm2. Dynamic imaging was per-
formed with a 3D breath-hold T1-weighted fat-suppressed 
gradient-echo sequence, prior to and after intravenous 
administration of gadopentetate dimeglumine (Magnevist; 
Bayer HealthCare, Berlin, Germany) at a rate of 2 mL/s and 

Fig. 1 Flowchart of the inclusion and exclusion criteria. MRE, magnetic resonance elastography; TACE, transcatheter arterial chemoembolization; 
HCC, hepatocellular carcinoma; cHCC-CC, combined hepatocellular carcinoma-cholangiocarcinoma; iCCA, intrahepatic cholangiocarcinoma



Page 4 of 11Gao et al. Insights into Imaging          (2023) 14:204 

at a dose of 0.1  mmol/kg. The arterial phase acquisitions 
were automatically triggered when contrast media reached 
the ascending aorta. Subsequent acquisitions were per-
formed at 60–70 s for the portal venous phase and 180 s for 
the delay phase. Detailed parameters are shown in Table S1.

Tumor and liver stiffness measurement
MRE images were independently evaluated by two radi-
ologists (with 5 and 10  years of experience in liver MRI, 
respectively). The reviewers were aware that the patients 
had iCCA, but were blinded to all other information, 
including the Ki-67 labeling index, clinical history, and 
laboratory results. Regions of interest (ROIs) were drawn 
for the lesion and unaffected hepatic parenchyma at the 
same level and segment, the tumors were guaranteed to be 
located in their entirety in the 95% confidence area of the 
map. By using T2-weighted and contrast-enhanced images 
as references, ROIs were manually drawn on magnitude 
images, including the solid tumor area as large as possible, 
and then copied to the stiffness maps, the most peripheral 
portions of tumors were avoided to exclude partial vol-
ume effects. Great care was also taken to avoid areas of 
significant wave interference and necrosis. For each case, 
3 adjacent slices with a maximum cross-section of the 
tumor were chosen. Stiffness values of the lesion and liver 
were measured on each slice, and the average value of the 
3 measurements was used. Mean values measured by two 
observers were averaged for final analysis.

Conventional MRI features
The conventional MRI images were assessed by another 
two radiologists (with 7 and 13 years of experience in 
liver MRI, respectively), who were blinded to the results 
of the Ki-67 labeling index and MRE analysis. When disa-
greement occurred in the qualitative analysis between 
the two observers, a consensus review was made by a 
third senior radiologist (with 35 years of experience in 
abdominal MRI) for the final decision.

The qualitative imaging parameters were evaluated as 
follows: (a) location (left/right/left and right/caudal lobe); 
(b) tumor margin (well-defined: well-defined tumor with 
distinct contour/ill-defined: ill-defined tumor with indis-
tinct contour); (c) signal homogeneity (homogeneous: the 
entire tumor was uniform with homogeneous signal inside/
heterogeneous: the entire tumor was nonuniform with 
heterogeneous portion compared with the main body of 
tumor). Signal homogeneity was evaluated on T2-weighted 
imaging, a cut-off of ≥ 10% heterogeneous regions of the 
entire tumor was regarded as heterogeneous, and hetero-
geneous regions < 10% was defined as homogeneous; (d) 
arterial phase enhancement (global hyperenhancement: 
increased signal relative to the liver parenchyma, involving 
the totality of lesion/partial hyperenhancement: increased 

signal involving ≥ 25% of the lesion, except the central 
area/peripheral enhancement: increased signal limited to 
the periphery of the lesion, involving < 25% of the lesion); 
(e) enhancement pattern (progressive: increasing enhance-
ment over time/persistent: invariable enhancement over 
time/degressive-washout: decreasing enhancement over 
time); (f) arterial peritumoral hyperenhancement (defined 
as fuzzy-marginated hyperenhancement outside the tumor 
borders that becomes isointense with normal liver paren-
chyma in later dynamic phases); (g) enhancing tumor cap-
sule (smooth, uniform, sharp border around most or all of 
tumor, and visible as an enhancing rim in portal venous 
or delayed phases); (h) targetoid appearance (rim arterial 
phase hyperenhancement, peripheral washout, delayed 
central enhancement, or targetoid restriction on DWI); (i) 
bile duct dilation with diameter ≥ 5mm; (j) liver capsule 
retraction; (k) hemorrhage in mass (defined as high-signal 
foci on T1-weighted images with variable signal intensity 
on T2-weighted images); (l) necrotic or cystic portion in 
mass (defined as bright signal foci on T2-weighted images 
without contrast enhancement); (m) central scar (central or 
eccentric area within a tumor with stellate appearance and 
radiating septa); (n) central darkness on T2-weighted imag-
ing (central signal darker than liver signal); (o) vessel inva-
sion (defined when vessels cannot be separated from the 
mass, with the rough change of the wall or narrowing and 
occlusion of the lumen); (p) lymphadenectasis; (q) distant 
metastasis. In cases of multiple tumors with satellite nod-
ules, the major tumor with the largest size was analyzed.

Tumor apparent diffusion coefficient (ADC) values 
were measured by ROIs manually drawn in ADC maps. 
Slice locations of ROIs were selected in consistent with 
stiffness measurement as much as possible, avoiding large 
vessels, necrosis, hemorrhage, and artifacts. Similarly, 3 
ROIs were drawn for each case and the average value was 
used. Tumor size (the largest diameter) was measured in 
the delay phase by the senior reviewer.

Histopathological evaluation
Pathologic characteristics were evaluated by an experienced 
pathologist with 30  years of experience in liver pathology. 
The Ki-67 level was determined by using the percentiles of 
immunoreactive cells from 1000 malignant cells (× 400), and 
scoring was performed in the areas with the highest num-
ber of positive nuclei (hot spot) within the tumor. Then, we 
classified iCCAs into the “high Ki-67 group” (positive stain-
ing ratio ≥ 50%) and “low Ki-67 group” (positive staining 
ratio < 50%), referring to prior researchers [14, 21, 22].

Statistical analysis
Statistical analysis was performed using SPSS 26.0 
(SPSS, Armonk, NY, USA) and MedCalc software (www. 
medca lc. org). Continuous variables were compared with 

https://www.medcalc.org
https://www.medcalc.org
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the Student’s t-test or Mann–Whitney U-test; categori-
cal variables were compared using Pearson’s chi-squared 
test or Fisher’s exact test. The interobserver agreement 
on qualitative imaging findings was determined using 
kappa statistics: poor, 0–0.2; fair, 0.2–0.4; moderate, 
0.4–0.6; good, 0.6–0.8; and excellent, 0.8–1.0. The inter-
observer agreement on the quantitative findings was 
determined using intraclass correlation coefficient (ICC) 
(two-way random, absolute agreement, single measure-
ments): poor, < 0.5; moderate, 0.5–0.75; good, 0.75–0.9; 
and excellent, > 0.9. Variables showing p < 0.05 in the 
univariate logistic regression analysis were applied to 
multivariate logistic regression analysis. Receiver oper-
ating characteristic analysis was performed to assess 
the ability of tumor stiffness in distinguishing the high 
Ki-67 iCCAs from the low Ki-67 iCCAs, and the speci-
ficity, sensitivity, and accuracy were calculated for the 
corresponding area under the curve (AUC). In addi-
tion, the threshold values for tumor stiffness and ADC 
were evaluated based on the best Youden’s index on the 
receiving operating characteristic curve. Spearman cor-
relation analysis was performed to analyze the correla-
tions between tumor stiffness and the Ki-67 labeling 
index. The correlation was very weak for absolute value 
of correlation coefficient |r|= 0.0–0.2, weak for |r|= 0.2–
0.4, moderate for |r|= 0.4–0.7, strong for |r|= 0.7–0.9, 
very strong for |r|= 0.9–1.0.

Results
Clinical characteristics
Baseline patients’ demographic characteristics related to 
Ki-67 are demonstrated in Table 1. Totally 97 patients (57 
high Ki-67 and 40 low Ki-67; 58 males, 39 females; mean 
age, 58.89  years, ranges 36–70  years) were included. In 
our cohort, the sex (p = 0.002), serum carbohydrate anti-
gen19-9 level (p = 0.015) were different between the high 
Ki-67 and low Ki-67 groups.

MRE stiffness measurements
The tumor stiffness for all iCCAs in the whole cohort 
was median 7.94  kPa, ranges 14.3  kPa-3.73  kPa, Q1-Q3 
6.23, 7.94 and 11.09  kPa. The mean values of MRE stiff-
ness measured by the two observers in the two groups are 
displayed in Table 2. Tumor stiffness of the two observers 
was significantly higher in the high Ki-67 group (Fig.  2) 
than in the low Ki-67 group (Fig. 3) (p < 0.001). Liver stiff-
ness values were not significantly different between groups 
(p = 0.936 and 0.947). The interobserver agreements were 
excellent for both tumor stiffness (ICC = 0.863 [95% con-
fidence interval (CI): 0.802, 0.906]) and liver stiffness 
(ICC = 0.898 [95% CI: 0.852, 0.931]) measurements.

MR imaging characteristics related to Ki‑67
The imaging characteristics of tumors related to Ki-67 are 
presented in Table 3. In our cohort, targetoid appearance 

Table 1 Baseline clinical characteristics of the patient

Unless otherwise indicated, data are numbers of patients

Quantitative variables are analyzed using the Mann–Whitney U-test; categorical variables are analyzed using Pearson’s χ2 test or Fisher’s exact test, as appropriate

AFP alpha fetoprotein, CEA carcinoembryonic antigen, CA19-9 cancer antigen 19–9, TBil total bilirubin, ALT alanine aminotransferase, AST aspartate 
aminotransaminase, ALP alkaline phosphatase, γGGT  γ-glutamyltransferase
a Data are median (Q1, Q3)
* Data are statistically significant results

Variable High Ki‑67 (n = 57) Low Ki‑67 (n = 40) p

Age (years)a 62 (52, 66) 63 (51.5, 67) 59.5 (54, 66) 0.615

Sex, male/female 57 (58.8%)/40 (41.2%) 41 (71.9%)/16 (28.1%) 16 (40.0%)/24 (60.0%) 0.002*

AFP ≥ 20/ < 20 ng/mL 9 (9.3%)/88 (90.7%) 6 (10.5%)/51 (89.5%) 3 (7.5%)/37 (92.5%) 0.732

CEA ≥ 5/ < 5 ng/mL 29 (29.9%)/68 (70.1%) 21 (36.8%)/36 (63.2%) 8 (20.0%)/32 (80.0%) 0.074

CA19-9 ≥ 37/ < 37 ng/mL 53 (54.6%)/44 (45.4%) 37 (64.9%)/20 (35.1%) 16 (40.0%)/24 (60.0%) 0.015*

TBil > 20.4/ ≤ 20.4 μmol/L 5 (5.2%)/92 (94.8%) 1 (1.8%)/56 (98.2%) 4 (10.0%)/36 (90.0%) 0.156

ALT > 35/ ≤ 35 U/L 20 (20.6%)/77 (79.4%) 11 (19.3%)/46 (80.7%) 9 (22.5%)/31 (77.5%) 0.701

AST > 40/ ≤ 40 U/L 16 (16.5%)/81 (83.5%) 8 (14.0%)/49 (86.0%) 8 (20.0%)/32 (80.0%) 0.436

ALP > 125/ ≤ 125 U/L 33 (34.0%)/64 (66.0%) 22 (38.6%)/35 (61.4%) 11 (27.5%)/29 (72.5%) 0.256

γGGT > 60/ ≤ 60 U/L 53 (54.6%)/44 (45.4%) 35 (61.4%)/22 (38.6%) 18 (45.0%)/22 (55.0%) 0.110

Chronic liver disease Y/N 29 (29.9%)/68 (70.1%) 17 (29.8%)/40 (70.2%) 12 (30.0%)/28 (70.0%) 0.777

Hepatitis B 26 (89.7%) 16 (94.1%) 10 (83.3%)

Hepatitis C 0 (0.0%) 0 (0.0%) 0 (0.0%)

Hepatitis B + C 1 (3.4%) 0 (0.0%) 1 (8.3%)

Other causes 2 (6.9%) 1 (5.9%) 1 (8.3%)

Cirrhosis Y/N 22 (22.7%)/75 (77.3%) 12 (21.1%)/45 (78.9%) 10 (25.0%)/30 (75.0%) 0.648
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(χ2 = 7.153, p = 0.007), tumor ADC (p < 0.001), and tumor 
stiffness (p < 0.001) were significantly different between 
the high Ki-67 and low Ki-67 iCCAs. Interobserver agree-
ments of the imaging findings were good to excellent for all 
parameters (kappa = 0.731–0.935 for qualitative imaging 
features (Table S2), and ICC = 0.913 [95% CI: 0.872, 0.941] 

for ADC measurements). According to the ROC analysis, 
the cutoff value for tumor stiffness was set as 8.90 kPa, and 
the cutoff value for ADC was 1.03 ×  103  mm2/s.

The results of the univariate and multivariate analy-
ses of features related to Ki-67 are described in Table 4. 
At the multivariate analysis, tumor stiffness (odds 

Table 2 Stiffness values of the high Ki-67 and low Ki-67 groups for each observer in the whole cohort

Data are median (Q1, Q3)
* p < 0.05

Parameters Observer 1 p Observer 2 p

High Ki‑67 Low Ki‑67 High Ki‑67 Low Ki‑67

Tumor stiffness (kPa) 10.68 (6.83, 12.75) 6.78 (5.77, 8.61)  < 0.001* 9.81 (7.11, 12.01) 6.36 (5.66, 7.96)  < 0.001*

Liver stiffness (kPa) 2.73 (2.33, 3.58) 2.75 (2.26, 3.54) 0.936 2.73 (2.25, 3.69) 2.76 (2.24, 3.67) 0.947

Fig. 2 Intrahepatic cholangiocarcinoma of the high Ki-67 group in a 62-year-old man (arrows) showed (a) hyperintensity on diffusion-weighted 
image (b = 500 s/mm2), (b) hypointensity in the tumor periphery on apparent diffusion coefficient map (1.054 ×  103  mm2/s). c The magnitude image 
and (d) stiffness map showed a high tumor stiffness value of 12.68 kPa. e Photomicrograph (Ki-67 immunostaining × 200) showed Ki-67 labeling 
index of 60%. A small satellite nodule can be seen beside the major lesion
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ratio (OR) = 1.669 [95% CI: 1.307–2.131], p < 0.001) 
and tumor ADC (OR = 0.030 [95% CI: 0.002, 0.476], 
p = 0.013) were independent significant variables asso-
ciated with Ki-67.

Diagnostic performance of tumor stiffness and ADC related 
to Ki‑67
Diagnostic characteristics of the significant features 
(tumor stiffness and ADC) and their combination for 
predicting Ki-67 level are demonstrated in Table 5. In our 
study, the AUC of tumor stiffness for identifying the high 
Ki-67 group was 0.796 (95% CI 0.702, 0.871), with a sen-
sitivity of 68.42%, specificity of 92.50%, and accuracy of 
78.35%. Tumor stiffness was moderately correlated with 
the Ki-67 labeling index (r = 0.593, p < 0.001). While liver 

stiffness showed no significant correlations with Ki-67 in 
our cohorts (p > 0.05). There was no correlation between 
tumor stiffness and ADC (r =  − 0.196, p = 0.055).

When both significant features of tumor stiffness 
and ADC were combined, corresponding AUC val-
ues were 0.864 (95% CI 0.780–0.926). The combined 
model achieved the best diagnostic performance com-
pared to the individual imaging features of tumor 
stiffness (z = 2.539, p = 0.0111) or ADC (z = 2.986, 
p = 0.0028) alone.

Discussion
In the present study, we found that MRE-based tumor 
stiffness showed a significant correlation with Ki-67. 
Furthermore, increased tumor stiffness can be a reliable 

Fig. 3 Intrahepatic cholangiocarcinoma of the low Ki-67 group in a 51-year-old female (arrows) showed (a) hyperintensity on DWI (b = 500 s/mm2); 
(b) hyperintensity on apparent diffusion coefficient map (2.390 ×  103  mm2/s). c The magnitude image and (d) stiffness map showed a low tumor 
stiffness value of 3.73 kPa. e Photomicrograph (Ki-67 immunostaining × 200) showed Ki-67 labeling index of 10%
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predictor for high Ki-67 iCCA as an independent vari-
able, achieving satisfactory diagnostic performance in 
cohorts. Hu et  al. have proven that MRE-based c and 
φ-maps can be served as important parameters to assess 
tumor proliferation status in hepatocellular carcinomas 
[23]. But to the best of our knowledge, it is the first time 
to explore the association between tumor stiffness and 
Ki-67 in iCCA patients.

According to our results, tumor stiffness was an 
independent predictor for Ki-67 in iCCA. Increased 
tumor stiffness was reported to be related to poor dif-
ferentiation, high recurrence rate, and unfavorable 

survival, indicating it as a potential biomarker reflect-
ing the aggressiveness of tumors [20, 24–26]. This is 
in accordance with our results that cases with higher 
levels of Ki-67 displayed increased tumor stiffness. We 
considered that this may have guiding significance for 
the selection of the puncture area for tumor biopsy, 
and the area with the highest tumor hardness should 
be selected as much as possible. Tumor stiffness reflects 
the inherent mechanical properties of lesions and is 
closely related to various constitutes of microstruc-
tures, responding to underlying tumor heterogene-
ity [17, 27]. While the increased stiffness and cellular 

Table 3 MR imaging characteristics of tumors

Unless otherwise specified, data are numbers of lesions

Quantitative variables are analyzed using the independent t-test or Mann–Whitney U-test; categorical variables are analyzed using Pearson’s χ2 test or Fisher’s exact 
test, as appropriate

APHE arterial peritumoral hyperenhancement, T2WI T2-weighted imaging, ADC apparent diffusion coefficient
a Data are mean ± standard deviation
b Data are median (Q1, Q3)
*  p < 0.05

Variable High Ki‑67 (n = 57) Low Ki‑67 (n = 40) p

Largest diameter (cm)a 5.74 ± 2.37 5.61 ± 2.16 5.91 ± 2.65 0.544

Location left/right/left + right/
caudal lobe

43 (44.3%)/45 (46.4%)/7 (7.2%)/2 
(2.1%)

26 (45.5%)/27 (47.4%)/3 (5.3%)/1 
(1.8%)

17 (42.5%)/18 (45%)/4 (10.0%)/1 
(2.5%)

0.830

Tumor margin
Well-defined/ill-defined

69 (71.1%)/28 (28.9%) 42 (73.7%)/15 (26.3%) 27 (67.5%)/13 (32.5%) 0.508

Signal homogeneity
Homogeneous/heterogeneous

24 (24.7%)/73 (75.3%) 14 (24.6%)/43 (75.4%) 10 (25.0%)/30 (75.0%) 0.961

Arterial enhancement
Global/partial/peripheral 
enhancement

5 (5.2%)/15 (15.5%)/77 (79.4%) 1 (1.8%)/6 (10.5%)/50 (87.7%) 4 (10.0%)/9 (22.5%)/27 (67.5%) 0.036*

Enhancement pattern
Progressive/persistent/degres-
sive-washout

84 (86.6%)/4 (4.1%)/9 (9.3%) 51 (89.5%)/3 (5.3%)/3 (5.3%) 33 (82.5%)/1 (2.5%)/6 (15.0%) 0.295

APHE Y/N 75 (77.3%)/22 (22.7%) 45 (78.9%)/12 (21.1%) 30 (75.0%)/10 (25.0%) 0.648

Capsule Y/N 20 (20.6%)/77 (79.4%) 15 (26.3%)/42 (73.7%) 5 (12.5%)/35 (87.5%) 0.098

Targetoid appearance Y/N 76 (78.4%)/21 (21.6%) 50 (87.7%)/7 (12.3%) 26 (65.0%)/14 (35.0%) 0.007*

Satellite nodules Y/N 29 (29.9%)/68 (70.1%) 16(28.1%)/41 (71.9%) 13 (32.5%)/27 (67.5%) 0.639

Bile duct dilation Y/N 61 (62.9%)/36 (37.1%) 34 (59.6%)/23 (40.4%) 27 (67.5%)/13 (32.5%) 0.431

Liver capsule retraction Y/N 37 (38.1%)/60 (61.9%) 22 (38.6%)/35 (61.4%) 15 (37.5%)/25 (62.5%) 0.913

Hemorrhage in mass Y/N 4 (4.1%)/93 (95.9%) 2 (3.5%)/55 (96.5%) 2(5.0%)/38 (95.0%) 1.000

Necrotic or cystic portion Y/N 36 (37.1%)/61 (62.9%) 22 (38.6%)/35 (61.4%) 14 (35.0%)/26 (65.0%) 0.718

Central scar Y/N 48 (49.5%)/49 (50.5%) 29 (50.9%)/28 (49.1%) 19 (47.5%)/21 (52.5%) 0.743

Central darkness on T2WI Y/N 45 (46.4%)/52 (53.6%) 27(47.4%)/30 (52.6%) 18 (45.0%)/22 (55.0%) 0.818

Vessel invasion Y/N 76 (78.4%)/21 (21.6%) 46 (80.7%)/11 (19.3%) 30 (75.0%)10/ (25.0%) 0.502

Lymphadenectasis Y/N 42 (43.3%)/55 (56.7%) 23 (40.4%)/34 (59.6%) 19 (47.5%)/21 (52.5%) 0.484

Distant metastasis Y/N 11 (11.3%)/86 (88.7%) 8 (14.0%)/49 (86.0%) 3 (7.5%)/37 (92.5%) 0.517

Tumor ADC (×  103  mm2/s)b 1.13 (0.96, 1.30) 1.02 (0.87, 1.22) 1.19 (1.06, 1.42)  < 0.001*

Tumor stiffness (kPa)b 7.94 (6.23, 11.09) 10.16 (7.17, 12.04) 6.37 (5.65, 7.69)  < 0.001*

Liver stiffness (kPa)b 2.74 (2.30, 3.52) 2.65 (2.30, 3.64) 2.77 (2.31, 3.47) 0.959
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density might be correlated as well with the well-known 
desmoplastic reaction of cholangiocarcinoma, another 
component associated with biological aggressiveness 
and poor prognosis [28]. The MRE stiffness may not 

only demonstrate the cellular proliferation, but also 
the desmoplastic response induced by fibroblasts and 
extracellular collagen matrix. So elastometric features 
might be a surrogate biomarker of cellular proliferation. 
What’s more, it can also provide more information for 
clinicians to select further treatment.

We also identified the role of ADC in predicting Ki-67 
of iCCA, consistent with previous study [29]. Diffusion-
weighted imaging provides insights into the microstruc-
ture of tissues by reflecting the micro-diffusivity of water 
molecules. iCCA with a high level of Ki-67 had a lower 
ADC value, the possible mechanism may be that high 
cell proliferation activity is associated with decreased 
diffusivity, resulting in lower ADC values [11].

Table 4 Univariate and multivariate analyses of risk factors for Ki-67 level in the training cohort

CEA carcinoembryonic antigen, CA19-9 cancer antigen 19–9, APHE arterial peritumoral hyperenhancement, T2WI T2-weighted imaging, ADC apparent diffusion 
coefficient, OR odds ratio, 95% CI 95% confidence interval

… indicate variables not included in the equation of the multivariate logistic stepwise regression model
a Data were used as the reference category
* p < 0.05

Variables Univariate analysis Multivariate analysis

Odds ratio p Odds ratio p

Sex 3.844 (1.632–9.053) 0.002* … …

CA19-9 2.775 (1.205–6.391) 0.016* … …

Largest diameter 0.948 (0.798–1.126) 0.540 … …

Tumor margin 1.348 (0.556–3.270) 0.509 … …

Signal homogeneity 1.024 (0.402–2.610) 0.961 … …

Arterial enhancement … … … …

Globala … … … …

Partial 2.667 (0.237–30.066) 0.427 … …

Peripheral enhancement 7.407 (0.788–69.632) 0.08 … …

Enhancement pattern … … … …

Progressivea … … … …

Persistent 1.941 (0.194–19.461) 0.573 … …

Degressive-washout 0.324 (0.076–1.384) 0.128 … …

APHE 1.250 (0.480–3.258) 0.648 … …

Capsule 2.500 (0.826–7.564) 0.105 … …

Targetoid appearance 3.846 (1.382–10.705) 0.010* … …

Satellite nodules 1.234 (0.513–2.970) 0.639 … …

Bile duct dilation 1.405 (0.602–3.278) 0.432 … …

Liver capsule retraction 1.048 (0.455–2.410) 0.913 … …

Hemorrhage in mass 1.447 (0.195–10.728) 0.718 … …

Necrotic or cystic portion 1.167 (0.504–2.705) 0.718 … …

Central scar 1.145 (0.510–2.571) 0.743 … …

Central darkness on T2WI 1.100 (0.489–2.476) 0.818 … …

Vessel invasion 1.394 (0.527–3.685) 0.503 … …

Lymphadenectasis 1.337 (0.592–3.023) 0.485 … …

Tumor ADC 0.028 (0.004–0.208)  < 0.001* 0.030 (0.002–0.476) 0.013

Tumor stiffness 1.640 (1.327–2.027)  < 0.001* 1.669 (1.307–2.131)  < 0.001*

Liver stiffness 0.950 (0.694–1.299) 0.747 … …

Table 5 Diagnostic performance of the significant findings 
and their combination for predicting Ki-67 of intrahepatic 
cholangiocarcinoma

AUC  area under the curve, ADC apparent diffusion coefficient

Variable AUC Sensitivity Specificity Accuracy

Tumor ADC 0.718 50.88% 85.00% 64.95%

Tumor stiffness 0.796 68.42% 92.50% 78.35%

Combined model 0.864 78.95% 82.50% 78.35%
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Accordingly, MRE showed promising diagnostic 
performance, displaying considerable efficacy in pre-
operative prediction of Ki-67 expression in iCCA. 
Moreover, the stiffness measurement displayed excel-
lent interobserver agreement with no need of contrast 
media employment, which may be a convenient, nonin-
vasive, and repeatable imaging biomarker for preopera-
tive assessment of tumor proliferation in iCCA. In our 
study, we further incorporated tumor stiffness and the 
conventional imaging feature of tumor ADC to build 
a combined diagnostic model, and it demonstrated an 
optimized predictive performance with the largest AUC, 
which may provide a promising and reliable tool to assist 
in treatment decision-making and outcome prediction 
for iCCA patients in clinical work.

There were several shortcomings to be acknowledged. 
First, this was a single-center study with a relatively 
small sample size, which may lead to biased results. 
Therefore, the value of MRE in the prediction of Ki-67 
requires to be validated in a multicenter study with a 
larger sample size and external validation. Second, few 
cases may have poor image quality due to severe arti-
facts, but these patients were excluded from our study 
according to the exclusion criteria. Third, we defined 
the expression of Ki-67 ≥ 50% as the high Ki-67 group 
according to previous studies [14, 21, 22]. However, 
several studies chose different cutoff values [30, 31]. 
Fourth, conventional extracellular contrast-enhanced 
MRI was performed in this study, as Gadoxetic acid was 
not routinely applied and was not covered by health 
insurance in our country. Further studies using Gadox-
etic acid with analysis of hepatobiliary-phase features 
are warranted. Fifth, point-to-point correlation analysis 
for tumor stiffness and Ki-67 expression was not ana-
lyzed and needs to be further investigated in our future 
work. Finally, 2D-MRE can only provide 3 scanning lay-
ers for limited ROI selection, whole-tumor evaluation 
could not be investigated.

In conclusion, as a noninvasive imaging tool, MRE-based 
tumor stiffness correlated with Ki-67 in iCCA and could be 
investigated as a potential prognostic biomarker in future. 
Furthermore, the combined model incorporating both 
tumor stiffness and the conventional MRI feature of tumor 
ADC increased the predictive performance for Ki-67.
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