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Abstract 

Objectives This study aims to evaluate the efficacy of multi-model incorporated by radiomics, deep learning, 
and transcriptomics features for predicting pathological grade and survival in patients with clear cell renal cell carci-
noma (ccRCC).

Methods In this study, data were collected from 177 ccRCC patients, including radiomics features, deep learning (DL) 
features, and RNA sequencing data. Diagnostic models were then created using these data through least absolute 
shrinkage and selection operator (LASSO) analysis. Additionally, a multi-model was developed by combining radiom-
ics, DL, and transcriptomics features. The prognostic performance of the multi-model was evaluated based on pro-
gression-free survival (PFS) and overall survival (OS) outcomes, assessed using Harrell’s concordance index (C-index). 
Furthermore, we conducted an analysis to investigate the relationship between the multi-model and immune cell 
infiltration.

Results The multi-model demonstrated favorable performance in discriminating pathological grade, with area 
under the ROC curve (AUC) values of 0.946 (95% CI: 0.912–0.980) and 0.864 (95% CI: 0.734–0.994) in the training 
and testing cohorts, respectively. Additionally, it exhibited statistically significant prognostic performance for pre-
dicting PFS and OS. Furthermore, the high-grade group displayed a higher abundance of immune cells compared 
to the low-grade group.

Conclusions The multi-model incorporated radiomics, DL, and transcriptomics features demonstrated promising 
performance in predicting pathological grade and prognosis in patients with ccRCC.

Critical relevance statement We developed a multi-model to predict the grade and survival in clear cell renal cell 
carcinoma and explored the molecular biological significance of the multi-model of different histological grades.

Key points  
1. The multi-model achieved an AUC of 0.864 for assessing pathological grade.

2. The multi-model exhibited an association with survival in ccRCC patients.

3. The high-grade group demonstrated a greater abundance of immune cells.
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Introduction
Renal cell carcinoma (RCC) is a highly prevalent form of 
cancer globally, representing one of the most frequently 
diagnosed malignancies. Clear cell RCC (ccRCC) accounts 
for approximately 70–80% of all RCC cases [1]. The path-
ological grade of tumors is a critical prognostic factor for 
patients diagnosed with ccRCC [2, 3] and is considered a 
significant predictor, particularly for ccRCC. It has gained 
widespread recognition and is increasingly utilized to 
inform clinical management approaches [4, 5]. Therefore, 
discriminating ccRCC grade is important for personalized 
precision medicine. Although pathology is the gold stand-
ard for grading ccRCC [6], the percutaneous biopsy is the 
commonly employed technique for preoperative prediction 
of ccRCC grade. Nevertheless, this procedure is vulnerable 
to potential errors arising from sampling limitations and 
inter-observer variability [7, 8]. Also, inaccuracies in grade 
can result from sample error and tumor heterogeneity [9].

In recent years, computed tomography (CT) is the 
most commonly used imaging technique for examining 

kidney cancer due to its accuracy in both detecting 
and diagnosing kidney masses. Multiphase contrast-
enhanced CT examination is convenient and has supe-
rior resolution, which permits clear visualization of 
lesions [10]. Radiomics and deep learning (DL) tech-
niques have been increasingly utilized to predict the 
grade of ccRCC [11–13]. However, few studies have 
integrated different predictors from diverse dimensions, 
such as transcriptomics, which could provide valuable 
information for enhanced risk assessment. Transcrip-
tomics plays a critical role in cancer diagnosis and 
treatment [14]. To date, no investigation has merged 
radiomics, DL techniques, and transcriptomics to deter-
mine ccRCC grade. Therefore, the objective of this study 
was to develop a multi-model that integrates radiomics, 
DL, and transcriptomics features to predict the grade 
and survival of patients with ccRCC. Furthermore, we 
explored the molecular biological significance of the 
multi-model and the immune cell infiltration in patients 
of different histological grade.
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Methods
Patients and study design
The ethics committee of the hospital granted approval 
for this retrospective study, and the need for written 
informed consent was waived. The Cancer Genome Atlas 
Kidney Clear Cell Carcinoma dataset comprising 237 
ccRCC patients was obtained from The Cancer Imaging 
Archive (TCIA) [15, 16]. Patient characteristics, includ-
ing age, gender, pathological grade, tumor-node-metasta-
sis (TNM) stage, and follow-up data, were obtained from 
TCIA. Histological grade was classified as low (grades 
1–2) and high (grades 3–4) [12, 17].

Figure  1 illustrates the recruitment pathway for 
patients in this study. A total of 177 patients with ccRCC 
were included, with 142 patients in the training group 
and 35 patients in the testing group at a randomiza-
tion ratio of 8:2. Inclusion criteria consisted of the fol-
lowing: (1) patients diagnosed with ccRCC, (2) patients 
who underwent CT-enhanced scans, and (3) availabil-
ity of complete genetic and clinical information. Exclu-
sion criteria included the following: (1) patients without 
nephrographic phase CT images and (2) poor-quality CT 
images.

Segmentation and the extraction of radiomics features
The nephrographic phase CT images were employed for 
radiomics feature extraction [12]. Layer-by-layer delinea-
tion of the volume of interest (VOI) was performed using 
ITK-SNAP software (version 3.8, www. itksn ap. org/) by 
two radiologists, each having over 5 years of experience 
in diagnostic abdominal imaging. The radiologists were 
blinded to the patients’ pathological grade. A total of 
1834 radiomics features were extracted in Python (ver-
sion 3.6.0) using PyRadiomics (version 3.0.1) from the 
VOI for each patient with ccRCC. The reliability of the 
radiomics features was assessed by calculating inter- 
and intra-class correlation coefficients (ICCs). Radiom-
ics features with ICCs > 0.75 were deemed reliable. For 
additional details on the ICC analysis, please refer to the 
Supplementary Material.

DL feature extraction
In this study, a three-dimensional (3D) DL model using 
the 3D ResNet50 architecture was employed. The 
VOI was selected as the original image and resized to 
96 × 96 × 96 to align with the network’s input size. The 
model training process consisted of updating the network 

Fig. 1 The flow diagram of the study

http://www.itksnap.org/
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weights using a cross-entropy loss function, which was 
utilized for the prediction task. The 3D DL model was 
then used to extract DL features from each VOI. For each 
patient in the training and testing groups, a total of 1024 
DL features were extracted from the penultimate fully 
connected layer. All were run in Python (version 3.6.8). 
We used the PyTorch framework to train the model on 
NVIDIA RTX 3070 Ti graphics processing units. The 
network optimization was performed using the Adam 
optimizer with a learning rate of 0.001. The training pro-
cess spanned 300 epochs, with a batch size of 4.

Functional enrichment analysis
Transcriptomic data from 142 ccRCC patients were 
obtained from the TCGA database for genetic analysis. 
The differential expression of genes (DEGs) between high-
grade and low-grade ccRCC samples was analyzed using 
the “DEseq2” package in R software. Subsequently, a Gene 
Ontology (GO) enrichment analysis was conducted on 
the DEGs to identify biological processes, cellular compo-
nents, and molecular functions that exhibited significant 
enrichment in one group compared to the other.

Radiomics, DL, and transcriptomics feature selection 
and models building
The analysis proceeded in three main steps. First, uni-
variate regression analysis was employed to identify the 

radiomics, DL, and transcriptomics features that were 
significantly associated with grade and prognosis. Sec-
ond, the least absolute shrinkage and selection operator 
(LASSO) method was applied to the training group in 
order to select the most important features. Finally, the 
selected important features were utilized to construct the 
radiomics, DL, and transcriptomics models.

Performance of the three models and multi‑model
Figure 2 illustrates the workflow encompassing the fun-
damental steps in radiomics development. A multi-
model was created by integrating radiomics, DL, and 
transcriptomics models through logistic regression. To 
evaluate the performance of these models, metrics such 
as the area under the receiver operating characteris-
tic (ROC) curve (AUC), calibration curve, and decision 
curve analysis (DCA) were utilized for both the training 
and testing datasets.

Survival analysis and immune cells infiltration analysis
Patients were initially stratified into high-risk or low-
risk groups using the median scores obtained from the 
multi-model. Subsequently, follow-up data was ana-
lyzed to determine progression-free survival (PFS) and 
overall survival (OS) outcomes. PFS was defined based 
on the occurrence of new tumor events, including dis-
ease progression, local recurrence, distant metastasis, 

Fig. 2 The workflow of the basic steps in multi-model development
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or death, while OS was calculated from the date of dis-
ease diagnosis until either death or the specified cut-off 
date for follow-up. To visually represent the survival 
status of the high-risk and low-risk patient groups, 
Kaplan–Meier plots were generated. The prognostic 
potential of the multi-model and the survival status of 
the patients were evaluated using Harrell’s concordance 
index (C-index).

Enrichment scores for specific immune cells in ccRCC 
were calculated using Single Sample Gene Set Enrich-
ment Analysis (ssGSEA) in R software for each patient. 
Additionally, a comparison of the enrichment scores 
of immune cell infiltration was performed between 
high-risk and low-risk patients. This analysis aimed 
to examine the association between the multi-model 
and histological grade, shedding light on the relation-
ship between the predictive model and immune cell 
composition.

Statistical analysis
Continuous variables that exhibited a normal distribution 
were reported as mean and standard deviation. Categori-
cal variables were compared using chi-square tests, while 
independent samples t-test or Mann–Whitney U test 
was utilized to compare continuous variables. Statistical 
significance was considered when the p value was less 

than 0.05. The statistical analyses were conducted using 
Python (version 3.6.8) and R software (version 4.2.2).

Results
Clinical characteristics
In this study, 177 patients were diagnosed with ccRCC, 
with 72 having low-grade and 105 having high-grade 
tumors. There were 22 patients with metastasis (M-stage) 
and 23 patients with lymph node metastasis (N-stage) 
above 0. Table  1 provides an overview of the clinical 
characteristics of these two groups, including the training 
and testing cohorts. The analysis revealed no statistically 
significant differences in patient age and gender between 
the low-grade and high-grade groups (p > 0.05). However, 
there was a significant difference in the TNM stage, with 
the low-grade group demonstrating a lower TNM stage 
compared to the high-grade group (p < 0.05).

Construction of radiomics, DL, and transcriptomics models
For each patient, 1834 radiomics features were extracted 
from the ROIs on the CT images. After conducting uni-
variate logistic analysis, 398 radiomics features exhibited 
statistically significant differences between the low-grade 
and high-grade groups. These features were further sub-
jected to LASSO, which identified the 17 most valuable 
features (Supplementary Table  1). Based on these most 

Table 1 Clinical factors of in the training and testing cohorts

Abbreviations: TNM tumor-node-metastasis, SD standard deviation

Clinical factors Training cohort (n = 142) Testing cohort (n = 35)

Low‑grade High‑grade p value Low‑grade High‑grade p value

Age (years), mean ± SD 60.345 ± 12.786 61 ± 12.502 0.761 56.571 ± 11.175 59 ± 10.578 0.520

Gender, n (%) 0.201 0.737

 Female 24 (16.9%) 26 (18.3%) 5 (14.3%) 9 (25.7%)

 Male 34 (23.9%) 58 (40.8%) 9 (25.7%) 12 (34.3%)

TNM stage n (%)  < 0.001 0.016

 1–2 47 (33.1%) 39 (27.5%) 12 (34.3%) 9 (25.7%)

 3–4 11 (7.7%) 45 (31.7%) 2 (5.7%) 12 (34.3%)

Table 2 Performance of the radiomics model, deep learning model, and transcriptomics model in the training and testing cohorts

Abbreviations: AUC  area under the curve, SEN sensitivity, SPE specificity, ACC  accuracy, 95% CI 95% confidence interval

Different models Training cohort (n = 142) Testing cohort (n = 35)

AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC 

Radiomics model 0.858 (0.787–0.929) 0.964 0.569 0.803 0.820 (0.674–0.966) 0.752 0.500 0.771

Deep learning model 0.851 (0.783–0.919) 0.726 0.897 0.796 0.840 (0.694–0.986) 0.762 0.929 0.829

Transcriptomics model 0.871 (0.813–0.929) 0.750 0.862 0.800 0.816 (0.674–0.959) 0.667 0.929 0.771

Combined model 0.946 (0.912–0.980) 0.952 0.862 0.916 0.864 (0.734–0.994) 0.857 0.643 0.771
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valuable features and genes, three models were estab-
lished using tenfold cross-validation. The radiomics 
model achieved AUCs of 0.858 (95% confidence interval 
[CI]: 0.787–0.929) and 0.820 (95% CI: 0.674–0.966) in the 
training and testing cohorts, respectively (Table 2).

Similarly, we obtained 9 DL features and 16 genes (Sup-
plementary Tables  2  and  3) and established the DL and 
transcriptomics models. The performance of these two 
models is presented in Table  2. The ROC curves of the 
three models in the training cohort and testing cohort are 
shown in Fig. 3a, b.

Performance and biologic function of the multi‑model
In this study, we developed a multi-model that integrated 
radiomics, DL, and transcriptomics models. The model 
exhibited strong predictive performance, with AUCs of 
0.946 (95% CI: 0.912–0.980) and 0.864 (95% CI: 0.734–
0.994) in the training and testing cohorts, respectively 
(Table 2). Figure 4 illustrates the constructed multi-model. 
The calibration curve of the model demonstrated satisfac-
tory calibration, indicating good agreement between pre-
dicted and observed outcomes (Supplementary Fig.  1a). 
Furthermore, the DCA curves revealed that the model 

Fig. 3 The receiver operating characteristic (ROC) curves of radiomics, deep learning, and transcriptomics models in the study cohorts. a ROC 
curves in training cohort. b ROC curves in testing cohort

Fig. 4 Study multi-model for outcome prediction
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improved the ability to distinguish between low-grade and 
high-grade tumors (Supplementary Fig. 1b).

RNA sequencing analysis and functional enrichment 
analysis showed significant differences in transcrip-
tional aspects between high-grade and low-grade in 
patients with ccRCC (Fig. 5).

Prognostic value and immune cell infiltration 
of multi‑model
Kaplan–Meier analysis demonstrated that patients with 
ccRCC and high-risk model-scores experienced a signifi-
cantly shorter survival time in terms of PFI compared to 
those with low-risk model-scores (Fig. 6a). Additionally, 
patients with high-risk model-scores exhibited poorer 
OS time compared to those with low-risk model-scores 
(Fig. 6b). We also constructed a clinical prediction model 
using pathological low/high grade and TNM stage. The 
prognostic value of our multi-model scores and clini-
cal model was assessed based on follow-up data. The 
predictive performance of our multi-model exhibited a 
slight inferiority compared to that of the clinical model 
in both the PFS (C-index = 0.62 vs. 0.71) and the OS 
(C-index = 0.63 vs. 0.68). A combined model was further 
formulated by integrating the multi-model with the clini-
cal model. The combined model achieved high predictive 
accuracy for PFS (C-index = 0.74; 95% CI, 0.71 to 0.77) 
and OS (C-index = 0.72; 95% CI, 0.69 to 0.75).

In addition to analyzing the relationship between the 
multi-model and histological grade, we also compared 
the differences in immune cell subtypes between the 
high-risk and low-risk groups. The analysis revealed 
that immune cell abundance was greater in the high-risk 
group compared to the low-risk group (Supplementary 
Fig. 2). Specifically, the high-risk group exhibited higher 
enrichment scores for activated CD4 T cells (p = 0.005), 
activated CD8 T cells (p = 0.002), activated dendritic cells 
(p < 0.001), and central memory CD4 T cells (p < 0.001) 
(Supplementary Fig. 3).

Fig. 5 Gene ontology enrichment analysis of differentially expressed 
genes in the low-grade and high-grade group

Fig. 6 Kaplan–Meier (KM) plots of the survival status of the high-risk and low-risk patient groups. a KM curves for progression-free survival. b KM 
curves for overall survival
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Discussion
In this study, we developed a multi-model for preopera-
tive identification of the histological grade of ccRCC. The 
multi-model contains radiomics features, DL features, 
and transcriptomics features. We then further investi-
gated the immune cell infiltration and prognostic value 
of the multi-model. Our study showed that this CT-based 
multi-model achieved favorable performance in predict-
ing the histological grade and survival of ccRCC.

The prognosis for a high-grade ccRCC is poor and 
a clear histological grade is essential to monitor the 
patient’s condition and to develop an individualized 
follow-up treatment strategy [18–20]. With the devel-
opment of radiomics and DL techniques, studies have 
focused on images for preoperative non-invasive pre-
diction of the histological grade of ccRCC [21–23]. 
Demirjian et  al. [12] developed a CT-based radiomics 
model to discriminate between high-grade and low-
grade and showed that a classification model based 
on 10 radiomics features achieved an AUC of 0.73. 
Zheng et  al. [17] developed and validated a novel CT-
based model method for preoperative prediction of 
ccRCC grade by combining radiomics features and 
CT-determined T-staging. The model method offers a 
non-invasive and convenient tool that promises to be 
an efficient aid to clinical decision-making for patients 
with ccRCC. These two studies mentioned above pro-
vide good research ideas in terms of radiomics to pre-
dict the histological grade. However, more computer 
technology is being used by academics. An effective, 
time-saving DL method incorporating self-supervised 
learning has been constructed to identify patients with 
high-grade [21]. Furthermore, we constructed a multi-
model combined by radiomics, DL, and transcriptom-
ics features to predict the histological grade of ccRCC.

The primary objective of our study was to develop a 
CT-based multi-model capable of predicting the histo-
logical grade of ccRCC. The multi-model achieved high 
predictive performance, as evidenced by AUCs of 0.946 
and 0.864 in the training and test sets, which demon-
strated promising performance in predicting grades. 
We also found that the high and low scores derived 
from the multi-model patients’ PFI and OS (p < 0.001) 
suggest that our model can predict patient prognosis 
[24, 25]. Secondly, we explored the molecular biologi-
cal significance of the multi-model and the immune cell 
infiltration in patients of different histological grades. 
Functional enrichment analysis showed that patients 
with high-grade ccRCC were more transcriptionally 
active [26]. Additionally, our analysis demonstrated a 
significant increase in immune cell infiltration within 
the tumor microenvironment among patients classified 
as high-risk, compared to those in the low-risk group. 

This finding suggests that immune cell infiltration 
might play a relevant role in disease development and 
progression [27, 28].

This study has several limitations that need to be 
acknowledged. Firstly, the sample size in our study was 
relatively small. Secondly, this is a retrospective design 
of the study. Therefore, further validation of our results 
is necessary through prospective multicenter stud-
ies with larger sample sizes to improve the developed 
multi-model.

Conclusions
Our study introduced an innovative amalgamation 
of radiomics, deep learning, and transcriptomics fea-
tures, demonstrating the potential to predict pathologi-
cal grade and prognosis in ccRCC patients. Conducting 
prospective multicenter studies in the future to validate 
our findings could offer increased confidence in patient 
management.
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