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Abstract 

Objectives We aimed to develop a combined model based on clinical and radiomic features to classify fracture age.

Methods We included 1219 rib fractures from 239 patients from our center between March 2016 and September 
2022. We created an external dataset using 120 rib fractures from 32 patients from another center between October 
2019 and August 2023. According to tasks (fracture age between < 3 and ≥ 3 weeks, 3–12, and > 12 weeks), the internal 
dataset was randomly divided into training and internal test sets. A radiomic model was built using radiomic features. 
A combined model was constructed using clinical features and radiomic signatures by multivariate logistic regression, 
visualized as a nomogram. Internal and external test sets were used to validate model performance.

Results For classifying fracture age between < 3 and ≥ 3 weeks, the combined model had higher areas 
under the curve (AUCs) than the radiomic model in the training set (0.915 vs 0.900, p = 0.009), internal test (0.897 
vs 0.854, p < 0.001), and external test sets (0.881 vs 0.811, p = 0.003). For classifying fracture age between 3–12 
and > 12 weeks, the combined model had higher AUCs than the radiomic model in the training model (0.848 vs 0.837, 
p = 0.12) and internal test sets (0.818 vs 0.793, p < 0.003). In the external test set, the AUC of the nomogram-assisted 
radiologist was 0.966.

Conclusion The combined radiomic and clinical model showed good performance and has the potential to assist 
in the classification of rib fracture age. This will be beneficial for clinical practice and forensic decision-making.

Critical relevance statement This study describes the development of a combined radiomic and clinical model 
with good performance in the classification of the age of rib fractures, with potential clinical and forensic applications.

Key points 

• Complex factors make it difficult to determine the age of a fracture.

• Our model based on radiomic features performed well in classifying fracture age.

• Associating the radiomic features with clinical features improved the model’s performance.
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Graphical Abstract

Introduction
Thoracic injuries are common among trauma patients 
[1]. Rib fractures are the most common form of tho-
racic trauma, serving as a marker of injury severity and 
a guide for legal decision-making [2, 3]. In the USA, 
300,000 patients were diagnosed with rib fractures in 
2004 [4], which increased to 350,000 in 2017 [5]. The 
risk of fracture increases significantly with age [6, 7]. 
Therefore, rib fracture cases are expected to increase 
with global aging [8]. The cause of rib fractures var-
ies between age groups; they are usually caused by falls 
in older adults, traffic accidents in adults, and violent 
conflicts in adolescents [9, 10].

Accident compensation usually requires clarification 
of injury events leading to rib fractures [11]. In addition, 
the specific timing of rib fractures during accidents is 
important in legal cases. Providing the age of a rib frac-
ture can clarify the association with a specific physical 
event and rule out irrelevant injuries, which is benefi-
cial for settling compensation issues. Furthermore, the 
fracture healing state can be clinically assessed based 
on a patient’s radiological presentation and physical 
examination at different ages after the fracture [12]. 
However, this is influenced by multiple factors, includ-
ing the patient’s age, nutritional status, sex, fracture 

location, and vascular injury, making it highly challeng-
ing to assess fracture union [13]. Combining imaging 
with fracture timing can improve surgeons’ confidence 
in assessing the healing state. Analyzing the fracture 
healing process can guide further treatment and care 
practices for patients with rib fractures [14].

Radiomics provides a new perspective for doctors 
by extracting quantitative features from medical 
images to reflect the heterogeneity of lesions that are 
unobservable by the naked eye. Its primary benefit lies 
in the quantitative and more objective interpretation 
of medical images, potentially overcoming the 
limitations of visual image assessment [15, 16]. To 
the best of our knowledge, no study has investigated 
whether a model derived from computed tomography 
(CT) imaging and clinical information can aid the 
diagnosis of fracture age. We aimed to evaluate the 
performance of a model built using radiomic and 
clinical data to diagnose fracture age.

Methods
Ethics consideration
This retrospective study was approved by the ethics 
committee of our hospital (No. 20220069), which waived 
the requirement for informed consent.
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Study population of the internal dataset
We searched the Picture Archiving and 
Communication System of our hospital using the 
keyword phrase “chest trauma evaluation” to identify 
patients who visited our hospital for chest trauma 
evaluation between March 2016 and September 2022. 
The inclusion criteria comprised the following: (1) 
patient age > 18  years; (2) patients who experienced 
a traumatic event (including traffic accidents, falls, 
and fights involving blunt chest trauma); (3) imaging 
reports confirming at least one rib fracture; (4) 
slice thickness after image reconstruction < 1.5  mm; 
and (5) case reports documenting the precise time 
of fractures. The exclusion criteria comprised the 
following: (1) malignant and benign bone tumors 
involving the ribs; (2) metastatic diseases involving 
the ribs; (3) significant artifacts in CT images; and (4) 
surgical internal fixation of rib fractures. We obtained 
demographic features, including age and sex, from 
the patient hospital records. The scan parameters are 
described in the Supplementary Material. We identified 
71 patients with rib fractures imaged < 3  weeks after 
trauma and matched them by age to ensure that the 
number of fractures at 3–12  weeks and > 12  weeks 
was approximately equal to that at < 3  weeks. These 
three frames for depicting fracture ages were sourced 
from previously published literature [17, 18]. For each 
patient, 12 bilateral ribs were included in the dataset.

Finally, as shown in Fig.  1, based on our inclusion 
and exclusion criteria, 1219 rib fractures (< 3  weeks: 
n = 323; 3–12  weeks: n = 492; > 12  weeks: n = 404) 
from 239 patients (< 3  weeks: n = 71; 3–12  weeks: 
n = 90; > 12  weeks: n = 78) were included in our inter-
nal dataset. For classifying fracture age between < 3 
and ≥ 3  weeks, 1219 fractures were randomly assigned 
to the training (n = 853) and internal test sets 
(n = 366). For classifying fracture age between 3–12 
and > 12  weeks, 896 fractures were randomly assigned 
to the training (n = 627) and internal test sets (n = 269).

Study population of the external dataset
To build a validation external dataset, we included 
120 rib fractures from 32 patients (< 3  weeks: 
n = 16; ≥ 3 weeks: n = 16) who underwent chest trauma 
evaluation between October 2019 and August 2023, 
in another hospital in Shanghai according to the same 
inclusion and exclusion criteria to construct. This 
external dataset was used to confirm the efficacy of our 
model and assess the performance of radiologists in 
classifying rib fracture age based on CT images using 
the model. The scan parameters used for CT exami-
nation are provided in the Supplementary Material. 
Detailed clinical features are listed in Table S3.

Extraction of radiomic and clinical features
Referring to the diagnostic CT reports, a radiologist 
with 5 years of experience in chest diagnostics manually 
delineated the volume of interest (VOI) at the fractured 
ends of the rib using the 3D Slicer software (https:// www. 
slicer. org) (Figure S1). Subsequently, another radiologist 
with 20  years of experience in chest diagnostics 
confirmed the VOIs. Next, we used the PyRadiomics 
package in Python to extract radiomic features from 
the VOIs [19]. For each VOI, we extracted 107 radiomic 
features. The detailed outlining process and radiomic 
features are shown in the Supplementary Material.

The clinical features included demographic and CT 
image features. The clinical features were as follows: (1) 
pleural inflammation, (2) 1–4 rib fractures, (3) lateral 
fractures, (4) bone fragments, (5) multiple fractures of the 
same rib, (6) cartilage junction fractures, (7) periosteal 
callus information, (8) intramedullary callus information, 
and (9) sex.

Selection of radiomic and clinical features
We hypothesized that meaningful features might differ 
when classifying fracture age between < 3 weeks, ≥ 3 weeks, 
3–12  weeks, and > 12  weeks. Therefore, we selected the 
features separately according to these time frames.

All radiomic features were normalized using z-score 
normalization before feature selection. To minimize 
the impact of dimensionality, the selection of features 
was conducted in three steps using the training set. 
First, we calculated the p value for each feature using 
the t-test and selected features with p values < 0.05 for 
further consideration. Spearman’s correlation coef-
ficients were calculated for the selected features to 
avoid the underlying severe linear dependence. When 
the value was < 0.9, we determined this to mean that 
there was no correlation between the selected fea-
tures. Lastly, we used the least absolute shrinkage and 
selection operator (LASSO) analysis to determine the 
most useful radiomic features. Clinical features were 
selected using univariate and multivariate logistic 
regression analyses.

Development of radiomic and combined models
We used two feature sets instead of one for the precise 
classification of the fracture age because of the difference 
in features for fracture age between < 3 weeks, ≥ 3 weeks, 
3–12  weeks, and > 12  weeks. Regarding both levels of 
classification, we developed radiomic and combined 
models.

The base classifier acts as a feature encoder and has a 
significant impact on classification [20]. We compared 
the performance of five common machine learning (ML) 

https://www.slicer.org
https://www.slicer.org
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Fig. 1 Flow chart of the recruitment pathway for the datasets used in this study
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algorithms, support vector machine (SVM), K-nearest 
neighbor, random forest, decision tree, and eXtreme 
Gradient Boosting to determine the most suitable clas-
sifier for fracture age assessment. Hyperparameters were 
optimized using grid search and tenfold cross-valida-
tion. Only the hyperparameters listed in Table S4 were 
adjusted, while all other hyperparameters were main-
tained at the default values specified by models. The 
filtered radiomic features were incorporated into the 
classifier and trained within the training set to obtain the 
radiomic model.

Using one of the two levels of binary classification 
(< 3  weeks or 3–12  weeks) as the reference standard, 
coded as 0 in the training of the classifier, we obtained 
the predicted probability of each fracture in the 
remaining two groups as the radiomic signature. Lastly, 
we developed the combined model based on the radiomic 
signature and clinical features using multivariate logistic 
regression.

Nomogram building
In order to simplify the combined model into an easy-
to-understand tool, a nomogram was utilized for 
constructing a simplified graphical display. The sum 
of nomogram points was calculated based on clinical 
features and radiomic signature. For the convenience of 
calculations, instantly deployable online calculators were 
developed.

Statistical analysis
Statistical analysis was performed using SPSS 26.0 
(IBM) and R Studio (ver. 4.3.1). Clinical features were 
measured using chi-squared or Fisher’s exact-probability 
testing as all were categorical variables. The clinical 
features with p values of < 0.05 in both univariate and 
multivariate logistic regression analyses were included 
in the combined model. Differences in radiomic features 
were assessed using the t-test or the Mann–Whitney U 
test as they were continuous variables. The statistical 
significance level was set at p values of < 0.05.

Results
Selection of clinical features
The clinical features were compared (Table S1 and S2), 
and we observed no significant differences between 
the clinical features of the training and internal test 
sets (p = 0.142–0.988). Results of univariate and 
multivariate logistic regression analyses for clinical 
features associated with the classification of fracture 
age are presented in Table  1. For classifying fracture 
age between < 3 and ≥ 3  weeks, six independent 
clinical features were selected, including sex, fractures 
of ribs 1–4, pleural inflammation, lateral fractures, 

intramedullary callus formation, and periosteal callus 
formation. For classifying fracture age between 3–12 
and > 12  weeks, three independent clinical features 
were selected, including pleural inflammation, 
intramedullary callus formation, and multiple 
fractures of the same rib.

Table 1 Results of univariate and multivariate logistic regression 
analyses for classification of fracture age

Standard error Odds ratio p value

Classification of fracture age (< 3 weeks vs ≥ 3 weeks)
 Results of univariate analysis
  Age 0.007 1.012 0.117

  Sex 0.170 0.667 0.017

  Ribs 1–4 fractures 0.077 2.630  < 0.001

  Pleural inflammation 0.209 0.257  < 0.001

  Lateral fractures 0.198 2.267  < 0.001

  Bone fragments 0.372 0.512 0.072

  Multiple fractures 
of the same rib

0.160 1.582 0.004

  Cartilage junction fractures 0.077 2.630  < 0.001

  Periosteal callus 
information

0.077 2.630  < 0.001

  Intramedullary callus 
information

0.180 6.706  < 0.001

 Positive results of multivariate logistic regression analysis
  Sex 0.234 2.189 0.001

  Ribs 1–4 fractures 0.199 2.060  < 0.001

  Pleural inflammation 0.254 0.238  < 0.001

  Lateral fractures 0.238 2.189 0.001

  Periosteal callus formation 0.222 5.236  < 0.001

  Intramedullary callus 
formation

3.565 3.565  < 0.001

Classification of fracture age (3–12 weeks vs > 12 weeks)
 Results of univariate analysis
  Age 0.009 1.010 0.274

  Sex 0.168 0.595 0.020

  Ribs 1–4 fractures 0.165 1.401 0.041

  Pleural inflammation 0.399 0.246  < 0.001

  Lateral fractures 0.172 1.273 0.161

  Bone fragments 0.523 0.402 0.082

  Multiple fractures 
of the same rib

0.165 0.492  < 0.001

  Cartilage junction fractures 0.250 1.025 0.920

  Periosteal callus formation 0.167 0.592 0.002

  Intramedullary callus 
information

0.270 0.258  < 0.001

 Positive results of multivariate logistic regression analysis
  Pleural inflammation 0.419 0.244 0.001

  Multiple fractures 
of the same rib

0.175 0.528  < 0.001

  Intramedullary callus 
formation

0.305 0.334  < 0.001
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Development and validation of the radiomic model
Using the < 3  weeks as the reference standard, 17 
radiomic features were obtained using the t-test, 
Spearman’s correlation analysis, and LASSO regression 
analysis, including 3 shape, 4 intensity, and 10 texture 
features (Figure S2).

Using the 3–12  weeks as the reference standard, 
10 radiomic features were obtained using the t-test, 
Spearman’s correlation analysis, and LASSO regression 
analysis, including 3 shape, 2 intensity, and 5 texture 
features (Figure S3).

SVM performed the best on fracture age assessment 
(Table S5); therefore, we chose it as the base classifier 
for the radiomic model and obtained the radiomic 
signature. Regarding the classification of the fracture 
age between < 3 weeks and ≥ 3 weeks, using < 3 weeks as 
the reference standard, the performance of the radiomic 
model showed an AUC of 0.897 (95% confidence interval 
[CI]: 0.875–0.925) and 0.854 (95% CI: 0.804–0.903) for 
the training and internal test sets, respectively. Regarding 
the classification of the fracture age between 3–12 weeks 
and > 12  weeks, using 3–12  weeks as the reference 
standard, the performance of the radiomic model showed 
an AUC of 0.837 (95% CI: 0.805–0.868) and 0.793 (95% 
CI: 0.738–0.847) for the training and internal test sets, 
respectively.

Development and visualization of the combined model
For classifying fracture age between < 3 and ≥ 3  weeks, 
using the selected clinical features and radiomic signa-
ture, a combined model was developed and visualized 
in the form of a nomogram (Fig.  2). The online version 
of the nomogram could be used at https:// myr23 4r. 
shiny apps. io/ DynNo mapp3/, and its user interface is 
illustrated in Fig.  4a. The AUC values of the combined 
model were 0.914 (95% CI = 0.892–0.935) and 0.889 (95% 
CI = 0.846–0.932) for the training and internal test sets, 
respectively. The calibration curves revealed good pre-
dictive accuracy between the actual probability and pre-
dicted probability (Fig. 2).

For classifying fracture age between 3–12 
and > 12  weeks, using the selected clinical features and 
radiomic signature, a combined model was developed 
and visualized in the form of a nomogram (Fig.  3). 
An online version of the nomogram could be used at 
https:// myr23 4r. shiny apps. io/ DynNo mapp12/ and its 
user interface is illustrated in Fig. 4b. The AUC values of 
the combined model were 0.848 (95% CI: 0.818–0.878) 
and 0.818 (95% CI: 0.767–0.869) in the training and 
internal test sets, respectively. The calibration curves of 
the nomogram showed acceptable agreement between 
prediction and actual observation (Figs. 2 and 3).

Performance comparison between the radiomic 
and combined models
The DeLong test showed that the combined model 
performed better than the radiomic model for 
classification between < 3  weeks, ≥ 3  weeks, 3–12  weeks, 
and > 12 weeks (Table 2).

For classifying fracture age between < 3  weeks 
and ≥ 3  weeks, the receiver operating characteristic 
(ROC) curves of the radiomic and combined models are 
shown in Fig. 5. In the training set, the combined model 
(AUC = 0.915, 95% CI = 0.893–0.936) outperformed the 
radiomic model (AUC = 0.900, 95% CI = 0.875–0.925; 
p = 0.009). Similarly, in the internal test set, the com-
bined model (AUC = 0.889, 95% CI = 0.846–0.932) 
outperformed the radiomic model (AUC = 0.854, 95% 
CI = 0.804–0.903; p < 0.001).

For classifying the fracture age between 3–12  weeks 
and > 12  weeks, the ROC curves of the radiomic and 
combined models are shown in Fig.  5. In the training 
set, the AUC of the combined model (0.848, 95% 
CI = 0.818–0.878) was slightly higher than that of 
the radiomic model (0.837, 95% CI = 0.805–0.868; 
p = 0.12). However, in the internal test set, the 
combined model (AUC = 0.818, 95% CI = 0.767–0.869) 
performed significantly better than the radiomic model 
(AUC = 0.793, 95% CI = 0.738–0.847; p = 0.003).

Performance in the external test set
In the external test set, we reached the same conclusion 
as that in the internal dataset (Table 3). We evaluated 
a radiologist’s (engaged in musculoskeletal imaging 
diagnosis for 15  years) performance in classifying 
rib fracture age aided by the combined model. For 
classifying fracture age between < 3 and ≥ 3 weeks, the 
AUC values for the radiomic model, combined model, 
and radiologist aided by the combined model were 
0.811 (95% CI = 0.733–0.889), 0.881 (95% CI = 0.814–
0.949), and 0.966 (95% CI = 0.935–0.996), respectively. 
This indicated that the combined model was better 
than the radiomic model, and the collaborative 
integration of the radiologist with the combined model 
further enhanced classification performance (Figure 
S4).

Discussion
The results from the current study showed that our 
combined model, based on clinical and radiomic 
features, could accurately classify the age of rib 
fractures. The good performance of the radiologist 
assisted by the model demonstrated the potential 
feasibility of the model in practical applications, and 
it is expected to provide value for clinical and forensic 
decision-making.

https://myr234r.shinyapps.io/DynNomapp3/
https://myr234r.shinyapps.io/DynNomapp3/
https://myr234r.shinyapps.io/DynNomapp12/
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After a fracture, the fracture region undergoes a series 
of characteristic events over time called the inflamma-
tory, repair, and remodeling phases, all of which are 
influenced by many complex factors [21, 22]. Sex, 1–4 
rib fractures, and lateral fractures impact fracture heal-
ing through estrogen levels, vascular injury, and respi-
ration and body movements, respectively [14, 23–26]. 
Pleural inflammation and callus formation are considered 

important imaging features of the inflammatory and 
reparative phases of fracture healing, respectively [21, 
27]. In late fracture healing, multiple fractures of the 
same rib end healing early by promoting bone resorption 
[28]. Therefore, the above clinical features were included 
in our combined model. Radiomic enables the quantifi-
cation of heterogeneity of fracture regions, thereby com-
pensating for the limitations of visual image assessment. 

Fig. 2 The combined model for classification between < 3 weeks and ≥ 3 weeks. The calibration curves of this model in the training and internal test 
sets were obtained by resampling 1000 times. The dotted line indicates the ideal ability, and the solid line represents the real ability of the model. 
The combined performed better when the solid line was closer to the dotted line
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The combination of all pertinent features (visually 
observable clinical features and visually difficult-to-iden-
tify radiomic features) in the combined model allows for 
a comprehensive assessment of fracture regions, pro-
viding radiologists with additional data-driven insights. 
Thus, aided by the combined model, radiologists achieve 

diagnoses by integrating subjective and objective inter-
pretations of medical images, together with their indi-
vidual clinical experience. This fusion of knowledge from 
both human expertise and data-driven analysis enhances 
the diagnostic decision-making process, ultimately 
improving diagnostic performance.

Fig. 3 The combined model for classification between 3–12 weeks and > 12 weeks. The calibration curves of this model in the training and internal 
test sets were obtained by resampling 1000 times. The dotted line indicates the ideal ability, and the solid line represents the real ability 
of the model. The combined performed better when the solid line was closer to the dotted line
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Radiomics are useful for detecting changes in bone 
microarchitecture due to injury and aging [29–32]. 
Several studies [33–35] utilized radiomic features 
from T2-weighted images to achieve early diagnosis of 
osteoarthritis. Lin et al. [36] developed a radiomic and 
clinical features-based model to predict the prognosis 
of osteoarthritis, with an AUC of 0.83 (95% CI = 0.70–
0.96) in the validation set. Recent studies [37–45] also 

demonstrated the ability of radiomics in osteoporo-
sis detection and fracture prediction. Apart from its 
applications in diagnosing bone disorders, radiomics 
research is starting to emerge in the field of forensic 
medicine. Giorgio et al. [46] demonstrated, based on a 
limited sample (n = 4), that CT-based radiomics could 
be associated with time of death. Subsequently, Klont-
zas et  al. [47] applied CT-based radiomics to predict 

Fig. 4 Online dynamic nomograms for classifying rib fracture age between < 3 and ≥ 3 weeks (a) and between 3–12 weeks and > 12 weeks (b). 
The figure displays the probabilities (with a 95% confidence interval) determined by the combined model for rib fracture ages of ≥ 3 weeks 
and > 12 weeks. The specific predicted values are provided in the “Numerical Summary” tab
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postmortem interval, yielding promising results in this 
exploratory study (AUC = 0.75, 95%CI = 0.584–0.916). 
A previous forensic study [48] indicated an association 
between CT-based quantitative parameters and the age 
of rib fractures. However, the limited sample size (n = 9) 
and the finite number of extracted features (n = 5) 

were insufficient for conducting ML analysis. The 
aforementioned radiomics research in forensic medi-
cine predominantly focused on postmortem forensic 
investigations, whereas this study pertained to trauma 
assessment for legal proceedings. Our study was based 
on principles similar to those of the aforementioned 

Table 2 Performance comparison of the radiomic and combined models

AUC  area under the receiver operating characteristic curve, SENS sensitivity, SPEC specificity, T training set, I-T internal test set

Model AUC p value SENS SPEC

 < 3 weeks vs ≥ 3 weeks
 Radiomic model T 0.900 (0.875–0.925) Reference 0.857 (0.763–0.908) 0.855 (0.763–0.919)

I-T 0.854 (0.804–0.903) 0.812 (0.74–0.924) 0.798 (0.663–0.876)

 Combined model T 0.915 (0.894–0.937) 0.009 0.851 (0.759–0.923) 0.838 (0.744–0.923)

I-T 0.897 (0.857–0.938)  < 0.001 0.820 (0.729–0.903) 0.888 (0.775–0.995)

3–12 weeks vs > 12 weeks
 Radiomic model T 0.837 (0.805–0.868) Reference 0.729 (0.593–0.825) 0.855 (0.763–0.919)

I-T 0.793 (0.738–0.847) 0.816 (0.740–0.931) 0.798 (0.663–0.876)

 Combined model T 0.848 (0.818–0.878) 0.12 0.732 (0.650–0.800) 0.836 (0.775–0.899)

I-T 0.818 (0.767–0.869) 0.003 0.718 (0.597– 0.879) 0.821 (0.628–0.910)

Fig. 5 Receiver operating characteristic (ROC) analysis revealed that for the classification between < 3 and ≥ 3 weeks (a, b), as well as between 3–12 
and > 12 weeks (c, d), the performance of the combined model (red line) surpassed that of the radiomics model (blue line) in both the training 
and internal test sets
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studies, namely, that radiomics, which reflect changes 
in bone microstructure during the bone healing pro-
cess, can be used for fracture age classification, and that 
the addition of clinical features can further enhance 
model performance.

A strength of this study is the development of a 
single radiomic signature that summarizes various 
radiomic features, providing a useful tool for clinical 
practice. In addition, the combined model was 
visualized as a nomogram, providing readers with 
more tangible interpretation of each factor’s impact 
on the classification. We have made our combined 
model public on an open-access website in the form 
of online calculator to simplify the calculations. 
However, some limitations exist in our study. First, 
this was a retrospective study. A prospective study is 
needed to further validate our model. Second, older 
participants were included in this study (median age, 
57  years; interquartile range, 50–63  years) and the 
model’s applicability to younger patients is unknown. 
Younger patients should be included in future studies 
to improve the robustness of the model. Lastly, in the 
absence of data > 12 weeks from the external center, we 
did not perform external validation for the model in 
classifying fracture age between 3–12 and > 12  weeks. 
Future studies could be designed to overcome these 
limitations.

Conclusions
Our study established a combined model for rib fracture 
age classification based on CT images. The combined 
model and the model-assisted radiologist achieved good 
performance in classifying rib fracture age. This model 
has the potential to influence clinical practice and foren-
sic decision-making.
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Table 3 Performance comparison of the radiomic model, combined model, and nomogram-assisted radiologist for classifying fracture 
age between < 3 and ≥ 3 weeks in the external test set

AUC  area under the receiver operating characteristic curve, SENS sensitivity, SPEC specificity

Model AUC p value SENS SPEC
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Radiologist aided by the  
combined model

0.966 (0. 935–0.996) 0.007 0.984 (0.887–1) 0.897 (0.793–0.966)
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