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Abstract 

Purpose Interpretability is essential for reliable convolutional neural network (CNN) image classifiers in radiological 
applications. We describe a weakly supervised segmentation model that learns to delineate the target object, trained 
with only image-level labels (“image contains object” or “image does not contain object”), presenting a different 
approach towards explainable object detectors for radiological imaging tasks.

Methods A weakly supervised Unet architecture (WSUnet) was trained to learn lung tumour segmentation 
from image-level labelled data. WSUnet generates voxel probability maps with a Unet and then constructs an image-
level prediction by global max-pooling, thereby facilitating image-level training. WSUnet’s voxel-level predictions 
were compared to traditional model interpretation techniques (class activation mapping, integrated gradients 
and occlusion sensitivity) in CT data from three institutions (training/validation: n = 412; testing: n = 142). Methods 
were compared using voxel-level discrimination metrics and clinical value was assessed with a clinician preference 
survey on data from external institutions.

Results Despite the absence of voxel-level labels in training, WSUnet’s voxel-level predictions localised tumours 
precisely in both validation (precision: 0.77, 95% CI: [0.76–0.80]; dice: 0.43, 95% CI: [0.39–0.46]), and external testing 
(precision: 0.78, 95% CI: [0.76–0.81]; dice: 0.33, 95% CI: [0.32–0.35]). WSUnet’s voxel-level discrimination outperformed 
the best comparator in validation (area under precision recall curve (AUPR): 0.55, 95% CI: [0.49–0.56] vs. 0.23, 95% 
CI: [0.21–0.25]) and testing (AUPR: 0.40, 95% CI: [0.38–0.41] vs. 0.36, 95% CI: [0.34–0.37]). Clinicians preferred WSUnet 
predictions in most instances (clinician preference rate: 0.72 95% CI: [0.68–0.77]).

Conclusion Weakly supervised segmentation is a viable approach by which explainable object detection models 
may be developed for medical imaging.

Critical relevance statement WSUnet learns to segment images at voxel level, training only with image-level 
labels. A Unet backbone first generates a voxel-level probability map and then extracts the maximum voxel predic-
tion as the image-level prediction. Thus, training uses only image-level annotations, reducing human workload. 
WSUnet’s voxel-level predictions provide a causally verifiable explanation for its image-level prediction, improving 
interpretability.
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Key points 
• Explainability and interpretability are essential for reliable medical image classifiers.

• This study applies weakly supervised segmentation to generate explainable image classifiers.

• The weakly supervised Unet inherently explains its image-level predictions at voxel level.

Keywords Explainable artificial intelligence, Model interpretation, Weakly supervised learning, Lung neoplasms, 
Tumour segmentation

Graphical Abstract

 
Introduction
Explainability is a well-known limitation of convolu-
tional neural network (CNN) image classifiers, whose 
“black-box” nature presents various clinical issues [1–3]. 
Traditionally, radiologists justify diagnoses with cor-
responding image findings, providing evidence which is 
independently verifiable. In contrast, CNN decisions are 
not explicitly justified. Consequently, it can be difficult to 
verify that a model has made an appropriate prediction, 
using relevant image features.

Confounding, where images are classified based 
on spurious features, poses risks of misclassifica-
tion, discrimination, and vulnerability to adversarial 
attacks in CNN models [1, 3–5]. For example, Badg-
eley demonstrated that a model predicting fracture in 
hip radiographs depended significantly upon patient 

characteristics and image acquisition parameters, fail-
ing to discriminate fractures from normal radiographs 
when these factors were controlled [5]. The absence of 
justification for CNN decisions complicates interpre-
tation by clinicians and patients alike, compromising 
responsibility, communication and capacity to con-
sent [2, 3]. For these reasons, explainability is a central 
component of the European Commission’s Assess-
ment List for Trustworthy Artificial Intelligence [6], a 
key guideline for the prospective regulation of artifi-
cial intelligence development in high-risk applications 
such as healthcare.

As standard CNN decision functions are not easily 
invertible [7], voxels’ contributions to the image-level 
predictions are unavailable. This limitation motivated 
the development of saliency mapping techniques to 
reverse engineer CNN decisions and extract the regions 
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of interest. Class activation mapping [8–10], occlusion 
sensitivity [11] and gradient integration are commonly 
employed approaches [12].

Conceptually, the problem of explainable image clas-
sification is closely related to that of weakly supervised 
semantic segmentation, where voxel-level classification 
labels are modelled from image level labelled at the image 
level. Several weakly supervised segmentation methods 
utilise class activation maps to generate an initial voxel-
level probability map, which serves as a pseudo-label for 
subsequent model training [13–15]. Oquab et  al. intro-
duced voxel-pooling to construct image-level predictions 
from voxel-level predictions, thereby facilitating segmen-
tation modelling with only image-level supervision [16].

Global pooling allows voxel-level predictions to be 
aggregated into image-level labels, under the pretext that 
positive voxels imply positive images [16]. Global max-
pooling has yielded precise object localisation in general-
purpose imaging tasks [17], presenting an avenue for 
application to explainable medical image classification. 
However, biomedical applications present several chal-
lenges for weakly supervised segmentation, including 
class imbalance, low contrast between positive regions 
and background, and variability in the appearance of pos-
itive regions [18, 19].

This study presents a weakly supervised Unet archi-
tecture (WSUnet) which learns to localise lung tumours 

through comparison of positive and negative images, 
thereby yielding an interpretable lung tumour detection 
model. WSUnet’s voxel-level segmentations are com-
pared to commonly used model interpretation methods 
for tumour delineation.

Materials and methods
This study was performed in accordance with the 
Checklist for Artificial Intelligence in Medical Imaging 
(CLAIM) guidelines [20]. The CLAIM checklist is pro-
vided in Supplementary Table 1.

Model development
A weakly supervised Unet (WSUnet) was constructed by 
appending a global max-pooling layer to the output of a 
Unet with five convolutional and four deconvolutional 
blocks (487 k trainable parameters). Comparator models 
were generated using a “standard” CNN pyramid (sCNN) 
with equivalent architecture to the UNet encoder (1344 
k trainable parameters) and a DenseNet-121 architecture 
[21]. WSUnet and sCNN model architectures are illus-
trated in Fig. 1. Model weights were randomly initialised. 
Rectified linear activation was applied to hidden layers 
and sigmoid activation to the output layers. Spatial drop-
out was applied with a rate of 0.1. The models were opti-
mised using the Adam optimiser with a learning rate of 

Fig. 1 Weakly supervised Unet and standard CNN architectures. Blue layers represent inputs and outputs. Red, green and yellow layers represent 
downsampling, upsampling, and non-resampling convolutional blocks, respectively. Purple, charcoal and lilac layers represent convolutional, 
dropout and normalisation layers, respectively. Orange layers represent dense layers
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0.001 using binary cross-entropy loss at the image level. 
Training and validation partitions were created from 
a 5-fold patient-disjoint partition of the Aerts dataset. 
Training images were randomly augmented with hori-
zontal flips, vertical flips and rotations by 90, 180 and 
270°. In each fold, training continued until validation 
loss plateaued for 5 epochs. To examine the progression 
and stability of WSUnet’s voxel-level performance over 
time, a separate run was conducted in which WSUnet 
models were fitted in cross-validated training over 25 
epochs, with voxel-level metrics measured in validation 
data after each epoch. Model training was performed 
with Tensorflow v2.4.0, Keras v2.2.4 and keras-unet ver-
sion v0.1.2 [22–24]. Four model interpretation methods 
were applied to generate voxel-level predictions from 
Densenet and sCNN models, using code extracted and 
modified from tf-explain v0.3.1 [25]. GradCAM heat-
maps were extracted from the seventh convolutional 
layer (GradCAM (16, 16, 64)) and the ninth convolu-
tional layer (GradCAM (8, 8, 128)). Nearest-neighbour 
interpolation was applied to scale the grad-cam outputs 
to the input dimension ( 128× 128 ). Occlusion sensitivity 
was applied with an occlusion width of 10 voxels. Inte-
grated gradients were measured with 10 whitening steps.

All computation was performed on a desktop operating 
Windows 11 with 32 GB random access memory, an Intel 
Xeon Silver 4114 central processing unit and an Nvidia 
Quadro P2000 graphics card. All analysis was performed 
in the python language v3.7. All code required to repro-
duce the results of this analysis is provided at https:// 
github. com/ rober toshea/ wsss/.

Model testing
Test performance was evaluated in the Stanford/VA data-
set. Figure  2 provides a schema of model training and 
testing. Voxel-level NSCLC discrimination was evalu-
ated using area under the precision-recall curve (AUPR). 
As WSUnet returns class probability estimates, calibra-
tion was also computed in terms of precision, recall and 
dice score, discretising by a threshold of 0.5. Calibration 
was assessed using the expected calibration error metric 
[26]. As methods other than WSUnet do not yield class 
probabilities, calibration metrics were not computable. 
Voxel-level metrics are defined in the Supplementary 
information. Image-level classification was also evaluated 
with accuracy, sensitivity, specificity and area under the 
receiver operating characteristic curve (AUC) metrics. 
Clinical evaluation of voxel-level outputs was performed 
by clinicians with subspecialty experience in thoracic 
cancer imaging, including one staff radiologist (V.G.), two 
specialist radiology residents (C.H., J.C.) and two special-
ist oncology residents (T.H., D.H.). One hundred images 

with tumours present were extracted from the test set, 
and each voxel-level prediction method was applied. Cli-
nicians were provided with input images, ground truth 
and a blinded, random ordering of each methods’ voxel-
level predictions.

Clinicians selected the method which they consid-
ered the most clinically useful in each test instance. Cli-
nician preference rate was calculated as the frequency 
with which clinicians preferred the method, excluding 
instances in which they considered all methods unin-
formative. Clinicians also rated the tumour detec-
tion difficulty in each image (1: “tumour obvious”, 2: 
“tumour difficult to identify”, 3: “tumour not visible in 
this image”). The clinician preference survey is pro-
vided in Supplementary Data 1.

Metric distributions were estimated with 500 non-
parametric bootstraps and 95% confidence intervals for 
all metrics were estimated according to the 2.5th and 
97.5th centiles of the bootstrap distribution.

Experimental datasets
WSUnet was evaluated by application to NSCLC 
detection and localisation, using data from The Can-
cer Imaging Archive [27]. Model development was 
performed with the MAASTRO dataset [28, 29], 
which contains annotated retrospective CT data from 
422 inoperable, pathologically confirmed, stage I-IIIb 
(non-metastatic tumour limited to lung, adjacent 
structures and ipsilateral hilar and mediastinal lymph 
nodes, without malignant effusion) NSCLC patients 
at Maastricht University Medical Centre. Testing was 
performed in the Stanford/VA dataset [30, 31], which 
contains annotated retrospective CT data from 211 
early-stage (non-metastatic tumours limited to lung 
and ipsilateral hilar and mediastinal lymph nodes, or 
limited to adjacent tissues without lymphatic metasta-
sis) NSCLC patients referred for surgical management 
at Stanford School of Medicine and the Veterans Asso-
ciation Hospital Palo Alto. Further information on the 
study data is provided in Supplementary Information. 
Subjects were excluded if CT images with tumour seg-
mentations were unavailable, or if the gross tumour 
volume was not clearly identifiable in the annotation 
region labels. Voxel intensity arrays were extracted 
from CT DICOM volumes, converted to Hounsfield 
units and scaled by a factor of 0.001 using the pydicom 
library v2.1.2 [32]. In each CT volume, axial patches of 
dimension 128× 128× 1 voxels were sampled. Forty 
patches were sampled with centrepoints in the tumour 
volume. 40 patches were sampled from the contralat-
eral lung by mirroring the tumour voxels sagitally 
and randomly offsetting points by ± 15 voxels axially, 

https://github.com/robertoshea/wsss/
https://github.com/robertoshea/wsss/
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± 75 voxels coronally and ± 75 voxels sagitally. Image 
patches were labelled positive if they contained any 
tumour voxel and negative otherwise.

One subject was excluded from the MAASTRO data-
set as the gross tumour volume label could not be iden-
tified definitively, and 69 subjects were excluded from 
the Stanford/VA dataset due to the absence of segmen-
tation data. Thus, 421 subjects were included for model 
development and 142 subjects were included for model 

evaluation. Clinical characteristics of the training and 
testing cohorts are described in Table 1. Image acquisi-
tion parameters are provided in Supplementary Table 2. 
A flowchart of study participants is provided in Fig. 3.

Results
Objective performance metrics
Voxel-level classification (segmentation) performance 
is provided in Table  2. WSUnet’s voxel-level outputs 

Fig. 2 Model training and evaluation schema. Image patches were sampled in the MAASTRO dataset, and labelled at image level according 
to whether the image contained any tumour-positive voxels. Model training utilised the image-level labels only; the model was not provided 
with any information on tumour location. The model evaluation used both image-level labels and voxel-level ground truth
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localised NSCLC regions precisely in both validation 
(precision: 0.77 [96% CI: 0.75–0.80]; dice: 0.43, 95% CI: 
[0.39–0.46]) and test instances (precision: 0.78, 95% CI: 
[0.76–0.81]; dice: 0.33, 95% CI: [0.32–0.35]). However, 
WSUnet’s voxel-level performance was limited by low 
recall in test instances (recall: 0.24, 95% CI: [0.22–0.25]), 
decreasing from validation set recall (recall: 0.33, 95% 
CI: [0.29–0.36]). WSUnet demonstrated strong discrimi-
nation at voxel level in validation (AUPR: 0.55, 95% CI: 
[0.54–0.55]), significantly outperforming the closest 
alternative, sCNN GradCAM (16, 16, 64) (AUPR: 0.28, 
95% CI: [0.25–0.30]). Although WSUnet achieved the 
highest test discrimination (AUPR: 0.40, 95% CI: [0.38–
0.41]), comparable performance was achieved by sCNN 
GradCAM (16, 16, 64) (AUPR: 0.36, 95% CI: [0.34–0.37]).

Image-level classification results are provided in 
Table 3. In test instances, WSUnet demonstrated simi-
lar image-level classification performance (accuracy: 
0.86 [0.85–0.87]; AUC: 0.94 [0.94–0.95]) to sCNN 
(accuracy: 0.88 [0.87–0.89]; AUC: 0.96 [0.95–0.96]) 
and DenseNet (accuracy: 0.87 [0.86–0.88]; AUC: 0.94 
[0.94–0.95]).

WSUnet’s validation performance after each 
training epoch is plotted in Fig. 4. Although mod-
els fitted in different training folds demonstrated 
similar image-level loss, voxel-level performance 
varied considerably between models. Likewise, 
whilst image-level loss stabilised after 15 training 
epochs, voxel-level metrics demonstrated persis-
tent variability from epoch to epoch.

Table 1 Clinical characteristics of the study population. Stage represents the clinical stage in the training data and the pathological 
stage in test data

Variable Value N (train) N (test)

Institution Maastricht University Medical Centre 421 0

Stanford University Medical School Hospital 0 57

Veterans Association Palo Alto 0 85

Age (years)

 [Range] 20–40 1 0

41–60 84 17

61–80 273 112

81–100 41 13

 Sex Female 132 36

Male 289 106

 T-stage 1 93 68

2 155 48

3 53 16

4 117 5

Unknown 3 5

 N-stage 0 170 113

1 23 12

2 140 17

3 85 0

Unknown 3 0

 M-stage 0 416 138

1 1 4

Unknown 4 0

 Histology Adenocarcinoma 51 111

Large cell carcinoma 114 0

Squamous cell carcinoma 151 28

Other 63 3

 Scanner manufacturer GE Medical Systems 0 116

Philips 0 2

Siemens 421 14

Toshiba 0 1
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Clinicians’ performance assessment
Clinicians considered some positive instances moder-
ately difficult to identify, assigning difficulty levels of 
“Tumour difficult to identify” and “Tumour not visible in 
this image” to 25.8% and 6% of test images, respectively. 
In many cases, ground glass changes were the only vis-
ible finding. Clinicians strongly preferred WSUnet’s 
voxel-level outputs to current explainability methods. 
Excluding instances where no method was considered 
informative (26%), WSUnet outputs were preferred in 
72% of test instances. Clinicians cited “high resolution” 
and “fine delineation of tumour borders” as reasons moti-
vating their choices. GradCAM (16,16,128) and Grad-
CAM (8,8,64) outputs were preferred in 20% and 5% of 
test instances, respectively. Integrated gradients and 
occlusion sensitivity outputs were preferred in fewer than 
1% of test instances.

Methods’ voxel-level outputs are provided in Fig.  5. 
Inspection of WSUnet’s voxel-level output confirms 
the use of tumoural and peritumoural voxels to gener-
ate positive image-level classifications. Although “hot” 
regions were highly specific to tumour-related areas, 
several small nodules were missed. Clinical inspection of 
the WSUnet performance in test instances identified that 
WSUnet’s low voxel-level recall was partially explained 
by its specificity for the tumour volume, as the annotated 
segmentations in the test dataset included peritumoural 
regions of lung parenchyma. The images in rows 2, 3 
and 4 of Fig. 5 provide examples of test instances where 
WSUnet segmented the tumour volume, but annotation 
labels included additional peritumoural regions of the 

lung parenchyma, which were required to achieve high 
recall performance. GradCAM outputs offered higher 
sensitivity to small tumours, however, GradCAM (16, 16, 
64) marked several ribs as “warm” and the resolution of 
GradCAM (8, 8, 128) outputs was low. Integrated gra-
dient outputs surrounded the tumour region reliably — 
however, positive regions were neither continuous nor 
specific. Occlusion sensitivity outputs were uninforma-
tive, differing minimally between inputs.

Discussion
This study demonstrated that WSUnet learns to localise 
and segment lung tumours through the comparison of 
positive and negative images. Thus, the WSUnet archi-
tecture serves both as a weakly supervised segmentation 
method and an explainable image-level classifier.

WSUnet yielded superior voxel-level discrimination to 
current model interpretation approaches, both by objec-
tive and subjective metrics. WSUnet’s voxel-level output 
identified the voxels motivating the positive image-level 
prediction, revealing whether the model attended to the 
tumour or other confounding features. WSUnet offered a 
distinct advantage of returning predictions in the domain 
and range of the voxel-level class probabilities, obviating 
the need for post hoc interpolations and transformations. 
Thus, WSUnet’s voxel-level output could be interpreted 
directly as a voxel-probability heatmap.

Although WSUnet’s voxel-level recall did not challenge 
the state-of-the-art set by fully supervised NSCLC seg-
mentation models trained under full supervision [33], 

Fig. 3 Flowchart of data sources, exclusions and inclusions
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its high precision presents a plausible avenue for object 
localisation. The low recall performance of WSUnet’s 
voxel-level predictions provides insight into its reason-
ing — the model may deduce that the image is positive 
by finding any tumour region, permitting image-level 
classification by a small discriminative region of interest. 

Thus, a positive image-level prediction may be inferred 
without observing the whole tumour region. Conversely, 
the whole image must be considered to exclude a tumour. 
Thus, the model is negatively biased at the voxel level, 
predisposing it to low recall. This is an important limita-
tion of applying model interpretation methods for weakly 

Table 2 Voxel-level NSCLC classification performance. Mean values and 95% confidence intervals are provided. Calibration metrics 
were not computable for GradCAM, integrated gradients and occlusion sensitivity methods. The clinician preference rate was 
calculated as the frequency with which clinicians preferred the method in 100 test instances, excluding instances in which they 
considered no model informative. DenseNet predictions were not included in the clinician preference test

ECE Expected calibration error, AUPR Area under precision recall curve

Partition Method Precision Recall Dice ECE AUPR Clinician preference 
rate

Validation WSUnet 0.77 [0.75–0.8] 0.33 [0.29–0.36] 0.43 [0.39–0.46] 0.02 [0.01–0.02] 0.53 [0.49–0.56] NA

Validation sCNN GradCAM (16, 
16, 64)

NA NA NA NA 0.28 [0.25–0.3] NA

Validation sCNN GradCAM (8, 8, 
128)

NA NA NA NA 0.27 [0.25–0.29] NA

Validation sCNN integrated gra-
dients

NA NA NA NA 0.1 [0.09–0.1] NA

Validation sCNN occlusion sensitiv-
ity

NA NA NA NA 0.04 [0.03–0.04] NA

Validation DenseNet GradCAM (16, 
16, 64)

NA NA NA NA 0.19 [0.17–0.21] NA

Validation DenseNet GradCAM (8, 
8, 128)

NA NA NA NA 0.23 [0.21–0.25] NA

Validation DenseNet occlusion 
sensitivity

NA NA NA NA 0.03 [0.02–0.03] NA

Test WSUnet 0.78 [0.76–0.81] 0.24 [0.22–0.25] 0.33 [0.32–0.35] 0.01 [0.01–0.02] 0.4 [0.38–0.41] 0.72 [0.68–0.77]

Test sCNN GradCAM (16, 
16, 64)

NA NA NA NA 0.36 [0.34–0.37] 0.2 [0.16–0.24]

Test sCNN GradCAM (8, 8, 
128)

NA NA NA NA 0.23 [0.21–0.24] 0.05 [0.03–0.08]

Test sCNN integrated gra-
dients

NA NA NA NA 0.11 [0.1–0.11] 0.01 [0.0–0.03]

Test sCNN occlusion sensitiv-
ity

NA NA NA NA 0.03 [0.03–0.03] 0.0 [0.0–0.01]

Test DenseNet GradCAM (16, 
16, 64)

NA NA NA NA 0.13 [0.12–0.14] NA

Test DenseNet GradCAM (8, 
8, 128)

NA NA NA NA 0.23 [0.22–0.25] NA

Test DenseNet occlusion 
sensitivity

NA NA NA NA 0.02 [0.02–0.02] NA

Table 3 Image-level NSCLC classification results on test instances. Mean values and 95% confidence intervals are provided

Partition Method Accuracy Sensitivity Specificity AUC 

Validation DenseNet 0.86 [0.84–0.88] 0.83 [0.8–0.86] 0.89 [0.86–0.92] 0.94 [0.93–0.96]

Validation WSUnet 0.87 [0.85–0.89] 0.86 [0.83–0.88] 0.88 [0.86–0.9] 0.95 [0.93–0.96]

Validation sCNN 0.88 [0.86–0.89] 0.9 [0.87–0.92] 0.85 [0.82–0.88] 0.95 [0.93–0.96]

Test DenseNet 0.87 [0.86–0.88] 0.86 [0.85–0.87] 0.88 [0.87–0.89] 0.94 [0.94–0.95]

Test WSUnet 0.86 [0.85–0.87] 0.87 [0.86–0.89] 0.85 [0.84–0.86] 0.94 [0.94–0.95]

Test sCNN 0.88 [0.87–0.89] 0.84 [0.83–0.85] 0.93 [0.92–0.94] 0.96 [0.95–0.96]
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supervised segmentation – the model may learn to clas-
sify the image using a small discriminative region, leading 
to undersegmentation. Concurrently, clinicians observed 
that the voxel-level tumour annotations provided in the 
Stanford/VA dataset included significant proportions 
of peritumoural lung parenchyma, which were not seg-
mented by WSUnet, partially explaining apparent under-
segmentation performance.

WSUnet’s voxel-level performance was noted to vary 
between subsequent training epochs, despite stable 
image-level loss. Furthermore, voxel-level performance 
appeared to be sensitive to initialisation and early train-
ing conditions, as models fitted to different folds dem-
onstrated different voxel-level metrics despite similar 

image-level performance. These findings demonstrate the 
limitations of image-level supervision for model selection.

As the saliency map aims to approximate model 
reasoning, false positive regions typically represent 
model-misspecification — where the model classi-
fied the image on the basis of non-tumoural objects. 
Conversely, these may represent valid pathobiologi-
cal associations such as atelectasis. In either case, 
inspection of the voxel-level predictions improves 
understanding of the model’s reasoning. However, 
where the project objective is tumour segmentation, 
these extra-tumoural pathobiological associations 
may adversely affect performance by providing an 
alternative discriminative region.

Fig. 4 Weakly supervised Unet models’ validation loss and metrics after each epoch of training. Image-level binary cross-entropy was employed 
for model training. Distinctly coloured curves represent models fitted to different training curves
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Although GradCAM predictions localised moderately 
well to the tumour, their utility was limited by low reso-
lution. Integrated gradient outputs were not locally con-
sistent, such that adjacent voxels typically had dissimilar 
predictions. Occlusion sensitivity results demonstrated 
little variance between images. All methods were lim-
ited by producing an output which could not be inter-
preted directly as a voxel-probability map WSUnet is a 
CNN which returns both an image-level decision and a 
voxel-level segmentation which motivated the decision. 
This development facilitates model inspection, debug-
ging, reliability testing, inference and pathobiological 
discovery. The approach differs from traditional model 
explainability methods, as the image-level prediction is 
simply the maximal voxel-level probability. Consequently, 

voxel-level predictions are interpretable as class probabil-
ities, providing a causally verifiable explanation for the 
image-level decision. The simple relationship between 
voxel-level predictions and image-level predictions 
allows for easy clinical interpretation.

Recent years have seen significant advances towards 
achieving weakly supervised segmentation for lung CT 
data. Fruh et  al. evaluated class-activation mapping for 
weakly supervised segmentation of tumours in PET-CT 
data, attaining a dice score of 0.47 [34]. PET integra-
tion may have facilitated the segmentation task, as sim-
ple threshold-based segmentation achieved a dice score 
of 0.29 [34]. Feng et  al. applied a global average pooling 
method to the higher layers of an encoder network to per-
form weakly supervised segmentation on a lung cancer 

Fig. 5 Model explainability heatmaps. The first five positive test instances are shown. Models were trained to detect NSCLC tumours at image level. 
WSUnet’s heatmap was extracted from the penultimate voxel-level output layer. GradCAM heatmaps were extracted from the seventh (“GradCAM 
(16, 16, 64)”) and ninth (“GradCAM (8, 8, 128)”) convolutional layers. Nearest-neighbour interpolation was applied to map GradCAM, integrated 
gradients and occlusion sensitivity heatmap to the input image dimensions. For comparability, methods heatmaps were normalised to the range 
of minimum and maximum values for the five images
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dataset, achieving high dice scores (0.46–0.54) [35]. The 
resolution of voxel-level predictions was limited by that 
of the convolutional layer used for the global average 
pooling, as interpolation was required to upsample the 
predictions to the input resolution. Shen et al. proposed 
a two-stage semi-supervised segmentation approach for 
lung nodule segmentation, utilising adversarial learning 
to minimise the discriminability of unsupervised segmen-
tation masks from supervised masks [36]. Laradji et  al. 
proposed consistency-based loss for weakly supervised 
segmentation modelling of COVID-19-related pneumoni-
tis, where point-level supervision was available [37].

This retrospective study included model evaluation 
on multi-centre data which was geographically distinct 
from training data. Training and evaluation datasets 
included CT images from multiple scanner manu-
facturers. The study has some limitations. All partici-
pants in this study were diagnosed with lung cancer. 
Consequently, some malignant changes may have been 
evident in images which did not contain any tumour 
voxels. In the test data, peritumoural regions were 
included in tumour segmentation labels, leading to an 
underestimation of the models’ sensitivity to tumour 
tissue. Ground truth voxel-level segmentations were 
employed to identify positive images during the con-
struction of the weakly supervised dataset. The class 
distribution in this study was approximately balanced 
at image level and moderately imbalanced at voxel level 
— the convergence of weak learners may be less reli-
able in highly imbalanced data. In this study, data was 
labelled at the level of 128 × 128 axial image patches, 
whilst clinical applications ideally require tumour 
localisation in 3D volumes of 512 × 512 image slices. 
Consequently, further research on the scalability of the 
method to large, imbalanced datasets is required for 
clinical utility in typical applications.

In conclusion, this study demonstrated that weakly 
supervised segmentation is a valid approach by which 
explainable object detection models may be developed 
for medical imaging. WSUnet generates a full-resolu-
tion voxel-level explanation for its image-level decision, 
which clinicians found more useful than current model 
interpretation approaches in application to lung tumour 
detection. Further research will investigate approaches 
to improve WSUnet’s voxel-level recall and achieve sta-
ble convergence in highly imbalanced data  [21–23, 37].
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