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Abstract 

Objectives Development of automated segmentation models enabling standardized volumetric quantification 
of fibroglandular tissue (FGT) from native volumes and background parenchymal enhancement (BPE) from subtrac-
tion volumes of dynamic contrast-enhanced breast MRI. Subsequent assessment of the developed models in the con-
text of FGT and BPE Breast Imaging Reporting and Data System (BI-RADS)-compliant classification.

Methods For the training and validation of attention U-Net models, data coming from a single 3.0-T scanner 
was used. For testing, additional data from 1.5-T scanner and data acquired in a different institution with a 3.0-T scan-
ner was utilized. The developed models were used to quantify the amount of FGT and BPE in 80 DCE-MRI examina-
tions, and a correlation between these volumetric measures and the classes assigned by radiologists was performed.

Results To assess the model performance using application-relevant metrics, the correlation between the volumes 
of breast, FGT, and BPE calculated from ground truth masks and predicted masks was checked. Pearson correla-
tion coefficients ranging from 0.963 ± 0.004 to 0.999 ± 0.001 were achieved. The Spearman correlation coefficient 
for the quantitative and qualitative assessment, i.e., classification by radiologist, of FGT amounted to 0.70 (p < 0.0001), 
whereas BPE amounted to 0.37 (p = 0.0006).

Conclusions Generalizable algorithms for FGT and BPE segmentation were developed and tested. Our results sug-
gest that when assessing FGT, it is sufficient to use volumetric measures alone. However, for the evaluation of BPE, 
additional models considering voxels’ intensity distribution and morphology are required.

Critical relevance statement A standardized assessment of FGT density can rely on volumetric measures, whereas 
in the case of BPE, the volumetric measures constitute, along with voxels’ intensity distribution and morphology, 
an important factor.

Key points  
• Our work contributes to the standardization of FGT and BPE assessment.

• Attention U-Net can reliably segment intricately shaped FGT and BPE structures.

• The developed models were robust to domain shift.
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Graphical Abstract

Introduction
Breast cancer is the most common cancer in the 
female population worldwide [1]. Screening and early 
detection followed by treatment are indispensable to 
improving survival rates. Due to the limitations of 
mammography, MRI examinations are recommended 
for high-risk patients and for patients with extremely 
dense breasts [2]. The amount of fibroglandular tis-
sue (FGT) and the contrast uptake of the healthy FGT, 
i.e., background parenchymal enhancement (BPE), are 
important factors related to breast cancer risk, diag-
nosis, and management [3–7]. For example, the study 
performed by Ray et  al. demonstrated that high BPE 
was linked to higher rates of abnormal interpretation 
and biopsy procedures as well as lower specificity [7]. 
The findings of the study by Hu et al. indicate that ele-
vated BPE is correlated with an increased risk of breast 
cancer [4]. This is why the American College of Radi-
ology (ACR) in the fifth edition of the Breast Imaging 
Reporting and Data System (BI-RADS) for MRI report-
ing recommends visual estimation of the FGT density 

followed by its classification into four categories: (a) 
almost entirely fat, (b) scattered, (c) heterogeneous, and 
(d) extreme. The BPE, after visual assessment, should 
be classified into (a) minimal, (b) mild, (c) moderate, 
and (d) marked categories [8]. As shown by different 
studies, such a qualitative assessment is prone to inter-
reader variability. The reported Cohen’s kappa values 
for BPE assessment range from 0.3 (fair agreement) to 
0.95 (almost perfect agreement) [9]. This is the reason 
why currently there are ongoing efforts to standardize 
the FGT and BPE assessment by quantitative measures. 
The most commonly used approaches are based on a 
region of interest selected by the user, which is prone 
to inter-reader variability, and on segmentation of the 
whole structures followed by their quantification [10]. 
Currently, the ACR is awaiting more robust data for 
the recommendation of quantitative assessments in 
clinical practice [8]. To achieve this goal, highly reliable 
and robust algorithms segmenting FGT and BPE are 
indispensable.

The main challenge is that breast MRI acquisition is 
not standardized: different institutions and doctors use 
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different equipment, magnetic field strength, protocols 
(including the timing and the amount of the post-con-
trast acquisitions), different contrast agents, and patient 
positioning, to acquire and process the data. As a result, 
MRI data exhibit different resolution, contrast, noise 
level, and artifacts leading to high variability in the qual-
ity and reliability of the diagnosis.

Over the past few years, the field of CNN-based seg-
mentation models for medical imaging data has wit-
nessed remarkable advancements. Among these, the 
U-Net architecture [11] and its various adaptations 
[12–18] have been developed. A particularly notewor-
thy enhancement to the U-Net family is the attention 
U-Net [19], which integrates attention gates into the 
architecture. This enables the model to efficiently con-
centrate on essential features while ignoring irrelevant 
regions.

It has been shown that the CNN-based segmentation 
architectures can reliably segment the FGT tissue from 
native MRI sequences, with the DSC values ranging from 
0.81 ± 0.11 to 0.87 ± 0.08 [20–25]. Regarding the BPE seg-
mentation, the reported approaches rely on the FGT seg-
mentation from native images with subsequent transfer 
of the resulting mask to subtraction images, followed by 
the BPE segmentation based on mean and standard devi-
ation of the voxels’ intensity values [22, 26] or on a pre-
defined threshold [27, 28]. It should be noted that voxels’ 
intensity values in the MRI data are dependent on the 
magnetic field strength and the scanner hardware as well 
as on many adapted parameters during data acquisition 
and post-processing [29]. Moreover, the voxels’ inten-
sity values in the subtraction data depend on the amount 
of the contrast agent and the timing of the acquisition. 

Additionally, the slices acquired at the breast periphery 
feature higher intensity than slices acquired in the middle 
of the breast. Thus, BPE segmentation directly from sub-
traction volumes is desired. In our previous work [30], we 
showed promising results using U-Net architecture and 
data from a single scanner for training, validation, and 
testing. However, segmentation of FGT and testing on an 
external dataset was not included in this study.

The primary objective of the first part of this study was 
to develop two automated and generalizable segmenta-
tion models: one segmenting the FGT from native vol-
umes, the other segmenting the BPE from subtraction 
volumes. In the second part of the study, the resulting 
models were applied to 80 DCE-MRI examinations of 75 
patients from our institution, with the aim to assess the 
correlation between the volumes of FGT and BPE and 
classes assigned visually by radiologists.

Materials and methods
Patient data
This retrospective study has been approved by the local 
ethics committee. The main parameters of the datasets 
utilized in this study are provided in Table  1. Datasets 
1–3 originate from our institution, whereas dataset 4 is a 
small subset of public Duke-Breast-Cancer Dataset [31]. 
All the data was acquired in a transverse plane in a prone 
position with fat-saturation of the DCE T1 sequences.

To curate datasets 1–3, we conducted a search in the 
Picture Archiving and Communication System (PACS) 
of our institution. The search aimed to identify DCE-MRI 
examinations fulfilling following inclusion criteria: (a) age 
above 18  years, (b) absence of implants, (c) availability of 
assessments for FGT and BPE classes in the corresponding 

Table 1 Main parameters of the three datasets used in this work

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Institution Our institution Our institution Our institution Duke dataset

Acquisition time range September 2013–October 
2015

September 2020–October 
2022

June 2018–October 2022 January 2000–March 2014

Magnetic field strength [T] 3.0 1.5 3.0 3.0

Manufacturer and model Siemens, Magnetom Skyra Siemens, Sola Siemens, Magnetom Skyra Siemens, Magnetom Skyra

Resolution [px × px] 448 × 448 384 × 384 448 × 448 448 × 448

TR [ms] 4.40–4.64 4.98 4.40–4.48 3.77

TE [ms] 1.56–1.78 2.39 1.62–1.70 1.44

Flip angle [°] 10 10 10 10

FGT model: patients (cases)/
volumes/slices

29/29/3048 4/4/436 71/76/9088 3/3/672

BPE model: patients (cases)/
volumes/slices

82/169/17420 4/4/1744 71/76/9088 3/6/1344

Patients’ age mean ± std 
[years]

47.3 ± 11.6 40.3 ± 19.4 48.8 ± 12.6 52.6 ± 6.6

Use in the study Patient stratified train/valid/
test split

Test set
Volumetric analysis

Volumetric analysis Test set
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radiological report, and (d) BI-RADS Assessment Category 
indicating a likelihood of malignancy of 1 or 2, correspond-
ing to a 0% likelihood [8]. Examinations lacking proper fat 
saturation or suffering from motion blur were excluded. 
The FGT and BPE classes, determined via a board-certified 
radiologist, were extracted from the radiological report.

Dataset 1 was curated by searching through exami-
nations acquired between September 2013 and Octo-
ber  2015 using a 3.0-T scanner. This dataset was used 
for model training, validation, and testing. For volumet-
ric analysis, the search through examinations acquired 
between September 2020 and October 2022 continued 
until a total of 80 eligible examinations resulting in pos-
sibly well-equalized distributions of FGT and BPE classes 
were identified. In this way, dataset 2, containing exami-
nations acquired with 1.5-T scanner, and dataset 3, con-
taining examinations acquired with 3.0-T scanner, were 
obtained. Examinations from dataset 2 were additionally 
used for testing models’ performance.

AI model development design
The design of AI model development differed from pre-
vious works by utilizing two separate models: one for 
FGT segmentation from the native volume, the other 

one for BPE segmentation from the subtraction vol-
umes. This approach allows for an investigation of all 
subtraction images, without the need for precise regis-
tration. This is important, as even a small misalignment 
between sequences (cf. Fig. S1) can have a significant 
impact on volumetric analysis, especially in cases with 
almost entirely fat FGT and minimal BPE. Another 
advantage of using two separate models is that potential 
errors in FGT segmentation do not affect BPE segmen-
tation. For instance, artifacts or extreme superior and 
inferior regions with higher intensity on native volume 
may be mistakenly included in the FGT segmentation.

As the FGT and BPE are very complex and fine struc-
tures, it is important that the predicted mask has simi-
lar resolution to the resolution with which the MRI 
data was acquired. Hence, we opted for the highest 
resolution of our data, i.e., 448 × 448, as the input and 
output size. To accommodate a reasonable batch size 
for training with NVIDIA GeForce RTX 3090 (24 GB), 
we chose to train the models slice by slice (Fig. 1). Our 
approach utilized a 2D implementation of the attention 
U-Net from the repository of Yingkai Sha [32] with spa-
tial 2D dropout layers added in each convolution stack. 
The additional advantage of using a 2D model is that it 

Fig. 1 Schematic representation of the model development pipeline. Two independent attention U-Net models are trained: the first one is trained 
to segment the fibroglandular tissue (FGT) and the fatty tissue from native DCE data; the second one is trained to segment BPE and non-enhancing 
tissue from the subtraction data. This separation ensures accurate segmentation even for not well-registered cases. In both cases, the segmentation 
is performed slice-wise ensuring that with the chosen hardware, the predicted mask has high resolution able to accurately capture the intricate 
details of the FGT and BPE structures (Icons made by Freepik and Netscript from flaticon.com)
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can effectively incorporate volumes with varying num-
bers of slices and any necessary rescaling is performed 
solely in 2D.

Ground truth masks
The ground truth masks were created in 3D Slicer 
[33] by S.N.. Firstly, the breast was segmented with-
out skin by the use of Grow from Seeds algorithm, 
Gaussian smoothing, and fine-tuning with Paint and 
Erase. Afterwards, the FGT and BPE were segmented 
by thresholding, customized to each volume followed 
by the fine-tuning allowing also for artifacts’ removal. 
A sample of final segmentation masks was verified by 
A.L. (resident in radiology with more than 3  years of 
experience in breast imaging) and A.B. (board-certified 
radiologist with over 15  years of experience in breast 
imaging). Due to the time and resource constrains, 
intra- and inter-reader variability investigation was not 
performed.

Dataset splitting
Dataset 1 was split into a patient-stratified train-vali-
dation-test sets, and the FGT model was trained using 
2112 slices from 20 patients for training, 416 slices from 
4 patients for validation, and 520 slices from 5 patients 
for testing. The model was additionally evaluated on 
dataset 2 and dataset 4, which comprised 1004 slices 
from 6 patients. Importantly, the subtraction volumes 
exhibit lower contrast and signal-to-noise ratio com-
pared to native volumes. To account for this, a larger 
amount of data was utilized for the BPE model. The 
total training set for the BPE model comprised 11,829 
slices from 54 patients, with a validation set of 2469 
slices from 12 patients, and a testing set of 3095 slices 
from 16 patients. Subsequently, the BPE segmentation 
model was tested on dataset 2 and dataset 4, which col-
lectively contained 2672 slices from 6 patients.

Model training
All the data were rescaled to 0–1 range prior to train-
ing. A subset of the dataset was used for hyperparam-
eter tuning using fivefold cross validation. The best 
hyperparameters obtained in this way were then fine-
tuned during training using the entire dataset. Five 
rounds of training of native and subtraction models 
were then performed using best fine-tuned hyper-
parameters. Noteworthy, the best performance was 
achieved with focal Tversky loss [34] function harshly 
penalizing the false negatives by setting the α param-
eter of the loss to 0.99 and the β parameter to 0.01. 
Additionally, during training, brightness augmentation 
in the 0.2–1.8 range delivered best performance on the 

test set. All final hyperparameters together with aver-
age inference runtimes are reported in Table S1.

Model evaluation
The model obtained in each training run was evaluated 
on the test data coming from three datasets: dataset 1, 
2, and 4 (cf. Table  1). Firstly, the evaluation was cen-
tered around application-relevant metrics, i.e., breast-
vol, FGT(%) (1)/BPE(%) (2), derived from ground truth 
and predicted masks.

Their correlation was plotted, followed by linear 
fit and calculation of Pearson correlation coefficient 
(r). Secondly, the volumetric DSC was computed for 
the breast and the FGT/BPE masks. Additionally, a 
weighted DSC was calculated, with the weights pro-
portional to FGT(%)/BPE(%). This adjustment was made 
to account for the higher penalization of small shifts 
in case of lower FGT(%)/BPE(%). The models were addi-
tionally evaluated with Bland–Altman plots. Lastly, the 
overlays of the ground truth and the predicted masks 
were assessed visually.

Volumetric analysis
The best performing models were used to quantify the 
density of the healthy breast tissue and its percentage 
taking up the contrast using datasets 2 and 3. FGT(%) 
according to Eq. (1) and BPE/FGT (%) according to Eq. (3) 
were calculated from the predicted masks.

Next, the correlation between those quantitative 
measures and qualitative assessment by radiologists was 
assessed by using Spearman correlation coefficient (ρ), 
taking into account errors in the calculation of FGT(%) 
and BPE/FGT(%). These were calculated by propagation of 
uncertainty from mean absolute errors of the native and 
subtraction model using the test set.

All of the evaluation was performed by S.N..

Results
Evaluation of the FGT and BPE segmentation models
The performance metrics of the models trained with the 
best fine-tuned hyperparameters is reported in Table  2. 

(1)FGT (%) =
FGTvol

breastvol
100%

(2)BPE(%) =
BPEvol

breastvol
100%

(3)BPE/FGT (%) =
BPEvol

FGTvol

100%
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The r for the native models amounted to 0.999 ± 0.001 for 
the breast and 0.985 ± 0.001 for the FGT(%). These mod-
els were characterized by DSC of 0.950 ± 0.002 for the 
breast segmentation and by DSC and weighted DSC of 
0.820 ± 0.005 and 0.864 ± 0.004 for the FGT segmentation, 
respectively. The r for the subtraction models amounted to 
0.992 ± 0.001 for the breast and 0.963 ± 0.004 for the BPE(%). 
These models featured DSC of 0.927 ± 0.001 for the breast 
segmentation and DSC and weighted DSC of 0.628 ± 0.018 
and 0.715 ± 0.015 for the BPE segmentation, respectively.

For further analysis, one native model and one subtrac-
tion model was chosen. The choice was made based on r 
and DSC values as well as the visual assessment. Analysis 
of the volumetric correlations between ground truth and 

predicted masks for the test set for the chosen models 
is displayed in Fig. 2. The fit regression lines are close to 
lines describing a perfect correlation. The chosen native 
model featured DSC of 0.950 (0.937–0.963, 95% con-
fidence intervals (CI)) for the breast, and 0.824 (0.760–
0.888, 95% CI) for the FGT. The chosen subtraction 
model was characterized by DSC of 0.923 (0.924–0.935, 
95% CI) for the breast and 0.655 (0.614–0.696, 95% CI) 
for BPE. The Bland–Altman plots revealed a slight bias 
of − 0.39% in the estimation of FGT% with the limits of 
agreements (LoA) of − 7.3% and 6.5%. The bias in the esti-
mation of BPE% amounted to − 0.98% with LoA of − 7.2% 
and 5.2%. Figure  3 showcases the overlays obtained for 
three sample native and corresponding subtraction slices, 
each originating from a different dataset. These models 
were then used for segmenting volumes from dataset 3.

Results of volumetric analysis
Figure 4 depicts the comparison of quantitative meas-
ures, i.e., FGT(%) and BPE/FGT(%), calculated from 
the predicted masks with the qualitative classifica-
tion into four classes by the radiologists. In the case 
of FGT(%) distribution, the mean values increase with 
the increasing FGT class, which is not the case for the 
mean BPE/FGT(%) values and the increasing BPE class. 
The FGT(%) distribution of almost entirely fat and scat-
tered FGT classes fully overlap. This is also the case for 

Table 2 The evaluation of native and subtraction models; the 
mean and standard deviation calculated from 5 training rounds is 
reported for each metrics in each case

a Pearson correlation coefficient between the volumes of the breastvol, FGT(%) (cf. 
Eq. (1)), BPE(%) (cf. Eq. (2)) derived from ground truth and predicted masks. The 
p-values are all below 0.0001

ra DSC Weighted DSC

Native Breast 0.999 ± 0.001 0.950 ± 0.002 -

FGT 0.985 ± 0.001 0.820 ± 0.005 0.864 ± 0.004

Subtraction Breast 0.992 ± 0.001 0.927 ± 0.001 -

BPE 0.963 ± 0.004 0.628 ± 0.018 0.715 ± 0.015

Fig. 2 Analysis of the volumetric correlations between ground truth and predicted masks for the test set. a 1st row: correlation plots for the chosen 
native model for breastvol and FGT(%) (for 11 volumes). 2nd row: correlation plots for the chosen subtraction model for breastvol and BPE(%) (for 49 
volumes). b Bland-Altmann plots for the chosen native and subtraction models
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BPE/FGT(%) in case of minimal, mild, and moderate 
BPE classes. The coefficient ρ for FGT(%) amounted to 
0.70 (p < 0.0001), whereas for BPE/FGT(%) amounted to 
0.37 (p = 0.0006).

Discussion
The attention U-Net models developed in this study 
accurately segmented FGT and BPE structures from 
breast DCE-MRI data. Table 3 presents a summary of the 
chosen native and BPE models’ performance compared 
to other studies focused on BPE segmentation using 

CNN-based models. However, due to the variability in 
approaches and datasets utilized across studies, a direct 
comparison is not possible. Owing to the separation of 
segmentation from native and subtraction volumes, the 
models developed in this study are applicable to DCE 
examinations, in which the series are not perfectly reg-
istered, opening the possibility to study the volumetric 
changes also in the further subtraction sequences. Addi-
tional advantage is that errors in the FGT segmentation, 
such as inclusion of high-intensity artifacts, do not affect 
the BPE segmentation.

Fig. 3 Visual comparison of the overlay between ground truth and predicted masks for a chosen native slice and its corresponding subtraction 
slice from each dataset
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The comparison of quantitative measures and qualita-
tive assessment of breast tissue density revealed a cor-
relation characterized by ρ = 0.70 (p < 0.0001), which 
is statistically strong. The box plots summarizing the 
FGT(%) distribution for each class (cf. Figure  4c, upper 
row) reveal the possibility of FGT class assessment based 
solely on the volumetric measures. This implies that 
breast DCE-MRI data from different institutions could 
be merged, and subsequently distinct and non-overlap-
ping FGT(%) ranges for each class could be defined, thus 
allowing reproducible and standardized breast density 
assessment. This could be further explored in the inves-
tigation of breast cancer risk factors enabling triaging of 
the patients.

It is crucial to note that the statistically low correla-
tion between quantitative and qualitative assessment 
of contrast uptake (ρ = 0.37, p = 0.0006, cf. Figure  4c 
lower row) highlights the complexity of its evaluation 
and underlines the need for an additional model, taking 
into account the voxels’ intensity values distribution 
and morphology [10] as well as the sensitivity of radi-
ologists to a potential masking effect for the standard-
ized assessment.

In the context of the four-class BI-RADS-compliant 
classification of the BPE, few approaches have been 
explored. Borkowski et al. reported a direct classifica-
tion of the entire MRI slice by CNN [35]. Nam et al. 
extracted radiomic features from the BPE, segmented 
on the basis of mean and standard deviation of voxels’ 
intensity values in the subtraction image within the 
FGT mask, followed by the classification by a tree-
based model [22]. The classification accuracy in both 
of these approaches could potentially be improved 
by implementing the BPE segmentation model devel-
oped in this work, thus bringing the models closer to 
implementation into clinical practice.

We are also aware of the limitations of our study. All 
the MRI scanners used in our study were from a single 
manufacturer, and dataset 2 and dataset 4 had a lim-
ited number of MRI scans. We are currently working 
to expand our test dataset to address these limitations.

Conclusion
The findings presented in this study highlight that a 
standardized assessment of FGT can rely solely on volu-
metric measures, while standardized assessment of BPE 

Fig. 4 Comparison of the quantitative measures and qualitative assessments by the radiologists. a The distributions of the BPE and FGT classes. b 
Plot of calculated FGT(%) and BPE/FGT(%) from the predicted masks for each class. c The corresponding box plots
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requires additional models that consider the distribution 
of intensity and morphology within enhancing voxels.

Due to the impracticality of annotating vast amounts of 
data from various MRI scanners, it is essential to develop 
segmentation models trained with limited data yet robust 
to domain shifts. Our work presents an end-to-end pipe-
line that creates generalizable models capable of accurately 
segmenting intricately shaped FGT and BPE structures 
from native and low-contrast subtraction volumes. Our 
approach can be extended to other MRI protocols.
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