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Abstract 

Purpose To predict the tertiary lymphoid structures (TLSs) status and recurrence-free survival (RFS) of intrahepatic 
cholangiocarcinoma (ICC) patients using preoperative CT radiomics.

Patients and methods A total of 116 ICC patients were included (training: 86; external validation: 30). The enhanced 
CT images were performed for the radiomics model. The logistic regression analysis was applied for the clinical model. 
The combined model was based on the clinical and radiomics models.

Results A total of 107 radiomics features were extracted, and after being eliminated and selected, six features were 
combined to establish a radiomics model for TLSs prediction. Arterial phase diffuse hyperenhancement and AJCC 
8th stage were combined to construct a clinical model. The combined (radiomics nomogram) model outperformed 
both the independent radiomics model and clinical model in the training cohort (AUC, 0.85 vs. 0.82 and 0.75, 
respectively) and was validated in the external validation cohort (AUC, 0.88 vs. 0.86 and 0.71, respectively). Patients 
in the rad-score no less than −0.76 (low-risk) group showed significantly better RFS than those in the less than −0.76 
(high-risk) group (p < 0.001, C-index = 0.678). Patients in the nomogram score no less than −1.16 (low-risk) group 
showed significantly better RFS than those of the less than −1.16 (high-risk) group (p < 0.001, C-index = 0.723).

Conclusions CT radiomics nomogram could serve as a preoperative biomarker of intra-tumoral TLSs status, better 
than independent radiomics or clinical models; preoperative CT radiomics nomogram achieved accurate stratification 
for RFS of ICC patients, better than the postoperative pathologic TLSs status.
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Introduction
Intrahepatic cholangiocarcinoma (ICC) is the second most 
common primary liver malignancy (10–15%) after hepato-
cellular carcinoma, with an increasing incidence and mor-
tality globally [1, 2]. Surgical resection is a curative option 
for ICC. However, most patients (70%) are diagnosed at 
advanced stages with unresectable tumors due to a lack 
of specific symptoms, resulting in a dismal prognosis, 
with a median survival shorter than 12 months [2–4], and 
high risk of recurrence and metastasis after operation also 
lead to the poor prognosis [5]. Nowadays, the prognosis 

Critical relevance statement The radiomics nomogram showed better performance in predicting TLSs than inde-
pendent radiomics or clinical models and better prognosis stratification than postoperative pathologic TLSs 
status in ICC patients, which may facilitate identifying patients benefiting most from surgery and subsequent 
immunotherapy.

Key points  
• The combined (radiomics nomogram) model consisted of the radiomics model and clinical model (arterial phase 
diffuse hyperenhancement and AJCC 8th stage).

• The radiomics nomogram showed better performance in predicting TLSs than independent radiomics or clinical 
models in ICC patients.

• Preoperative CT radiomics nomogram achieved more accurate stratification for RFS of ICC patients than the postop-
erative pathologic TLSs status.

Keywords Tertiary lymphoid structures, Intrahepatic cholangiocarcinoma, Radiomics, CT, Recurrence

Graphical Abstract

prediction of ICC depends on the conventional prognos-
tic factors used in clinical practice such as tumor stage 
and lymph node status, which is not sufficient for accurate 
stratification in many cases. Currently, many studies have 
attempted to find risk factors of prognosis [6–8], but the 
clinical application value was limited. Accurate identifica-
tion of recurrence risk factors of ICC is conducive to strat-
ified management and individualized treatment.

The characteristic identification of poor prognosis in 
cholangiocarcinoma has been transited to the cellular 
and molecular levels, and it is generally featured by a 



Page 3 of 13Xu et al. Insights into Imaging          (2023) 14:173  

highly desmoplastic tumor microenvironment (TME) 
with excessively infiltrating immune and stromal cells 
[4, 9, 10]. Recently, ectopic aggregates of immune cells 
with similarities to secondary lymphoid organs (SLO), 
named tumor-associated tertiary lymphoid structures 
(TLSs), have attracted extensive attention because of 
their potential prognostic value and guiding signifi-
cance of immunotherapy [11]. Ding et al. reported that 
intra-tumor region TLSs were positively correlated with 
favorable prognosis whereas peri-tumor region signified 
worse survival, and performance of the immune clas-
sification for ICC was superior to TNM staging system 
[12]. Zhang et  al. demonstrated that the presence of 
intra-tumoral TLSs was correlated with a good recur-
rence-free survival (RFS) outcome of perihilar cholan-
giocarcinoma but not with overall survival (OS) [13].

Considering that TLSs in ICC can only be confirmed 
through pathological diagnosis, the ability to predict 
TLSs status preoperatively is of particular impor-
tance, especially for unresectable patients. Radiomics 
extracts, selects, and analyzes the quantitative infor-
mation that cannot be identified by visual inspection 
from images to reflect tumoral pathophysiology, intra-
tumoral heterogeneity, and cancer phenotype, leading 
to better clinical decision-making [14, 15]. Computed 
tomography (CT) plays a vitally important role in non-
invasively diagnosing and managing ICC patients [16].

Therefore, the present study aims to preoperatively 
predict the intra-tumor region TLSs status using the 
radiomics signature and imaging features on CT 
images and correlate with survival in ICC patients.

Patients and methods
Patient characteristics
Preoperative CT scans of 333 patients (training cohort 
from center 1: 226, external validation cohort from center 

2: 107) with surgical pathology-confirmed cholangiocar-
cinoma were included retrospectively between Novem-
ber 2010 and August 2020, May 2015, and November 
2019. The inclusion criteria were as follows: (1) patients 
with ICC confirmed by histology, (2) patients with pre-
operative liver dynamic contrast-enhanced (CE) CT data 
within 1  month before surgery, (3) patients performed 
with R0 resection (no residual local disease) with post-
operative pathological specimens (to identify TLSs), and 
(4) patients without previous treatment for ICC. The 
exclusion criteria were as follows: (1) patients with hilar 
or extrahepatic cholangiocarcinoma or a mixed type of 
primary liver cancer, (2) preoperative liver CT data were 
missing or obtained without a contrast agent or outside 
the predefined interval, and (3) previous treatment for 
liver lesions (chemotherapy, radiotherapy, or radiofre-
quency ablation). Based on the inclusion and exclusion 
criteria, 86 patients with ICC from our institution were 
included as a training cohort. A flowchart of the patient 
selection process is shown in Fig.  1. Another valida-
tion cohort of 30 patients with ICC was collected from 
another medical center based on the same criteria as the 
external validation cohort.

This study was approved by the institutional review 
board, and the requirement for patient informed consent 
was waived for this retrospective analysis.

CT image acquisition
CE-CT imaging of the thorax, abdomen, and pelvis at 
baseline (within 1  month before surgery) of all patients 
were performed with a 64-detector row scanner (GE 
Optima 660 or Discovery 750, General Electric Medi-
cal System). Iobitridol injection (320 mg iodine per mil-
liliter, iodixanol injection, Beijing Beilu Pharmaceutical 
Co., LTD, China) was intravenously injected at a dose 
of 1.5  ml/kg by using a power injector at a flow rate of 

Fig. 1 The flowchart of the patient selection process
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3.0  ml/s. The abdomen CE-CT images on arterial, por-
tal venous, and equilibrium phases were obtained 35, 65, 
and 150  s after contrast agent administration, respec-
tively (tube voltage, 120 kVp; auto mA settings; pitch, 
1.375; rotation time, 0.5 s; thickness, 5 mm).

Histopathologic analysis
The pathological hematein-eosinsaffron-stained slides of 
each lesion were reviewed for whole slide images (WSIs) 
by two pathologists (Z.L. with a 10-year experience and 
J.M.Y. with a 20-year experience in abdominal pathology). 
Both pathologists were blinded to the patients’ clinical 
data and radiological results. Any discrepancy between 
the two pathologists was discussed to reach a consensus. 
The existence of intra-tumoral TLSs was assessed mor-
phologically as described previously [12, 17, 18]. Briefly, 
TLSs were classified into 3 categories according to their 
maturation stages: (1) lymphoid aggregates (Agg)—
vague, ill-defined clusters of lymphocytes; (2) primary 
lymphoid follicles (Fol-I)—lymphoid follicles without 
germinal center formation; and (3) secondary lymphoid 
follicles (Fol-II)—lymphoid follicles with germinal center 
formation. Intra-tumoral TLSs-negative was defined as 
tumors without any TLSs, and TLSs-positive was defined 
as tumors with at least one TLS. Moreover, the following 
data were systematically recorded: tumor differentiation 
according to the World Health Organization, nerve inva-
sion, microvascular invasion (MVI), and necrosis. The 
assessment criteria in the external validation cohort were 
the same as in the training cohort.

Clinic‑radiologic evaluation
Radiological evaluation was performed by two radiolo-
gists (radiologist 1, L.L., with 10  years of experience in 
abdominal radiology; radiologist 2, Y.X., with 6  years of 
experience in abdominal radiology) independently on 
preoperative CT scans. Any discrepancy between the two 
radiologists was adjudicated by a third senior radiologist 
(radiologist 3, F.Y., with 20 years of experience in abdomi-
nal radiology) to reach a consensus among the three 
radiologists. All three radiologists were blinded to the 
patients’ clinical data and pathological results. CT find-
ings of each lesion were evaluated as follows: tumor loca-
tion, tumor size, satellite nodules, regular morphology, 
clear border, number, intra-tumoral vessels, macrovascu-
lar invasion, portal thrombus, peri-tumoral biliary dila-
tation, hepatic capsule retraction, and AJCC 8th stage. 
Moreover, the imaging features of non-enhanced and CE 
scans were evaluated. The details of the CT imaging find-
ings were presented as Additional file 1: Table S1.

For patients with multiple lesions, the largest lesion 
was selected for evaluation. Clinical data, including 

demographic and preoperative tumor markers, were 
obtained from the medical records.

Radiomics analysis
Radiomics workflow comprised manual tumor segmenta-
tion, feature extraction and selection, volumetric inter-
ests (VOIs) fusion, and radiomics model construction. 
Tumor manual segmentation was performed by radi-
ologist 2 (Y.X., with 5  years of experience in abdominal 
radiology) under the supervision of senior radiologist 3 
(F.Y., with 18 years of experience in abdominal radiology). 
The VOIs were drawn manually within the visible bor-
ders of the tumors while avoiding the blood vessels using 
the ITK-SNAP v.3.8.0 software (www. itksn ap. org) in the 
axial CE-CT portal vein phase (PVP) imaging. Each VOI 
consisted of several slices of bi-dimensional regions of 
interest (ROIs), and the entire volume of each tumor was 
segmented.

In order to get a standard normal distribution of image 
densities, the CT scan of each patient was normalized 
with Z-scores according to the following formula to 
reduce the bias caused by different index dimensions: 
f (x) = s(x−µx)

σx
 . After adding and averaging the normal-

ized images layer by layer, a total of 107 radiomics fea-
tures were extracted from each VOI using an in-house 
software written in Python. The extracted radiomics fea-
tures included shape (n = 14), first-order (n = 25), gray-
level co-occurrence matrix (GLCM) (n = 22), gray-level 
run length matrix (GLRLM) (n = 16), gray-level size zone 
matrix (GLSZM) (n = 16), and gray-level dependence 
matrix (GLDM) (n = 14).

Two feature selection methods, maximum relevance and 
minimum redundancy (mRMR) and least absolute shrinkage 
and selection operator (LASSO) [19–23], were used to select 
the feature for each VOI. First, mRMR was performed to 
eliminate redundant and irrelevant features. These retained 
multi-VOI features were finally joined and selected using 
LASSO to derive the ultimate multi-VOI radiomics model.

A radiomics score (rad-score) was calculated using a 
linear combination of selected features weighted by their 
respective LASSO coefficients for each patient, which 
was the radiomics model. The formula of rad-score was 
presented as Additional file 1: Supplementary material 2.

Follow‑up
Regular follow-up was conducted every 3  months until 
the 2nd year after surgery; twice per year in the 3rd, 4th, 
and 5th years; and once a year after that. Disease recur-
rence was confirmed by CT, MRI, or positron emission 
tomography-computed tomography (PET-CT). RFS was 
defined as the date from the surgery to disease recur-
rence, or the last follow-up date.

http://www.itksnap.org
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Statistical analysis
Statistical analyses were performed with SPSS (version 
25.0; IBM), R statistical software (version 3.3.3; https:// 
www.r- proje ct. org), and Python (version 3.5.6), PASS 
2021, v21.0.3. The chi-square test or Fisher’s exact test 
was used for categorical variables, and the Mann–Whit-
ney U test or Student’s t-test was used for continuous 
variables. The preoperative clinical, radiological vari-
ables between TLSs-positive and TLSs-negative in the 
training cohort were evaluated by univariate analysis, 
and variables with p values of < 0.05 were applied to a 
multivariate logistic regression analysis. Backward step-
wise regression was used to construct the clinical model. 
The discrimination performance of the clinical, radiom-
ics, and combined models was evaluated using the ROC 
and the area under the curve (AUC) in the training and 
external validation cohorts. The corresponding sensitivi-
ties, specificities, and accuracies were then compared, 
and the maximum Youden index of the ROC curve was 
used to determine the cutoff value for rad-score and 
nomogram [24]. Calibration curves of the nomogram in 
the training and external validation cohorts were plotted 
to assess the consistency between prediction and obser-
vation, accompanied by the Hosmer–Lemeshow test. 
Finally, decision curve analysis (DCA) was conducted to 
evaluate the clinical usefulness. The survival analyses of 
the TLSs status, rad-score, and nomogram were prepared 
using the Kaplan-Meier method with the log-rank test. 
The performance of TLSs status, rad-score, and nomo-
gram for prognosis prediction was evaluated using the 
concordance index (C-index). The process of sample size 
calculation was presented in Additional file  1: Supple-
mentary material 3. p < 0.05 was considered statistically 
significant.

Results
Baseline characteristics
A total of 116 (training cohort = 86, external validation 
cohort = 30) patients were included in the two medical 
centers. The comparisons of preoperative and postopera-
tive variables between the training and validation cohorts 
were summarized in Table 1. Patients of age no less than 
60  years old were 36 (41.9%) and 10 (33.3%) in training 
and validation cohorts. All the baseline variables between 
the two cohorts have no statistical differences.

Clinical model construction
The preoperative clinical and radiological variables of 
TLSs-positive and TLSs-negative groups in the training 
cohorts are summarized in Table  2. Univariate analysis 
indicated that the arterial diffuse hyperenhancement, 
arterial peripheral rim enhancement, AJCC 8th stage, 
and diameter were significantly different between the 

TLSs-positive and TLSs-negative groups in the training 
cohort (p < 0.001; 0.003; 0.014; 0.039, respectively). Mul-
tivariate logistic regression analysis showed that the arte-
rial phase diffuse hyperenhancement and AJCC 8th stage 
were combined to construct a clinical model, and the 
arterial phase diffuse hyperenhancement was an inde-
pendent factor for differentiating TLSs status (p = 0.035).

Feature selection and radiomics model construction
A total of 107 features were extracted, and 30 features 
were retained after eliminating redundant and irrelevant 
features using mRMR. LASSO regression analysis was 
used to select 6 features to derive a radiomics model. We 
compared the rad-scores of TLSs-positive and TLSs-nega-
tive groups in the training and external validation cohorts, 
respectively. Patients in the TLSs-positive group showed 
a significantly higher rad-score than the TLSs-negative 
group in the two cohorts (−0.26 ± 0.66 vs. −1.18 ± 0.72, 
p < 0.001; −0.45 ± 0.34 vs. −1.24 ± 0.63, p < 0.001) (Fig. 2).

Combined model construction and performance 
evaluation of three models
The final radiomics nomogram model integrated the clin-
ical model and radiomics model (Fig. 3a). The combined 
(radiomics nomogram) model outperformed both the 
independent radiomics model and clinical model in the 
training cohort (AUC, 0.85 vs. 0.82 and 0.75, respectively) 
and was validated in the external validation cohort (AUC, 
0.88 vs. 0.86 and 0.71, respectively) (Table 3, Fig. 3b, c).

Favorable calibrations of the nomogram were obtained 
in the training and external validation cohorts (Additional 
file 1: Fig. S1A and B). The Hosmer–Lemeshow test yielded 
p values of 0.19 and 0.26. DCA curves of the three models 
were presented in Additional file 1: Fig. S1C. The rad-score 
and nomogram score of each patient in the training cohort 
were presented in Additional file 1: Fig. S2.

Correlations of TLSs status, rad‑score, and nomogram 
with recurrence
For the 86 ICC patients in the training cohort, fifty-four 
patients (62.8%) experienced recurrence during a median 
follow-up duration of 50.8  months (95% confidence 
intervals [CIs]: 29.5–72.0 months). The median RFS was 
13.1  months (95% CIs, 5.0–21.2  months). Patients of 
intra-tumoral TLSs-positive showed significantly bet-
ter RFS than those of TLSs-negative (median RFS: 46.6; 
95% CIs, 25.6–67.7  months vs. median RFS: 9.6; 95% 
CIs, 7.9–11.3  months, C-index = 0.598 [95% CI, 0.537–
0.659], p = 0.014; Fig. 4a). The 6-, 12-, 24-, 36-, 48-, and 
60-month cumulative RFS rates of the TLSs-positive 
group were 88.7%, 72.8%, 63.1%, 56.0%, 48.0%, and 40.0%, 
and 69.1%, 42.5%, 31.1%, 29.2%, 26.5%, and 22.7% for the 
TLSs-negative group, respectively.

https://www.r-project.org
https://www.r-project.org
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Table 1 The baseline clinic-radiological, pathologic characteristics of ICC patents in the training and validation cohorts

Characteristics Training cohort (n = 86) Validation cohort (n = 30) p value

Preoperative factors

 Age ≥ 60, n (%) 36 (41.9%) 10 (33.3%) 0.411

 Male, n (%) 46 (53.5%) 15 (50%) 0.742

 HBV-positive, n (%) 52 (60.5%) 16 (53.3%) 0.495

 Liver cirrhosis, n (%) 42 (48.8%) 14 (46.7%) 0.838

 Liver steatosis, n (%) 23 (26.7%) 7 (23.3%) 0.713

 CA199 > 37 U/ml, n (%) 38 (44.2%) 14 (46.7%) 0.814

 Location, n (%) 0.859

  Left lobe 50 (58.1%) 18 (60%)

  Right lobe 36 (41.9%) 12 (40%)

 Subcapsular, n (%) 62 (72.1%) 21 (70%) 0.827

 Satellite nodules, n (%) 11 (12.8%) 8 (26.7%) 0.138

 Regular morphology, n (%) 8 (9.3%) 4 (13.3%) 0.782

 Well-defined border, n (%) 78 (90.7%) 27 (90%) 1.000

 Number, n (%) 0.231

  1 80 (93%) 25 (83.3%)

  > 1 6 (7%) 5 (16.7%)

 Diameter > 5 cm, n (%) 46 (53.5%) 16 (53.3%) 0.988

 Macrovascular invasion, n (%) 73 (84.9%) 24 (80%) 0.737

 Suspicious lymph node metastasis, n (%) 21 (24.4%) 6 (20%) 0.622

 AJCC 8th stage, n (%) 0.288

  1 47 (54.7%) 16 (53.3%)

  2 13 (15.1%) 8 (26.7%)

  3 26 (30.2%) 6 (20%)

 CT non-enhanced scan density, n (%) 0.255

  Homogeneous low 15 (17.4%) 2 (6.7%)

  Inhomogeneous low 71 (82.6%) 28 (93.3%)

 Arterial diffuse hyperenhancement, n (%) 18 (20.9%) 5 (16.7%) 0.614

 Arterial peripheral rim enhancement, n (%) 46 (53.5%) 18 (60%) 0.537

 Arterial diffuse hypoenhancement, n (%) 22 (25.6%) 7 (23.3%) 0.807

 Centripetal enhancement, n (%) 40 (46.5%) 14 (46.7%) 0.988

 Wash in and wash out, n (%) 13 (15.1%) 5 (16.7%) 1.000

 Persistent enhancement, n (%) 19 (22.1%) 8 (26.7%) 0.610

 Peritumoral arterial enhancement, n (%) 25 (29.1%) 11 (36.7%) 0.439

 Intra-tumoral vessels, n (%) 13 (15.1%) 3 (10%) 0.695

 Portal thrombus, n (%) 10 (11.6%) 3 (10%) 1.000

 Biliary dilatation, n (%) 21 (24.4%) 7 (23.3%) 0.905

 Hepatic capsule retraction, n (%) 61 (70.9%) 21 (70%) 0.923

Postoperative factors

 TLSs-positive, n (%) 27 (31.4%) 10 (33.3%) 0.845

 Differentiation, n (%) 0.951

  Poor 55 (64%) 19 (63.3%)

  Well-moderate 31 (36%) 11 (36.7%)

 Nerve invasion, n (%) 25 (29.1%) 5 (16.7%) 0.182

 MVI-positive, n (%) 29 (33.7%) 9 (30%) 0.708

 Necrosis, n (%) 76 (88.4%) 28 (93.3%) 0.674

 Type of hepatic resection, n (%) 0.699

  Major 31 (36%) 12 (40%)

  Minor 55 (64%) 18 (60%)

 Adjuvant therapy, n (%) 29 (33.7%) 8 (26.7%) 0.475

HBV hepatitis B virus, CA199 carbohydrate antigen 199, AJCC American Joint Committee on Cancer, TLSs tertiary lymphoid structures, MVI microvascular invasion
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The radiomics model divides ICC patients into a 
high-risk group with a cutoff value of less than −0.76 
and vice versa into a low-risk group (Fig. 4b; p < 0.001, 
C-index = 0.678 [95% CI, 0.607–0.749]). The median 
RFS of the high- and low-risk groups was 8.4 months 
(95% CIs, 7.0–12.2  months) and 60.0  months (95% 

CIs, 19.9  months—not reached), respectively. The 
6-, 12-, 24-, 36-, 48-, and 60-month cumulative RFS 
rates of the low-risk group were 85.5%, 70.7%, 59.4%, 
55.9%, 51.6%, and 45.1%, and 65.3%, 33.9%, 23.1%, 
20.2%, 16.2%, and 10.8% for the high-risk group, 
respectively.

Table 2 Univariate and multivariate analyses of the preoperative clinical, radiologic variables between the TLSs-positive and TLSs-
negative groups in the training cohort

TLSs tertiary lymphoid structures, HBV hepatitis B virus, CA199 carbohydrate antigen 199, AJCC American Joint Committee on Cancer
* Statistically significant

Characteristics Univariate analysis Multivariate analysis

TLSs‑positive (n = 27) TLSs‑negative (n = 59) p value OR (95% CI) p value

Age ≥ 60, n (%) 12 (44.4%) 24 (40.7%) 0.742

Male, n (%) 12 (44.4%) 34 (57.6%) 0.255

HBV-positive, n (%) 17 (63%) 35 (59.3%) 0.749

Liver cirrhosis, n (%) 14 (51.9%) 28 (47.5%) 0.705

Liver steatosis, n (%) 6 (22.2%) 17 (28.8%) 0.522

CA199 > 37 U/ml, n (%) 11 (40.7%) 27 (45.8%) 0.663

Location, n (%) 0.887

 Left lobe 16 (59.3%) 34 (57.6%)

 Right lobe 11 (40.7%) 25 (42.4%)

Subcapsular, n (%) 17 (63%) 45 (76.3%) 0.202

Satellite nodules, n (%) 1 (3.7%) 10 (16.9%) 0.174

Regular morphology, n (%) 4 (14.8%) 4 (6.8%) 0.429

Well-defined border, n (%) 25 (92.6%) 53 (89.8%) 0.993

Number, n (%) 0.726

 1 26 (96.3%) 54 (91.5%)

 > 1 1 (3.7%) 5 (8.5%)

Diameter > 5 cm, n (%) 10 (37%) 36 (61%) 0.039* 0.365

Macrovascular invasion, n (%) 3 (11.1%) 10 (16.9%) 0.706

Lymph node metastasis, n (%) 4 (14.8%) 17 (28.8%) 0.161

AJCC 8th stage, n (%) 0.014* 0.598 (0.309–1.155) 0.126

 1 21 (77.8%) 26 (44.1%)

 2 2 (7.4%) 11 (18.6%)

 3 4 (14.8%) 22 (37.3%)

CT non-enhanced scan density, n (%) 0.628

 Homogeneous low 6 (22.2%) 9 (15.3%)

 Inhomogeneous low 21 (77.8%) 50 (84.7%)

Arterial diffuse hyperenhancement, n (%) 13 (48.1%) 5 (8.5%) < 0.001* 4.801 (1.116–20.649) 0.035*

Arterial peripheral rim enhancement, n (%) 8 (29.6%) 38 (64.4%) 0.003* 0.473

Arterial diffuse hypoenhancement, n (%) 6 (22.2%) 16 (27.1%) 0.629

Centripetal enhancement, n (%) 12 (44.4%) 28 (47.5%) 0.795

Wash in and wash out, n (%) 5 (18.5%) 8 (13.6%) 0.786

Persistent enhancement, n (%) 6 (22.2%) 13 (22%) 0.984

Peritumoral arterial enhancement, n (%) 8 (29.6%) 17 (28.8%) 0.938

Intra-tumoral vessels, n (%) 5 (18.5%) 8 (13.6%) 0.786

Portal thrombus, n (%) 4 (14.8%) 6 (10.2%) 0.794

Biliary dilatation, n (%) 8 (29.6%) 13 (22%) 0.447

Hepatic capsule retraction, n (%) 17 (63%) 44 (74.6%) 0.271
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The nomogram model divides ICC patients into a 
high-risk group with a cutoff value of less than −1.16 
and vice versa into a low-risk group (Fig.  4c; p < 0.001, 
C-index = 0.723 [95% CI, 0.656–0.790]). The median 
RFS of the high- and low-risk groups was 7.5  months 
(95% CIs, 5.5–10.9 months) and 60.0 months (95% CIs, 
35.5  months—not reached), respectively. The 6-, 12-, 
24-, 36-, 48-, and 60-month cumulative RFS rates of the 
low-risk group were 92.7%, 72.9%, 64.5%, 61.1%, 57.1%, 
and 47.1%, and 58.3%, 31.6%, 17.7%, 14.8%, 9.8%, and 
9.8% for the high-risk group, respectively.

For the 30 ICC patients in the external validation 
cohort, the median RFS was 9.6 months (95% CIs, 7.4–
11.8). Patients of intra-tumoral TLSs-positive showed 
significantly better RFS than those of TLSs-nega-
tive (median RFS: 35.5; 95% CIs, 10.7–71.2  months 
vs. median RFS: 7.9; 95% CIs, 2.9–12.9  months, 
p = 0.021, C-index = 0.640 [95% CI, 0.544–0.736]; 
Fig.  4d). Patients of the rad-score no less than −0.76 
(low-risk) group showed significantly better RFS than 
those of the rad-score less than −0.76 (high-risk) 
group (median RFS: 19.4; 95% CIs, 6.7–47.2  months 
vs. median RFS: 7.9; 95% CIs, 3.7–12.1  months, 
p = 0.004, C-index = 0.718 [95% CI, 0.604–0.832]; 
Fig.  4e). Patients of the nomogram score no less than 
−1.16 (low-risk) group showed significantly bet-
ter RFS than those of the nomogram score less than 
−1.16 (high-risk) group (median RFS: 35.5; 95% CIs, 

17.3–77.9  months vs. median RFS: 6.1; 95% CIs, 4.5–
7.7 months, p < 0.001, C-index = 0.708 [95% CI, 0.594–
0.822]; Fig.  4f ). Discrimination of radiological and 
pathologic images between TLSs-positive and TLSs-
negative tumors was shown as Fig. 5.

Discussion
In this study, we demonstrated that the presence of intra-
tumoral TLSs was an effective predictor of favorable 
prognosis for ICC, which is consistent with the previ-
ous studies [4, 12]. Previous studies also indicated that 
intra-tumoral TLSs predicted a better response to immu-
notherapy independent of PD-L1 expression status and 
CD8+ T cell density, not only for ICC, but also for other 
types of solid tumors including hepatocellular carcinoma 
and melanoma [4, 25–28]. As a result, we attempted to 
preoperatively predict TLSs status non-invasively. Clini-
cal and radiomics models were constructed indepen-
dently with AUCs of 0.75 and 0.82, and the prediction 
performance of the combined model integrating clinical 
and radiomics models proved to be the best among the 
three models, with an AUC of 0.85. Moreover, the rad-
score and combined model divided ICC patients into 
a high- and low-risk group with a cutoff value of −0.76 
and −1.16, respectively, which achieved more accurate 
RFS stratification than the postoperative TLSs status 
(p < 0.001; p < 0.001; p = 0.014).

In spite of the significance of intra-tumoral TLSs 
status, no studies have investigated the correlations 
between imaging features and TLSs status. Min et  al. 
found that the risk of death and recurrence in patients 
with ICC with arterial diffuse hyperenhancement 
on MRI images were lower than those with diffuse 
hypoenhancement or peripheral rim enhancement [29]. 
Our study demonstrated that ICC of TLSs-positive 
had more frequent arterial diffuse hyperenhancement 
than those of TLSs-negative. However, a clear illustra-
tion regarding arterial hyperenhancement was not pro-
posed but was presumed to be related to more cellular 
areas with less fibrosis [29, 30]. But what is the cellular 
component that causes the high arterial hyperenhance-
ment is unclear. The composition of TLSs included 
 CD20+ B cells,  CD3+ T cells,  CD4+ T follicular helper 
(TFH) cells,  CD8+ cytotoxic T cells,  CD4+ T helper 1 
(TH1) cells, regulatory T cells (Tregs), and  CD21+ fol-
licular dendritic cells (FDCs) [31–34], which is defined 
immune infiltrates in tumors. We assumed that arte-
rial diffuse hyperenhancement could be explained by 
the immune infiltration and high endothelial venules 
(HEVs) [35], which might be associated with a prefer-
able prognosis. Our study also demonstrated that the 

Fig. 2 Violin plots comparing the rad-score of the TLSs-positive 
and TLSs-negative groups in the training and external validation 
cohorts
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ICC of TLSs-positive had more frequent stage I of 
AJCC 8th stage. There are no previous studies investi-
gating the preoperative predictors of TLSs in patients 
with ICC. One study demonstrated that TNM stage 
was significantly different between the TLSs-positive 
and TLSs-negative groups for perihilar cholangio-
carcinoma, and a higher proportion of TLSs-positive 
patients were evaluated as TNM stages 1 and 2 than the 
TLSs-negative patients [13]. This is consistent with our 
findings. We presumed that the TLSs-positive might be 
associated with more benign biological behavior and 
lower invasive, metastatic potential, which might lead 
to a lower TNM stage.

A total of 6 radiomics signatures were selected to 
derive a radiomics model, including three first-order, 
two GLRLM, and one GLDM features. We assumed 
that the difference in intra-tumoral heterogeneity 
between the TLSs-positive and TLSs-negative tumors 
may be associated with different radiomics signatures. 

Radiomics was reported to have great potential for 
extracting the biological characteristics and prog-
nostic information of ICC [8, 36–42]. Chu et  al. pre-
sented a CT-based radiomics model for the prediction 
of futile resection before surgery in ICC patients, with 
better performance than clinical information [40]. 
Ji et  al. developed a radiomics model for the predic-
tion of lymph node metastasis (AUC = 0.85) [41]. One 
shape feature, two first-order features, one GLDM fea-
ture, one GLCM feature, one GLRLM feature, and two 
GLSZM features were selected and constructed in the 
radiomics model. Song et  al. developed a combined 
radiomics model to preoperatively predict the early 
recurrence of ICC patients [42]. The combined clin-
ical-radiomics model included 15 radiomics features 
and 3 clinical features (CA19-9 > 1000 U/ml, vascular 
invasion, and tumor margin), resulting in the AUCs 
of 0.974 in the derivation cohort, which are higher 
than the AJCC 8th TNM staging system. Zhang et  al. 

Fig. 3 The radiomics nomogram model integrating clinical model (AJCC 8th stage, arterial diffuse hyperenhancement) and radiomics model 
(rad-score) (a). ROC curves of radiomics model, clinical model, and combined model were compared in the training (b) and external validation (c) 
cohorts
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developed a radiomics model based on MR images 
for preoperative evaluation immunophenotyping and 
survival in ICC patients. Four texture features were 
selected, and three of them were wavelet features. Each 
feature had the favorable ability to discriminate the 

immunophenotyping, and the best performance was 
achieved by a combination of all features, with an AUC 
of 0.919 [36]. Zhang et al. found that three wavelet fea-
tures in the arterial phase (AP), three wavelet features 
in the portal vein phase (PVP), and one first-order fea-
tures in PVP could preoperatively predict PD-1/PD-L1 
expression for ICC [38]. All the studies indicated the 
potential predictive ability of radiomics in tumor heter-
ogeneity, immunophenotyping, and microscopic patho-
logical features.

Based on the Radiomics Quality Score (RQS) devel-
oped by Lambin et al., our study got a score of 16 [43]. 
According to a systematic review about cholangiocarci-
noma, the highest RQS was 18, and there were only 7 
studies (18.4%) with ≥ 15 scores. Thirty (79.0%) studies 
were performed at one institution, and all the included 
studies were conducted retrospectively [44]. For our 
study, patients from two centers were included retro-
spectively. Moreover, the most common study aims 
included differential diagnosis against other hepatic 
lesions, prediction of survival after surgical resection, 
prediction of lymph node metastases, and prediction 
of therapeutic response to radioembolization [44]. Cur-
rently, none of the studies covered the prediction of 
TLSs. Consequently, this study containing external vali-
dation cohort explored an innovative topic, with fairly 
high quality.

Table 3 Performance comparison of the clinical model, radiomics 
signature, and radiomics nomogram in the training and external 
validation cohorts

Model Training cohort 
(n = 86)

External validation 
cohort (n = 30)

Clinical model
 Sensitivity 0.76 0.80

 Specificity 0.80 0.76

 Accuracy 0.79 0.77

 AUC (95% CI) 0.75 (0.63–0.87) 0.71 (0.48–0.93)

Radiomics model
 Sensitivity 0.89 1.0

 Specificity 0.69 0.70

 Accuracy 0.76 0.80

 AUC (95% CI) 0.82 (0.73–0.91) 0.86 (0.74–0.99)

Radiomics nomogram
 Sensitivity 0.57 0.60

 Specificity 0.93 0.93

 Accuracy 0.76 0.77

 AUC (95% CI) 0.85 (0.78–0.93) 0.88 (0.76–1.00)

Fig. 4 Kaplan-Meier curves for RFS of patients with ICC as categorized by the TLSs status, rad-score (cutoff value = −0.76), and nomogram score 
(cutoff value = −1.16) in the training (a–c) and external validation cohorts (d–f)
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There are some limitations in this study. First, this 
is a retrospective study, and selection bias is inevitable. 
For example, patients without preoperative CT data or 
obtained without a contrast agent or outside the prede-
fined interval were excluded. Second, the sample size was 
limited, and studies in a larger cohort of ICC patients 
were further needed. Third, the volatility of scores caused 
by nomograms is inevitable, and we are trying web appli-
cations for the construction of dynamic prediction tools 
[45]. Fourth, the extraction of radiomics features was 
only from the portal vein phase, not the arterial phase, 
and we will attempt to perform feature extraction from 
the arterial phase in CT and from various phases in MRI 
next step.

In conclusion, this study demonstrated that CT radi-
omics nomogram could serve as a preoperatively predic-
tive biomarker of intra-tumoral TLSs status, better than 
independent radiomics or clinical models; preoperative 
CT radiomics nomogram achieved more accurate strati-
fication for RFS of ICC patients, better than the postop-
erative pathologic TLSs status.
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