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Abstract 

Objective  To develop and validate a multiphase CT-based radiomics model for preoperative risk stratification 
of patients with localized clear cell renal cell carcinoma (ccRCC).

Methods  A total of 425 patients with localized ccRCC were enrolled and divided into training, validation, 
and external testing cohorts. Radiomics features were extracted from three-phase CT images (unenhanced, arte-
rial, and venous), and radiomics signatures were constructed by the least absolute shrinkage and selection operator 
(LASSO) regression algorithm. The radiomics score (Rad-score) for each patient was calculated. The radiomics model 
was established and visualized as a nomogram by incorporating significant clinical factors and Rad-score. The predic-
tive performance of the radiomics model was evaluated by the receiver operating characteristic curve, calibration 
curve, and decision curve analysis (DCA).

Results  The AUC of the triphasic radiomics signature reached 0.862 (95% CI: 0.809–0.914), 0.853 (95% CI: 0.785–0.921), 
and 0.837 (95% CI: 0.714–0.959) in three cohorts, respectively, which were higher than arterial, venous, and unen-
hanced radiomics signatures. Multivariate logistic regression analysis showed that Rad-score (OR: 4.066, 95% CI: 3.495–
8.790) and renal vein invasion (OR: 12.914, 95% CI: 1.118–149.112) were independent predictors and used to develop 
the radiomics model. The radiomics model showed good calibration and discrimination and yielded an AUC of 0.872 
(95% CI: 0.821–0.923), 0.865 (95% CI: 0.800–0.930), and 0.848 (95% CI: 0.728–0.967) in three cohorts, respectively. DCA 
showed the clinical usefulness of the radiomics model in predicting the Leibovich risk groups.

Conclusions  The radiomics model can be used as a non-invasive and useful tool to predict the Leibovich risk groups 
for localized ccRCC patients.

Critical relevance statement  The triphasic CT-based radiomics model achieved favorable performance in preopera-
tively predicting the Leibovich risk groups in patients with localized ccRCC. Therefore, it can be used as a non-invasive 
and effective tool for preoperative risk stratification of patients with localized ccRCC.
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Introduction
Renal cell carcinoma (RCC) is the most common kid-
ney malignancy, accounting for approximately 90% of 
all kidney malignancies. Clear cell renal cell carcinoma 
(ccRCC) is the most predominant and malignant subtype 
of RCC, accounting for approximately 70–80% of RCC 
[1]. With the development of abdominal imaging tech-
nology, a large amount of primary localized ccRCC has 
been detected [2]. For localized ccRCC, surgery is the 
main treatment approach in the clinic. However, up to 
30% of patients will experience recurrence or metastasis 
after surgery, especially in patients with advanced local-
ized ccRCC [3, 4]. The Leibovich scoring system based 
on tumor stage, regional lymph node status, tumor size, 
histological nuclear grade, and histologic tumor necro-
sis is one of the most widely utilized prognostic scoring 
systems that can be used to risk-stratify patients to assist 
in clinical trials for primary localized ccRCC developed 

Key points   
• The triphasic CT-based radiomics signature achieves better performance than the single-phase radiomics signature.

• Radiomics holds prospects in preoperatively predicting the Leibovich risk groups for ccRCC.

• This study provides a non-invasive method to stratify patients with localized ccRCC.
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by the Mayo Clinical Center [5, 6]. For primary localized 
ccRCC, the Leibovich scoring system can be used to pre-
dict progression to metastatic disease thereby stratifying 
patients to adjuvant treatment regimens after surgery 
[5]. In the era of individualized medicine, it is critical to 
precisely predict the risk of patients’ disease progres-
sion before surgery to guide patient management, assist 
clinicians in clinical decision-making and patient coun-
seling, and formulate risk-appropriate adjuvant and fol-
low-up strategies [3, 5, 7]. However, this information is 
only available after postoperative pathologic assessment. 
There is a lack of noninvasive and effective methods to 
stratify patients with localized ccRCC preoperatively.

Computed tomography (CT) is an essential tool for the 
evaluation of patients with localized ccRCC in clinical, and 
at the time of primary diagnosis is inadequate to predict 
the risk of disease progression after surgery [8]. Radiomics 
is an emerging non-invasive approach to characterize the 
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heterogeneity and aggressiveness of tumors, which extract 
a large number of mathematical features by transform-
ing medical images into mineable high-dimensional data 
[9, 10]. Studies have shown that radiomics are an increas-
ingly promising add-on to non-invasively provide clini-
cally important information in many types of tumors, such 
as lung cancer [11], liver cancer [12], breast cancer [13], 
ovarian cancer, and bladder cancer [14, 15]. In addition, 
radiomics has been reported to be successfully applied in 
renal tumors, such as benign and malignant differentia-
tion of RCC, subtype classification of RCC, clinical TNM 
stage prediction of RCC, and pathological Fuhrman nuclear 
grading or the World Health Organization and Inter-
national Society of Urological Pathology (WHO/ISUP) 
grading system prediction of ccRCC [16–20]. However, 
prognostic studies of radiomics in patients with ccRCC are 
rarely reported. Currently, there are no studies to predict 
the Leibovich score risk groups based on CT radiomics for 
localized ccRCC patients.

In this study, 425 patients with primary localized 
ccRCC from two medical centers were retrospectively 
enrolled. The purpose is to develop and validate a mul-
tiphase CT-based radiomics model for preoperative risk 
stratification of patients with localized ccRCC.

Materials and methods
Patient
This study was approved by the Ethics Committee 
of two medical institutions, and the requirement for 

informed consent was waived due to the retrospective 
nature of the study.

Data for this study were obtained retrospectively 
from two independent clinical medical centers, which 
were from the First Hospital of Chongqing Medi-
cal University (center 1) from January 2013 to January 
2022 and the Second Hospital of Chongqing Medi-
cal University (center 2) from January 2018 to January 
2022, respectively. According to the following inclusion 
criteria: (1) Patients who underwent partial or total 
nephrectomy and postoperative pathology confirmed 
ccRCC; (2) Patients underwent plain and three-phase 
enhanced CT scan (unenhanced phase, arterial phase, 
portal-venous phase, and excretory phase) within 2 
weeks before surgery. The exclusion criteria were as 
follows: (1) Patients who underwent biopsy or any 
treatment before surgery; (2) Patients with incom-
plete or poor quality plain and three-phase enhanced 
CT images; (3) Patients with recurrent, metastatic 
or bilateral ccRCC; (4) Patients combined with other 
malignant tumors; (5) Patients without complete clin-
icopathological data. All pathological diagnosis was 
rechecked by a pathologist with 10 years of genitou-
rinary experience. Finally, a total of 425 patients were 
enrolled in this study. The enrolled 381 patients from 
center 1 were randomized 7:3 into the training cohort 
and validation cohort, whereas 44 patients from center 
2 were used as an independent external testing cohort. 
The patient recruitment pathway is shown in Fig. 1.

Fig. 1  The flowchart of the patient recruitment process
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CT acquisition and evaluation of clinical imaging 
information
All CT images were acquired by using 64-channel CT 
scanners (Discovery 750 HD, GE Healthcare, Milwaukee, 
WI) or 128-channel CT scanners (Siemens Healthcare, 
Germany) in the axial plane with a tube voltage of 120–
140 kV, tube current of 220–300  mAs, matrix of 512 × 
512, gantry rotation time of 0.5 s, and section thickness of 
5 mm. After intravenous administration of iohexol (300 
mg/mL at a rate of 3.0 mL/s, followed by a 30-mL saline 
flush), contrast-enhanced CT images were captured. 
The total contrast volume for each kilogram was 1.5 mL. 
First, unenhanced phase (U) CT of the abdomen (from 
the superior border of the kidneys to the pubic symphy-
sis) was acquired. Afterward, arterial phase (A), portal-
venous phase (V), and excretory phase (E) were acquired 
at the 25 s, 70 s, and 300 s following the administration 
of the contrast agent, respectively. Two radiologists 
(reader1 and reader2) with 10 and 5 years of diagnostic 
abdominal imaging experience, respectively, evaluated 
the imaging features: tumor location (left or right), tumor 
maximum diameter (maximum diameter of the lesion), 
renal vein invasion (absent or present, tumor thrombosis 
was seen in the renal vein and inferior vena cava), collect-
ing system invasion (absent or present, tumor infiltrates 
renal pelvis or renal cone, or the collecting system is dis-
torted by compression), and the discrepancies were re-
evaluated through a third senior radiologist (FJL chief of 
the radiology department).

Segmentation of tumor and extraction of radiomics 
features
The 3D volumes of tumors were manually delineated as 
tumor regions of interest (ROI) by two radiologists using 
the ITK-SNAP software at three-phase CT images. More 
information can be found in the supplementary material 
(Segmentation of tumor). Using spline interference, all 
images were resampled to symmetrical voxels of 1 × 1 × 1 
mm3. All radiomics features were extracted from three-
phase CT images (unenhanced phase, arterial phase, por-
tal-venous phase) of tumor ROI using the "open-source 
python package" of pyradiomics in Python, according 
to the guidelines of the Image Biomarker Standardiza-
tion Initiative (IBSI) [21, 22]. More details of radiomics 
feature processing can be found in the supplementary 
material (The PyRadiomics setting). The extracted radi-
omics features included the following: first-order fea-
tures; shape features; gray level cooccurrence matrix 
(GLCM) features; gray level size zone matrix (GLSZM) 
features; gray level run length matrix (GLRLM) features 
and gray level dependence matrix (GLDM) features. All 
radiomics features were standardized separately using 

z-scores normalization. Finally, 1218 radiomics features 
were extracted from the tumor ROI of each phase CT 
image, including 1218 unenhanced phase, 1218 arterial 
phase, and 1218 portal-vein phase radiomics features. 
Then a total of 3654 radiomics features were combined 
together for further analysis from the three-phase CT 
images (unenhanced phase, arterial phase, portal-venous 
phase). More information can be found in Supplemen-
tary Table 1.

Clinicopathological data and the Leibovich risk groups
Baseline clinicopathological information included: age, 
sex, tumor size, pathological regional lymph node status 
(PN stage), pathological T category of tumor (PT stage), 
pathological nuclear grade (IUSP grade), and histologi-
cal tumor necrosis. An updated version of the prognos-
tic scoring system named Leibovich 2018 is presented 
based on a recent study, but it requires extensive exter-
nal validation to demonstrate the clinical utility of the 
model [23]. Therefore, we applied the most common Lei-
bovich 2003 scoring system. According to previous stud-
ies, patients with localized ccRCC were categorized into 
two risk groups: low-risk group (Leibovich < 3 score) and 
intermediate-high risk group (Leibovich ≥  3 score) by 
assessing tumor size, PT stage, PN stage, nuclear grade, 
and pathological tumor necrosis [3–5]. The Leibovich 
score criteria are shown in Supplementary Fig. 1.

Feature selection and construction of radiomics signatures
To select radiomics features that discriminated the low-
risk and intermediate-high-risk groups of Leibovich for 
localized ccRCC patients. First, the ROI of the tumor 
was outlined by two radiologists (reader1 and reader2) 
from 30 randomly selected localized ccRCC patients 
with three-phase CT images to evaluate inter-observer 
reproducibility. After 2 weeks, the tumor ROI of these 
30 ccRCC patients was repeatedly outlined by reder1 to 
evaluate intra-observer reproducibility. Second, inter- 
and intra-class correlation coefficients (ICCs) were 
used to evaluate the inter-observer reliability and intra-
observer reproducibility of feature extraction. An ICC 
greater than 0.75 indicates satisfactory inter- and intra-
observer reproducibility. So, radiomics features with 
good reproducibility for ICC > 0.75 were retained for 
further analysis. Third, these robust radiomics features 
were further selected by t-test and the least absolute 
shrinkage and selection operator (LASSO) regression 
algorithm with 5-fold cross-validation. Finally, radiom-
ics signatures were constructed using features selected by 
the LASSO regression algorithm, and the radiomics score 
(Rad-score) for each patient in the training, validation, 
and external testing cohorts was calculated by the weight 
coefficients of features selected by LASSO regression.
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Development of the radiomics model
Multivariate logistic regression of the Rad-score and 
significant clinical factors (age, sex, tumor location, 
tumor maximum diameter, renal vein invasion, and col-
lecting system invasion) were used to select independ-
ent risk factors for predicting the Leibovich risk groups. 
A forward-backward stepwise regression based on the 
minimization Akaike information criterion (AIC) was 
performed to select the optimal model [24]. Ultimately, 
the optimal model of incorporating significant clinical 
factors and Rad-score constructed a radiomics model 
and visualized as a radiomics nomogram. Furthermore, 
to facilitate the application of the prediction model, a 
dynamic nomogram was developed as an interactive 
application to be published online [25].

Model performance evaluation and validation
The discrimination performance of radiomics signatures 
and the radiomics model was evaluated by the receiver 
operating characteristic curve (ROC) analysis with the 
area under the curve (AUC) and 95% confidential interval 
(95% CI). The cutoff value was identified according to the 
maximum Youden’s index and used to calculate the sensi-
tivity, specificity, and accuracy in three cohorts. Calibra-
tion curves are used to evaluate the consistency between 
the predicted probability and the actual probability of the 
radiomics model. Decision analysis curves (DCA) were 

used to evaluate the clinical usefulness of the radiom-
ics model. The overall workflow of this study is shown in 
Fig. 2.

Quality control and transparency
This study strictly adhered to the CLEAR (CheckList 
for EvaluAtion of Radiomics) reporting guidelines to 
improve the credibility, reproducibility, and transparency 
of the study [26]. Detailed information on the CLEAR 
checklist can be found in the supplemental material 
(Supplementary Information- CLEAR checklist).

Statistical analysis
ITK-SNAP (version 3.6.0) was used to outline ROI. Pyra-
diomics package (version 3.0.1) was used to extract radi-
omics features. Statistical analysis is performed by R 
software (version 3.5.1, https://​www.r-​proje​ct.​org) and 
IBM SPSS (version 25; IBM Corporation). A two-sided 
p value less than 0.05 was considered a statistically sig-
nificant difference. Continuous variables were presented 
as the means and standard deviation (SD), and categori-
cal variables were presented as frequencies and percent-
ages. Categorical and continuous variables were analyzed 
using the chi-square test and one-way ANOVA, respec-
tively. The AUC was calculated using the “pROC” pack-
age and compared through Delong’s test. The nomogram 
and calibration curves were plotted using the “rms” 

Fig. 2  The overall workflow of this study

https://www.r-project.org
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package, and the decision curve analysis was performed 
with the “dca.R” package.

Results
Characteristics of patients
In this study, a total of 425 localized ccRCC patients 
were divided into three cohorts. According to a random 
ratio of 7:3, the training cohort consisted of 267 ccRCC 
patients from center 1 and the validation cohort con-
sisted of 114 ccRCC patients from center 1. The exter-
nal testing cohort consisted of 44 ccRCC patients from 
center 2. Univariate analysis showed no significant differ-
ences in patient age, sex, and tumor location in all three 
cohorts (p >  0.05). There were significant differences in 
renal vein invasion, collecting system invasion, tumor 
size, PT stage, IUSP grade, and histological tumor necro-
sis in all three cohorts (p < 0.05). The tumor maximum 
diameter and PN stage were significantly different in the 
training and external testing cohort but not in the vali-
dation cohort (p = 0.536, p = 0.080). The demographic 
characteristics, clinical imaging information, and clinico-
pathological information of the three cohorts are sum-
marized in Table 1.

Feature selection and radiomics signature construction
First, robust features (ICC > 0.75) were selected by inter-
observer and intra-observer consistency, including 1009 
arterial phase radiomics features, 1037 venous phase 
radiomics features, 972 unenhanced phase radiomics 
features, and 3018 triphasic phase radiomics features. 
Subsequently, 300 arterial phase radiomics features, 324 
venous phase radiomics features, 258 unenhanced phase 
radiomics features and 882 triphasic phase radiom-
ics features were eliminated by t-test. Finally, 10 arterial 
phase radiomics features, 12 venous phase radiomics fea-
tures, 12 unenhanced phase radiomics features, and 13 
triphasic radiomics features were retained as the most 
valuable radiomics features for predicting the Leibovich 
risk groups by the LASSO regression algorithm (Fig. 3a, 
b). The weighting coefficients of 13 triphasic radiomics 
features are shown in Fig.  3c. The heat map of correla-
tions between 13 triphasic radiomics features is shown 
in Supplementary Fig.  2. These most worthwhile radi-
omics features constructed three single-phase radiomics 
signatures and a triphasic radiomics signature. The ROC 
curve analysis of four radiomics signatures in the three 
cohorts is shown in Supplementary Fig. 3a–c. The AUC 
of the triphasic radiomics signature reached 0.862 (95% 
CI: 0.809–0.914), 0.853 (95% CI: 0.785–0.921), and 0.837 
(95% CI: 0.714–0.959) in the training, validation, and 
external testing cohorts, respectively, which were higher 
than the arterial, venous, and unenhanced radiomics sig-
natures (Table  2). Therefore, these triphasic radiomics 

features were applied to further study. The triphasic radi-
omics score (T rad-score) was calculated through the 
weight coefficients of these radiomics features. The for-
mula of the triphasic radiomics score is shown in Sup-
plementary Results. According to Delong’s test, there is 
only the difference between the triphasic and the arterial 
phase radiomics signatures (0.853, 0.832, p =0.022) was 
statistically significant in predicting the Leibovich risk 
groups of patients with localized ccRCC, and no statis-
tically significant difference with the unenhanced phase 
(0.853, 0.846, p = 0.392) and the portal-venous phase 
radiomics signature (0.853, 0.831, p = 0.172) in the vali-
dation cohort.

The radiomics model development and evaluation
Multivariate logistic regression analysis showed that T 
rad-score (OR: 5.54, 95% CI: 3.495–8.79) and renal vein 
invasion (OR: 12.91, 95% CI: 1.118–149.112) were inde-
pendent predictors for predicting the Leibovich risk 
groups and used to develop a radiomics model and visu-
alized as a radiomics nomogram when AIC takes the low-
est value (AIC = 206.1) (Table 3). The process of feature 
selection and radiomics model construction is shown in 
Fig.  4. The visualized radiomics nomogram incorporat-
ing the T rad-score and renal vein invasion is shown in 
Fig.  5a. The radiomics model yielded an AUC of 0.872 
(95% CI: 0.821–0.923) in the training cohort, 0.865 (95% 
CI: 0.800–0.930) in validation cohort and 0.848 (95% CI: 
0.728–0.967) in the external testing cohort, respectively 
(Fig.  5b). The predictive performance including AUC, 
95% CI, sensitivity, specificity, accuracy, and cutoff of the 
radiomics model in three cohorts are shown in Table 4. 
The calibration curve based on the radiomics model 
showed good calibration in three cohorts (Fig. 6a–c). The 
DCA showed radiomics model had a higher overall net 
benefit than the intervention-none strategy or the inter-
vention-all strategy for patients in all three study cohorts 
across the majority of the range of reasonable threshold 
probabilities (Fig. 6d).

Application and publication of the model
To facilitate the application of the prediction model, 
we have created a dynamic nomogram as an interac-
tive application to visualize our statistical models which 
is published at https://​ccrcc​leibo​vichr​isk.​shiny​apps.​io/​
DynNo​mapps/. The dynamic nomogram is shown in the 
supplementary material (Supplementary Fig. 4).

Discussion
In this study, we developed and validated a triphasic CT-
based radiomics model which combined significant clini-
cal factors and Rad-score as a non-invasive and novel tool 
to predict the Leibovich risk groups before surgery for 

https://ccrccleibovichrisk.shinyapps.io/DynNomapps/
https://ccrccleibovichrisk.shinyapps.io/DynNomapps/
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localized ccRCC patients. In addition, our study demon-
strated the feasibility and reproducibility of preoperative 
prediction of Leibovich risk groups in localized ccRCC 
patients between different medical centers.

Radiomics potentially addresses this problem as an 
emerging non-invasive tool by extracting a large number 

of high-throughput radiomics features from the images 
[27]. In RCC, radiomics has made significant progress 
in several aspects. Radiomics has been reported to be 
successfully applied in renal tumors, such as benign and 
malignant differentiation of RCC [16] and subtype clas-
sification of RCC [28, 29]. Therefore, for a renal mass, 

Table 1  Comparison of clinical and pathological characteristics of three cohorts

PT Pathological T category of the tumor, PN Pathological regional lymph node status, IUSP The World Health Organization and International Society of Urological 
Pathology grading system

Characteristic Training cohort p value Validation cohort p value External testing 
cohort

p value

Age 57.7 ± 12.0 0.390 56.8 ± 11.7 0.426 65.0 ± 9.0 0.789

Sex 0.780 0.478 0.283

  Male 172 (64.4%) 62 (54.4%) 20 (45.5%)

  Female 95 (35.6%) 52 (45.6%) 24 (54.5%)

Tumor location 0.939 0.063 0.063

  Left 140 (52.4%) 45 (39.5%) 26 (59.1%)

  Right 127 (47.6%) 69 (60.5%) 18 (40.9%)

Tumor maximum diameter 4.3 ± 2.1 < 0.001 4.6 ± 2.2 0.536 4.9 ± 2.0 0.002

Renal vein invasion < 0.001 < 0.001 0.003

  Absent 256 (95.9%) 105 (92.1%) 39 (88.6%)

  Present 11 (4.1%) 9 (7.9%) 5 (11.4%)

Collecting system invasion < 0.001 0.009 0.036

  Absent 179 (67%) 63 (55.3%) 29 (65.9%)

  Present 88 (33%) 52 (45.7%) 15 (34.1%)

Tumor size 3.9 ± 2.0 < 0.001 4.0 ± 1.9 0.002 4.7 ± 1.9 0.015

PT stage < 0.001 < 0.001 < 0.001

  pT1a 168 (62.9%) 63 (55.3%) 17 (38.6%)

  pT1b 48 (18%) 23 (20.2%) 16 (36.4%)

  pT2 9 (3.4%) 5 (4.4%) 6 (13.6%)

  pT3a 39 (14.6%) 19 (16.7%) 5 (11.4%)

  pT3b 3 (1.1%) 4 (3.5%) 0

  pT3c 0 0 0

  pT4 0 0 0

PN stage < 0.001 0.080 < 0.001

  pN0 256 (95.9%) 110 (96.5%) 37 (84.1%)

  pN1 11 (4.1%) 4 (3.5%) 7 (15.9%)

  pN2 0 0 0

ISUP grade < 0.001 < 0.001 < 0.001

  I 68 (25.5%) 29 (25.4%) 9 (20.5%)

  II 165 (61.8%) 64 (56.1%) 21 (47.7%)

  III 29 (10.9%) 19 (16.7%) 12 (27.3%)

  IV 5 (1.9%) 2 (1.8%) 2 (4.5%)

Necrosis < 0.001 < 0.001 < 0.001

  Absent 228 (85.4%) 91 (79.8%) 33 (75%)

  Present 39 (14.6%) 23 (20.2%) 11 (25%)

Leibovich risk groups

  Low risk 194 (72.7%) 75 (65.8%) 27 (61.4%)

  Intermediate risk 59 (22.1%) 33 (28.9%) 12 (27.3%)

  High risk 14 (5.2%) 6 (5.3%) 5 (11.3%)
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first, the benign or malignant nature of the mass can be 
differentiated by radiomics, and if it is a malignant mass, 
such as the most common RCC, the next step can be to 
differentiate the subtypes of RCC by radiomics, such as 

non-clear renal cell carcinoma (non-ccRCC) or clear cell 
renal cell carcinoma (ccRCC). Therefore, the above steps 
can be used to diagnose ccRCC preoperatively by radiom-
ics combined with artificial intelligence (AI). Therefore, 

Fig. 3  The process of triphasic radiomics features selection and radiomics signature construction by the least absolute shrinkage and selection 
operator (LASSO) regression algorithm. a Based on minimum criteria, we selected tuning parameters (λ) with 5-fold cross-validation. The binomial 
deviance was plotted versus log(λ). The upper x-axis indicates the average number of radiomics features. The lower x-axis indicates the log(λ) value. 
The optimal λ value of 0.0578, with log(λ) = − 2.78 was selected. b A coefficient profile plot was generated versus the selected log λ value. c The 
weighting coefficients of each feature. U, unenhanced phase; A, arterial phase; V, portal-venous phase

Table 2  Results of four radiomics signatures’ predictive ability for predicting the Leibovich risk groups in three cohorts

AUC​ Area under the receiver operating characteristic curve, CI Confidence interval, U Unenhanced phase, A Arterial phase, V Portal-venous phase, T triphasic

Model Cohort AUC (95% CI) Sensitivity Specificity Accuracy Cutoff

U radiomics signature Training 0.857 (0.803–0.911) 0.726 0.892 0.846 − 0.640

Validation 0.846 (0.777–0.915) 0.821 0.733 0.763 − 0.910

External testing 0.801 (0.664–0.939) 0.722 0.769 0.750 − 0.746

A radiomics signature Training 0.849 (0.795–0.904) 0.726 0.866 0.828 − 0.730

Validation 0.832 (0.758–0.907) 0.821 0.773 0.789 − 0.870

External testing 0.803 (0.661–0.946) 0.722 0.846 0.795 − 0.717

V radiomics signature Training 0.856 (0.804–0.909) 0.753 0.845 0.820 − 0.889

Validation 0.832 (0.758–0.905) 0.795 0.773 0.781 − 1.004

External testing 0.823 (0.697–0.948) 0.778 0.769 0.773 − 1.215

T radiomics signature Training 0.862 (0.809–0.914) 0.753 0.866 0.835 − 0.794

Validation 0.853 (0.785–0.921) 0.872 0.733 0.781 − 0.999

External testing 0.837 (0.714–0.959) 0.765 0.852 0.818 − 0.589
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our present study can further assess tumor aggressiveness 
to predict the prognosis of patients with ccRCC on this 
foundation. However, this method still needs to be vali-
dated in a large number of prospective and multicenter 
studies. Previous studies have reported that histological 
coagulative necrosis, pathological nuclear grading, and 
TNM stage have been considered significant independ-
ent prognostic factors for ccRCC [30, 31]. Kai et al. [32] 
demonstrated that the CT-based radiomics signature that 
incorporated radiomics and traditional image features 

has the potential to be used as a non-invasive tool for 
preoperative prediction of coagulative necrosis in ccRCC, 
and obtained the best performance with an AUC of 0.942 
in the training set and an AUC of 0.969 in the validation 
set. In addition, several studies suggest that CT-based 
texture analysis may prove to be a useful and promising 
noninvasive tool for assessing ccRCC grading and stag-
ing [18–20]. Nevertheless, these are predictive studies of 
individual prognostic factors, and an integrated system 
combining multiple independent prognostic variables 

Table 3  Multivariate logistic regression analysis of radiomics score and clinical risk factors in the training cohort

OR Odds ratio, CI Confidence interval, T rad-score Triphasic radiomics score

Characteristics Full multivariate model Reduced multivariate model

Coefficient OR (95% CI) p value Coefficient OR (95% CI) p value

Intercept 0.802 0.551

T rad-score 1.962 7.113 (2.517–20.102) < 0.001 1.712 5.543 (3.495–8.79) < 0.001

Age 0.006 1.006 (0.976–1.036) 0.707

Sex 0.185 1.203 (0.563–2.572) 0.633

Tumor location 0.381 1.463 (0.712–3.007) 0.300

Tumor maximum diameter − 0.136 0.873 (0.522–1.458) 0.603

Renal vein invasion 2.714 15.087 (1.187–191.814) 0.036 2.558 12.914 (1.118–149.112) 0.040

Collecting system invasion 0.102 1.107 (0.498–2.46) 0.802

Fig. 4  The process of feature selection for constructing four radiomics signatures and the nomogram of the radiomics model construction. U, 
unenhanced phase; A, arterial phase; V, portal-venous phase; T, triphasic; LASSO, least absolute shrinkage and selection operator, ICC: Intraclass 
correlation coefficient
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can achieve higher outcome prediction accuracy and bet-
ter characterization of tumor heterogeneity and aggres-
siveness for ccRCC [33]. Ji Whae et al. [34] analyzed 354 
patients with ccRCC and constructed an MRI-based 
radiomics model to prove that preoperative MRI radi-
omics can accurately predict the stage, size, grade, and 

necrosis (SSIGN) score of ccRCC. However, this study 
lacks independent external validation, resulting in insuf-
ficient credibility and reproducibility. In addition, CT is 
cheaper and faster than MRI as the first-line preopera-
tive evaluation tool for patients with ccRCC. Likewise, Yi 
et al. [35] constructed a radiomics signature consisting of 

Fig. 5  The visualized nomogram of the radiomics model and the receiver operating characteristic (ROC) curve for the radiomics model in three 
cohorts. a The visualized nomogram of the radiomics model, incorporating the triphasic rad-score (T rad-score) and renal vein invasion, developed 
in the training cohort. b The ROC curve of the radiomics model in training, validation, and external testing cohorts, respectively

Table 4  Results of the radiomics model’s predictive ability for predicting the Leibovich risk groups in three cohorts

AUC​ Area under the receiver operating characteristic curve, CI Confidence interval

Model Cohort AUC (95% CI) Sensitivity Specificity Accuracy Cutoff

Radiomics model Training 0.872 (0.821–0.923) 0.781 0.866 0.843 0.308

Validation 0.865 (0.800–0.930) 0.897 0.733 0.789 0.239

External testing 0.848 (0.728–0.967) 0.765 0.852 0.818 0.388
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sixteen radiomics features from the nephrographic phase 
CT images for patients with ccRCC and found CT radi-
omics signature could be used as a promising non-inva-
sive tool to predict SSIGN risk groups for patients with 
ccRCC. Our findings are consistent with this study. This 
study only analyzed those radiomics features extracted 
from single-phase CT images. However, the radiomics 
features of our study were extracted from three-phase 
CT images of patients with ccRCC and can better charac-
terize the heterogeneity and aggressiveness of the tumor. 
Furthermore, our study was focused on primary localized 
ccRCC and the endpoint of our study is metastasis-free 
survival rather than cancer-specific survival, which can 
better guide clinical decision-making and knowledge of 
disease progression, as well as the formulation of risk-
appropriate follow-up and adjuvant treatment strategies 
[3–5]. Moreover, according to a recent study, the static 
nomogram has many limitations, such as not being eas-
ily updated; excessive reliance on markers and scores on 
the axes, which may lead to unstable results; no report-
ing standards for the nomogram, even if adjusting the 
graphical ratios at the time of printing may lead to inac-
curate scores; and a lack of reproducibility and clinical 

utility [36]. So, to facilitate the application of the pre-
diction model, we have created a dynamic nomogram 
as an interactive application to visualize our statistical 
models which is published at https://​ccrcc​leibo​vichr​
isk.​shiny​apps.​io/​DynNo​mapps/. This makes it easier to 
apply clinically [25]. However, our current study is only 
a preliminary exploratory study, and a large number of 
prospective multicenter studies are needed to further val-
idate our model in the future.

In the present study, we extracted 1218 and 3654 radi-
omics features from monophasic CT and triphasic CT 
images of each ccRCC patient, respectively, and finally, 
filtered 13 radiomics features by LASSO regression algo-
rithm to construct radiomics signatures to predict the 
Leibovich risk groups, including 2 arterial phase features, 
3 venous phase features and 8 unenhanced phase fea-
tures, with AUC of 0.862, 0.853, and 0.837 in the train-
ing, validation and external testing cohorts, respectively. 
We demonstrated that the triphasic radiomics signature 
achieves higher predictive performance and better char-
acterization of tumor heterogeneity and aggressiveness 
than single-phase radiomics signatures in predicting Lei-
bovich risk groups for ccRCC patients.

Fig. 6  The calibration curves and decision curve analysis of the radiomics model. a–c The calibration curves of the radiomics model in the training, 
validation, and external testing cohorts, respectively. d DCA for the radiomics model in the training (blue line), validation (red line), and external 
testing (green line) cohorts, respectively. The x-axis shows the threshold probability and the y-axis represented the net benefit

https://ccrccleibovichrisk.shinyapps.io/DynNomapps/
https://ccrccleibovichrisk.shinyapps.io/DynNomapps/


Page 12 of 14Liu et al. Insights into Imaging          (2023) 14:167 

We finally retained radiomics features including shape 
features, first-order features, and higher-order texture 
features, and the highest proportion of them was the 
original_shape_Maximum2DDiameterColumn feature, 
consistent with previous studies that larger tumors have 
more aggressive and worse prognostic performance for 
ccRCC patients [37, 38].

According to previous studies, prognostic factors for 
patients with RCC include anatomical, histological, clini-
cal, and molecular factors of the tumor [39]. Renal vein 
invasion is one of the significant clinical prognostic fac-
tors of RCC and is associated with aggressiveness and 
poor prognosis of RCC. The venous invasion has been 
reported in approximately 4–10% of RCC cases [40, 
41]. Venous invasion is a poor prognostic sign and can 
increase the risk of tumor metastasis [42, 43]. Our study 
showed that the ultimate radiomics model incorporat-
ing renal vein invasion and Rad-score yielded the high-
est predictive accuracy in predicting the Leibovich risk 
groups with AUCs of 0.872, 0.865, and 0.848 in the three 
cohorts, respectively. Meanwhile, the triphasic radiomics 
signature performed similarly to the radiomics model in 
predicting the Leibovich risk groups with no statistically 
significant differences according to Delong’s test.

DCA is a statistical technique for the evaluation of 
tests or models that focuses on decisions and outcomes. 
A decision curve is used to evaluate whether a model or 
test would be of benefit in the clinic. If results are posi-
tive, then the model or test can be used with appropriate 
patients as part of shared decision-making in the clinic 
[44, 45]. In our study, the DCA showed radiomics model 
had a higher overall net benefit than the intervention-
none strategy or the intervention-all strategy for patients 
in all three study cohorts across the majority of the range 
of reasonable threshold probabilities.

A recent updated version of the Leibovich scoring 
model, namely the Leibovich 2018, identified routinely 
available clinical and pathologic features that can accu-
rately predict progression and death from RCC follow-
ing surgery [23]. However, the Leibovich 2003 version 
is the most commonly used prognostic scoring system 
in clinical practice for localized ccRCC. In addition, the 
Leibovich 2018 model requires a large amount of external 
validation to demonstrate the model’s clinical utility. In 
combination with the above reasons, we studied only the 
Leibovich 2003 prognostic scoring system.

Based on previous studies, the Leibovich prognostic 
scoring system divided patients with localized ccRCC 
into three risk groups: low-risk, intermediate-risk, and 
high-risk groups with five-year metastasis-free prob-
abilities of 97.1% (low-risk), 73.8% (intermediate-risk), 
and 31.2% (high-risk), respectively [5]. In this study, we 
combined the Leibovich intermediate-risk group and the 

high-risk group together for study. The main reasons for 
combining the intermediate-high-risk group in this study 
are: first, due to the limitation of sample size, the sample 
size of patients in the low-risk group is large, while the 
sample size of patients in the high-risk group is small, and 
if this sample is further divided into intermediate-risk 
and high-risk groups for the study may result in too small 
a sample size, leading to overfitting and affecting the reli-
ability and stability of the statistical analysis. Therefore, 
the intermediate-high-risk group was combined in order 
to increase the number of training samples and improve 
the robustness and stability of the prediction model. 
Second, in the clinical setting, patients of the Leibovich 
low-risk group are at a lower risk of postoperative metas-
tasis, while patients of the Leibovich intermediate-high-
risk groups are more likely to experience metastasis. 
For patients of the intermediate-high-risk group, more 
aggressive treatment options can be selected, such as the 
scope and manner of surgical resection needs to be more 
aggressive to reduce the risk of postoperative recurrence 
and metastasis. In contrast, for low-risk patients, unnec-
essary examinations and treatments can be reduced, so 
as to optimize the use of resources. Therefore, it is sig-
nificant to accurately distinguish the Leibovich low-risk 
group from the intermediate-high-risk group for better-
individualized treatment.

Based on some recent systematic reviews, our study has 
many strengths in methodology that make our predictive 
models have better generalizability, reproducibility, and 
clinical utility [46–48]. As detailed in the supplementary 
material (Supplementary Table 2).

This study has several limitations. Firstly, the sample 
size of this two-center retrospective study was limited, 
which may lead to selection bias. Therefore, a prospec-
tive study with a large sample is needed in the future. 
Secondly, the sample in this study was not uniformly dis-
tributed, and the sample of the high-risk group was small 
approximately 6.56% of the total sample size. Therefore, 
this study only explored the prediction of the low-risk 
and intermediate-high-risk groups of Leibovich, and the 
prediction of the intermediate-risk and high-risk groups 
of Leibovich is needed in the future. So, there is a need 
to continue to expand the sample size in the future, 
especially for patients in the Leibovich high-risk group. 
Thirdly, the ROI was manually segmented by radiologists, 
which is time-consuming and easily leads to subjective 
bias. As outlined and recommended in the very recent 
ESR and EORTC consensus paper on standardized lesion 
segmentation for imaging biomarker quantitation, the 
manual segmentation should be checked and corrected 
by a second observer to reach a consensus on the deline-
ations [49]. Therefore, our study did not use a consen-
sus-based segmentation method and was independently 
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segmented by radiologists. Because according to a recent 
study showing that consensus-based segmentation has 
significant reproducibility issues in radiomics [50]. Future 
research should focus on developing automated segmen-
tation methods to improve reliability and reproducibil-
ity. Finally, multi-omics research is the future trend and 
more biomarkers should be incorporated to improve the 
performance of prediction, such as genomics and path-
omics [51, 52].

In conclusion, we developed and validated a tripha-
sic CT-based radiomics model incorporating radiomics 
features and significant clinical factors, and achieved a 
favorable performance in preoperatively predicting the 
Leibovich low-risk and intermediate-high-risk groups in 
patients with localized ccRCC. Meanwhile, we demon-
strated that a multiphase CT-based radiomics method 
can be used for preoperative risk stratification of patients 
with localized ccRCC. Our study conforms to standard 
radiomics processes, addresses some common short-
comings, and achieves a higher radiomics quality score. 
Besides, this visualized nomogram of the radiomics 
model can be used as a non-invasive and effective tool to 
facilitate clinical decision-making and monitoring of dis-
ease progression.
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