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Abstract 

Objectives We sought to investigate if artificial medical images can blend with original ones and whether they 
adhere to the variable anatomical constraints provided.

Methods Artificial images were generated with a generative model trained on publicly available standard and low‑
dose chest CT images (805 scans; 39,803 2D images), of which 17% contained evidence of pathological formations 
(lung nodules). The test set (90 scans; 5121 2D images) was used to assess if artificial images (512 × 512 primary 
and control image sets) blended in with original images, using both quantitative metrics and expert opinion. We 
further assessed if pathology characteristics in the artificial images can be manipulated.

Results Primary and control artificial images attained an average objective similarity of 0.78 ± 0.04 (ranging from 0 
[entirely dissimilar] to 1[identical]) and 0.76 ± 0.06, respectively. Five radiologists with experience in chest and tho‑
racic imaging provided a subjective measure of image quality; they rated artificial images as 3.13 ± 0.46 (range of 1 
[unrealistic] to 4 [almost indistinguishable to the original image]), close to their rating of the original images (3.73 ± 
0.31). Radiologists clearly distinguished images in the control sets (2.32 ± 0.48 and 1.07 ± 0.19). In almost a quarter 
of the scenarios, they were not able to distinguish primary artificial images from the original ones.

Conclusion Artificial images can be generated in a way such that they blend in with original images and adhere 
to anatomical constraints, which can be manipulated to augment the variability of cases.

Critical relevance statement Artificial medical images can be used to enhance the availability and variety of medi‑
cal training images by creating new but comparable images that can blend in with original images.

Key points 

• Artificial images, similar to original ones, can be created using generative networks.

• Pathological features of artificial images can be adjusted through guiding the network.

• Artificial images proved viable to augment the depth and broadening of diagnostic training.
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Graphical Abstract

Introduction
Diagnostic radiology training requires wide availabil-
ity of variable but representative images whose features 
are accurately delineated and/or annotated. In fact, the 
quality of diagnostic skills positively correlates with the 
volume of, and thus, variability among practice cases [1]. 
Furthermore, the trainee benefits from interactive, case-
based learning, where the cases include an ample variety 
and are suited to trainee’s level of experience [2, 3]. To 
this end, simulated training in diagnostic radiology has 
emerged as a means to augment the depth and broaden-
ing of available training cases. The advancement of arti-
ficial intelligence (AI) techniques all but enforced the 
idea of tailoring training options for trainees’ level and 
performance, or “precision education” [3–5]. Underlying 
this idea is the observation that training should promote 
trainee’s experience with a variety of cases but in accord-
ance to trainee’s diagnostic skills, without increasing the 
workload of the educator.

Simulated training can rely on existing material and/
or “new” artificial (or so-called “synthetic”) ones could be 
created. Most applications promote active learning using 

existing medical images, [6] and some allow educators to 
assign cases to individual trainees to promote their expo-
sure to variable and interesting cases [7]. Such applica-
tions do enable precision education and could offer extra 
learning opportunities without the requirement of addi-
tional workload for educators. However, they still require 
a sufficiently large number of cases, which are often diffi-
cult to secure. AI-based synthetic images have been sug-
gested to aid training in different contexts [8–10].

The representation of synthetic images can be created 
while adhering to specific conditions and constraints. In 
other words, synthetic images can be created in real time 
to conform the experience or variety of cases a trainee 
will see. However, to be useful in radiology education, it 
is critical that the created synthetic images “look” suffi-
ciently similar to the original ones and that they enable 
precise control over image characteristics.

We sought to investigate if semantic image synthesis 
networks can create images that can sufficiently blend in 
with real radiographic images and whether they allow a 
reasonable degree of control of anatomical and patholog-
ical features.
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Methods
Data
As a use-case for this study, we used the publicly available 
Lung Image Database Consortium and Image Database 
Resource Initiative (LIDC-IDRI) data set [11–13]. While 
radiographic lung images are readily available at suffi-
cient volume for training, our choice was deliberate. First, 
this data set contains a large number of clinical CT scans: 
1018 diagnostic and screening scans, both with and with-
out pathological features (lung nodules). Second, the 
images were obtained using either standard or low-dose 
CT. Third, relevant lesions and features were annotated 
by four experienced thoracic radiologists via consensus, 
though images were not annotated with lesion attributes. 
LIDC-IDRI comprises CT scans from different institu-
tions and individuals, making it a diverse dataset in terms 
of patient demographics. However, specific demographic 
information about the patients, such as age, sex, and eth-
nicity, are not available publicly due to privacy concerns 
[13]. Thus, this data set provided a unique opportunity to 
test the reliability, realism, and utility of synthetic images 
for diagnostic radiology training; our methods (and 
results; below) are agnostic to the image modality, body 
part, or pathological features.

Upon retrieval, slices in each scan were harmonized by 
clipping the Hounsfield Units at [−1350, 150], the lung 
window [14]. 2D slices were retained at their original 
resolution of 512 × 512 pixels, and 17% of all 2D slices 
contained lung nodules. Detailed information about scan 
selection and pre-processing of 2D images can be found 
in Appendix 1 section A1.

Semantic image synthesis
Semantic image synthesis networks, a type of AI, pro-
vide a unique opportunity to realize precision education 
and to improve diagnostic skills. These networks con-
stitute a specific type of generative adversarial network. 
They rely on additional “semantic” information to create 
(“synthesize”) the gross image features. This informa-
tion is embedded in an image or map through labeling 
of, for instance, separate organs or pathological features. 
This way information can be introduced to the synthetic 
image that was different (or even not present) in the orig-
inal, actual image (see Fig. 1).

In this work, we used the network developed by Park 
et  al. [15], which seeks to better preserve the seman-
tic information in the synthetic image. In this context, 
semantic information is described as the information 
about which pixel belongs to which object or group 
in an image. We chose this network mostly because 
of its potential to create a variety of images and partly 
because of the ease of implementation, not necessarily to 

create the “most realistic” synthetic image. The pipeline 
for training and evaluation of the network is depicted in 
Fig. 1. Further details of the training and network param-
eters are described in Appendix 1  section  A1. All code 
necessary to replicate our results is provided at https:// 
github. com/ UT- RAM- AIM/ Reali sm- Study.

Annotation maps
The semantic image synthesis network utilizes a map of 
pre-determined features to create images similar to, but 
distinct from the original images. This allows them to be 
guided to manipulate arbitrary features (a.k.a. “  anno-
tation maps”; in our case, anatomical and pathological 
characteristics) of the output synthetic image. In this 
work, we used annotation maps akin to a segmentation 
map, that reflect each of the major objects in the images. 
It is the same size as the 2D image slices, 512 × 512 pix-
els, and can offer guidance and constraints to the shape 
and location of the target features.

The annotation maps in this work included five labels. 
We algorithmically segmented the original LIDC-IDRI 
images to obtain annotations that identify the full body, 
soft tissue, dense tissue, and total lung area (Appendix 
1  section A1). Manual annotation provided by LIDC-
IDRI was used to delineate lung nodules, if any, as the 
fifth label. These five labels were deemed to contain 
enough information, based on known anatomy, to guide 
the semantic synthesis network.

Original images and corresponding annotation maps 
were randomly split into a training and validation set 
and an independent test set. Details about obtaining the 
annotation map, data split, and selection of the slices are 
described in Appendix 1 section A1.

Quality evaluation
To assess whether synthetic images (primary set) can 
be used along with the original ones, we created addi-
tional synthetic images of lesser quality than the primary 
set. Specifically, as negative controls, we created a set of 
synthetic images that are of reasonable quality, but have 
serious flaws (control set 1), and another set that was 
obviously not real (control set 2). This was critical to eval-
uate the extent to which the primary synthetic image set 
can blend in with the original image set, relative to those 
with deliberately low realism and those that are obviously 
unrealistic. To this end, we trained the network for a sec-
ond and third time with, respectively, 2% and 0.3% of the 
main training data set. Details about data split and net-
work training for both subsets can be found in Appen-
dix 1 section A1. This way, we ensured that the apparent 
quality of the primary set was not due to other intrinsic 
factors (e.g., attention paid by the radiologists, their expe-
rience, etc.).

https://www.github.com/UT-RAM-AIM/Realism-Study
https://www.github.com/UT-RAM-AIM/Realism-Study
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The degree to which the synthetic images are similar to 
original images can be assessed both quantitatively and 
qualitatively. However, for quantitative metrics, there is 
no consensus on a single best metric and their validity in 
clinical setting [16, 17]. In particular, quantitative metrics 
may not always reflect expert judgment [18–21]. Though 
qualitative, perception of domain experts is a valid, relia-
ble, and interpretable approach that also signifies clinical 
relevance of the synthetic images [8, 19, 20, 22]. To deter-
mine if these four sets ((1) original images, (2) primary 
synthetic set, (3) synthetic control set 1, and (4) synthetic 
control set 2) are distinguishable, the sets of images were 
evaluated both quantitatively and qualitatively.

As the main quantitative metric, we used the Structural 
Similarity Index Measure (SSIM). The SSIM is based on 

pairwise comparisons, i.e., comparison of the original 
image with the corresponding synthetic image. It ranges 
from 1 to 0 representing, respectively, identical and 
completely dissimilar images. This choice was based on 
the consideration of interpretability of the metric: since 
multiple types of metrics are available that assess differ-
ent properties of the synthetic image compared to the 
original one, we also derived four other common met-
rics; see Appendix 1 section A2. The impact of the size of 
the training set in the primary synthetic set and the two 
control sets was tested for statistical significance using 
a one-way ANOVA followed by a post-hoc Tukey’s test. 
We tested the hypothesis that the primary synthetic set 
will achieve a SSIM score closer to 1 compared to control 
sets 1 and 2.

Fig. 1 Workflow of obtaining the annotation maps and training and testing the semantic image synthesis network. The semantic image 
synthesis network consists of three models (light blue): the encoder, the generator, and the discriminator. It takes an annotation map as input 
and is additionally guided by an original image. The feedback from the discriminator allows all three models to learn during training and is discarded 
during evaluation
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In addition to quantitative measures, we sought expert 
opinion based on previous approaches [19]. Five radi-
ologists were asked to assess 60 quartets of 512 × 512 
images. Three out of the five were board-certified radi-
ologists in the Netherlands and one was board-certified 
in the USA, all with > 10 years of experience in thoracic 
CT. The fifth was a radiology fellow in The Netherlands 
with 3 years of experience in thoracic CT. Every quartet 
contained one original image, selected randomly from 
the test data set, and three synthetic images (primary set, 
control set 1, control set 2). All synthetic images were 
generated using the same original annotation map that 
corresponds to the original image. The radiologists were 
presented with a quartet, with the location of each image 
within the quartet assigned randomly. The radiologists 
were blinded to which image was the original one. First, 
the radiologists were asked to indicate the image that is 
the original image. Second, the radiologists were asked 
to score the quality of each image in a given quartet on 
a scale from 1 (unrealistic) to 4 (almost indistinguishable 
from the original image). Ordinal regression was used to 
test the ranking of the expert rating across original and 
synthetic images created. We tested the hypothesis that 
radiologists are able to distinguish original and synthetic 
images.

Manipulating annotations
To explore the capabilities of the semantic image synthe-
sis network, we manipulated information in the annota-
tion map that corresponds to the main pathology, lung 
nodules, as it is the most clinically salient feature. In 
particular, we used removal, insertion, and relocation of 
the lung nodule label in the annotation map. Through 
this approach, we investigated if the resulting synthetic 
images also adhere to these new constraints.

A second option to provide guiding information is to 
provide an original image to the network. In this case, 
the new synthetic image will have the appearance of that 
particular guiding original image. This adjusted synthetic 
image will still adhere to the annotation map and there-
fore only reflect variability due to, e.g., scanner differ-
ences such as visibility of a gantry or overall intensity in 
the image. We also explored this “example-guided syn-
thesis” by guiding the network with different original 
images, while keeping the annotation map the same.

Results
After pre-processing, the final training data set con-
sisted of 39,803 slices from 806 individuals (see Appendix 
A1 for scan and slice selection). Trained synthesis net-
work was evaluated using a test set of 5121 slices from 
90 scans, resulting in a created synthetic set of also 
5121 images. Visual inspection confirmed that large 

anatomical structures in the synthetic images corre-
sponded to those in the original image (Fig. 2). This was 
done to ensure that synthetic images adhered to the con-
straints of anatomical structures indicated by the annota-
tion map. In addition, we inspected synthetic images to 
ensure the absence of artefactual structures that were not 
guided or constraint by the annotation map, inside the 
lung, and/or nodule area. Inside the lung area differences 
can be seen in the visualized pulmonary vessels. Further-
more, the lung nodule appears more solid in the synthetic 
image. Synthetic images of the primary set show more 
detail than those from control sets 1 and 2 (Fig. 3).

Synthetic images generated from the primary set 
attained an SSIM of 0.78 ± 0.04 (95% CI [0.74, 0.75]). 
Those generated from control sets 1 and 2 attained an 
SSIM of, respectively, 0.78 ± 0.05 and 0.76 ± 0.06. The 
mean SSIM of the three distributions, the primary set 

Fig. 2 Two examples of original images (top) with corresponding 
annotation maps (middle) and synthetic images (bottom) 
from the trained semantic synthesis network. The colors of semantic 
label maps indicate the five labels; body, soft tissue, dense tissue, lung 
area, and nodule area
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and two control sets, was significantly different (F = 
175.67, p < 0.001). Tukey’s post-hoc test showed that this 
difference was driven by the network trained on control 
set 2 (p = 0.98 for primary set vs control set 1, p < 0.001 
for primary set vs control set 2, and p < 0.001 for con-
trol set 1 vs 2). The results of the additional metrics are 
shown in Additional file 1: Appendix A2.

To obtain expert opinion, 60 quartets of images were 
assessed by four radiologists. A fifth radiologist com-
pleted assessment of 21 quartets. Therefore, in total, 261 
quartets were evaluated. In 93.1% and 100% of the quar-
tets the synthetic images from, respectively, control set 1 
and control set 2 were correctly identified as not origi-
nal (Table  1). In contrast, in over a fifth of the quartets 
(21.5%), our synthetic images created using the primary 
set were identified as the original image. Of the first 21 
quartets, 3 were identified as the original image by all 
five radiologists, 7 by four, and 11 by three or less. Of the 
remaining 39 quartets, 18 were identified correctly by all 
four radiologists, 11 by three, and 10 by two or less.

Primary synthetic images achieved the highest score 
after the original images, with an average score (1–4) of 
3.13 ± 0.46, somewhat lower than the original images 
(3.73 ± 0.31). As expected, synthetic images from the 
two control sets scored lower, with ratings of 2.32 ± 0.48 
and 1.07 ± 0.19. The mean expert score was different for 
at least one of the distributions (F = 987.68, p < 0.001). 
Tukey’s post-hoc test showed pairwise differences across 
images from all sets (p < 0.001). Consistent with these 
results, radiologists’ score was closely related to the set 
(primary, control set 1, control set 2) a synthetic image 
originated from (ordinal regression, p < 0.001).

Manipulating annotations
After removal, insertion, adjustment, and relocation of 
the primary pathology (in our case, lung nodules), syn-
thetic images adhered to these constraints provided by 
the annotation maps (Fig.  4). Furthermore, the network 
was additionally guided by two different images obtained 
using a different scanner with variable visibility of the 
gantry and overall intensity. The appearance of the syn-
thetic images did change in parallel to the guidance scan-
ner view, but still adhered to the constraints imposed by 
the annotation map (Fig. 5).

Fig. 3 Two examples of original images (row 1) with corresponding 
annotation maps (row 2) and resulting synthetic images (rows 3, 
4, and 5) from the trained semantic synthesis network with 100% 
(primary set), 2% (control set 1), and 0.3% (control set 2) of the data, 
respectively
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Discussion
Our results show that synthetic images can be cre-
ated as additional “new” images similar to the origi-
nal ones and that their pathological features can be 
varied through manipulation of the guiding annota-
tion map. This demonstrates the feasibility of medi-
cal image generation with full field-of-view, with and 
without pathological features, and without the need for 
explicit manual annotation. Synthetic images can be 
manipulated to add to the breadth of the cases seen by 
the trainee in an adaptive way tailored to their level of 
experience in real time.

As expected, independent radiologists were able to 
identify the original image for most cases. However, 
in over 20% of the cases, they did identify synthetic 
images as “original.” This supports our initial hypothesis 
that synthetic images are reasonably realistic. In fact, 
while the radiologists were able to successfully identify 
unrealistic images (negative control sets 1 (93%) and 2 
(100%)), their average rating of synthetic images was 
close (3.13) to what is expected from an original image. 
This was higher than the rating of negative (i.e., deliber-
ately unrealistic) controls. There may be characteristics 
of the synthetic images that influence radiologists’ abil-
ity to distinguish original and synthetic images. How-
ever, these can be reader-dependent and cannot always 
be explicitly defined (e.g., “vascular structures are too 
vague”). It could be interesting to assess this in future 
research as it can point toward potential improvements 
for image synthesis.

It is important to note that a number of similar prior 
studies relied on a binary rating (real or not real) [23–
25]. This is in contrast to our approach, where radiolo-
gists were asked to identify the original images among 
four synthetic ones, and to rate the quality of both 
synthetic and original images. This design is deliber-
ate; it has the advantage of probing the ability of radi-
ologists to discriminate between original and synthetic 
images (as opposed to “guessing” the latter). Therefore, 
it allows us to not only probe the quality of the images, 

but also to objectively quantify their degree of qual-
ity compared to a negative control. We cannot assess 
to what extent a synthetic image can “pass the real-
ism test” in the absence of the corresponding original 
image available for viewing alongside the synthetic one. 
Nonetheless, our results do demonstrate that synthetic 
images may blend in with original ones, augmenting the 
pool of images to facilitate the training of radiologists.

Quantitative similarity metric results were less 
expected. In particular, while synthetic images attained 
an SSIM of 0.78 on average, this was not significantly dif-
ferent from the SSIM attained by control set 1 (0.78). It 
is difficult to compare the obtained SSIM to results from 
other studies, since synthetic images are created at dif-
ferent resolutions [26] or with some regions masked out 
to focus on areas of interest [27]. Therefore, there is no 
established benchmark. Scores vary from 0.25 [28], to 
0.80 [29] and 0.89 [27] in other studies similar to ours.

In our study, SSIM scores were in contrast to our 
expectation that the primary synthetic image set would 
have a higher mean similarity than control set 1. This is 
likely to be related to the apparent validity of these quan-
titative metrics (or the lack thereof ) [21]. SSIM is primar-
ily a metric of the similarity vis-a-vis structure, contrast, 
and luminance. Therefore, it is likely that SSIM reflects 
the similarity of images in structural appearance in con-
trast to the similarity in terms of perception. We can-
not reconcile their apparent mismatch with radiologist’ 
scores, nor can we ascertain whether or how quantitative 
metrics are congruent with expert opinion. However, it is 
likely that the features a  radiologist implicitly considers 
are more complex, at the interaction of structural, per-
ceptual, and conceptual processing [30, 31]. Nonetheless, 
as we pointed out in the introduction, we relied primar-
ily on expert opinion given their ecological validity and 
clinical relevance.

Our work also shows that features of synthetic images 
can be altered. This is similar to a prior study [32], which 
corroborates our findings that synthetic images are struc-
turally editable through adjustment of annotation maps. 
However, the focus of the prior study was limited to 
the gross appearance of pathologic features (as a conse-
quence of COVID-19 infection), whereas our work pro-
vides a more targeted and variable approach. Our study, 
along with the prior one, highlights the need for research 
on synthetic image generation with different organs and 
imaging modalities.

Our research is not without limitations. First, 
although we were successful in controlling the presence 
and location of the pathological feature (lung nodule) 
in the synthetic image, we did encounter a few arte-
factual features. For example, the texture or appear-
ance of a nodule in a synthetic image, as was shown in 

Table 1 Domain expert scoring of original and synthetic images. 
The second column shows the percentage of each set identified 
as the original image. The third column shows the average score 
radiologists have assigned to images in each set

Data set % identified as the 
original image

Average score

Original images 71.7% 3.73 ± 0.31

Primary set (39,803 images) 21.5% 3.13 ± 0.46

2% subset (control set 1) 6.8% 2.32 ± 0.48

0.3% subset (control set 2) 0% 1.07 ± 0.19
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Fig. 2, could be quite different compared to the original 
image. Furthermore, we observed that the texture was 
very similar across most synthetic nodules (see Appen-
dix 1 Figure A1 for an example). This is likely a conse-
quence of the amount of information about the nodules 
provided to the network during training, compared to 

other, much larger, structures in the images (e.g., lungs, 
bone structures). Therefore, during generation, the net-
work may have primarily relied on an “averaged” tex-
ture of a nodule. Future work should explore how more 
detailed structural information can be incorporated 
during image generation.

Fig. 4 Examples of manipulation of the lung nodule label in the annotation map and corresponding synthetic image. The first row shows 
the original image with corresponding annotation map and synthetic image. In the second row, the original nodule label is removed. In the third 
a different one is added in a different position. Rows four and five show adjusting and relocating the nodule label respectively. Dark green arrows 
indicate the (synthetic) nodule
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Second, random assignment of the (synthetic) images 
presented to expert radiologists may have resulted in 
unintended consequences of occasional images that 
reflect the very last section of a scan, with minimal lung 
area. This may have facilitated experts’ recognition of 
synthetic images. This reflects a broader limitation of 
synthetic image generation. The quality of the synthetic 
images partly depends on the quality of the guiding 
annotation maps (“garbage-in-garbage-out”). Since the 
algorithm used to create the annotation maps is based 
on image segmentation, it will inherit all the inaccura-
cies present in the original image.

Lastly, the use-case in this work is focused on creat-
ing synthetic 2-dimensional images, which is in contrast 

to how radiologists review scans in the clinical setting. 
This limitation, in our case, was unavoidable. Creating 
3-dimensional images require substantially higher com-
putational power, beyond what was available to us. Fur-
thermore, generating 3-dimensional images poses the 
additional challenge of annotating other features, such as 
vascularization in the guidance image. The LIDC/IDRI 
database does not provide information or annotations 
beyond lung nodules. However, to provide an experience 
as realistic as possible in precision education, future 
work should focus on 3-dimensional synthetic images.

Despite its limitations, our work highlights the feasibil-
ity and utility of synthetic images in the context of preci-
sion education in diagnostic radiology skills training. In 
particular, our ability to manipulate pathological features 
suggests that it may be possible to create synthetic images 
that reflect the presentation of different features, such 
as benign and malignant tissue. This, in turn, can open 
up new venues for exploring subtle alterations in tissue 
characteristics that impact pathological presentation, to 
explore cross-modality translation of medical images, or 
to facilitate implementation of learning programs where 
each individual (or algorithm) is presented by a series of 
(synthetic) images that are tailored to existing skill level. 
Moreover, although our use-case was chest CT with lung 
nodules, our results support the feasibility and potential 
utility of similar approaches for other imaging modali-
ties, organs, and/or pathologies. While our study was 
not designed to explore these applications, it provides an 
early step toward using synthetic images in this medical 
educational context.
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