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Abstract 

Objectives To develop and validate an 18F‑FDG PET/CT‑based clinical‑radiological‑radiomics nomogram and evalu‑
ate its value in the diagnosis of MYCN amplification (MNA) in paediatric neuroblastoma (NB) patients.

Methods A total of 104 patients with NB were retrospectively included. We constructed a nomogram to predict MNA 
based on radiomics signatures, clinical and radiological features. The multivariable logistic regression and the least 
absolute shrinkage and selection operator (LASSO) were used for feature selection. Radiomics models are constructed 
using decision trees (DT), logistic regression (LR) and support vector machine (SVM) classifiers. A clinical‑radiological 
(C‑R) model was developed using clinical and radiological features. A clinical‑radiological‑radiomics (C‑R‑R) model 
was developed using the C‑R model of the best radiomics model. The prediction performance was verified by receiver 
operating characteristic (ROC) curve analysis, calibration curve analysis and decision curve analysis (DCA) in the train‑
ing and validation cohorts.

Results The present study showed that four radiomics signatures were significantly correlated with MNA. The SVM 
classifier was the best model of radiomics signature. The C‑R‑R model has the best discriminant ability to predict MNA, 
with AUCs of 0.860 (95% CI, 0.757–0.963) and 0.824 (95% CI, 0.657–0.992) in the training and validation cohorts, respec‑
tively. The calibration curve indicated that the C‑R‑R model has the goodness of fit and DCA confirms its clinical utility.

Conclusion Our research provides a non‑invasive C‑R‑R model, which combines the radiomics signatures and clini‑
cal and radiological features based on 18F‑FDGPET/CT images, shows excellent diagnostic performance in predicting 
MNA, and can provide useful biological information with stratified therapy.

Critical relevance statement Radiomic signatures of 18F‑FDG‑based PET/CT can predict MYCN amplification 
in neuroblastoma.

Key points 

• Radiomic signatures of 18F‑FDG‑based PET/CT can predict MYCN amplification in neuroblastoma.

• SF, LDH, necrosis and TLG are the independent risk factors of MYCN amplification.

• Clinical‑radiological‑radiomics model improved the predictive performance of MYCN amplification.
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Graphical Abstract

Introduction
Neuroblastoma (NB) is the most common extra cranial 
solid tumour of childhood. It can develop anywhere in 
the sympathetic nervous system, such as the adrenal 
gland or sympathetic ganglion, and it is characterised by 
significant tumour heterogeneity [1]. MYCN amplifica-
tion (MNA) is one of the well-known prediction markers 
of poor outcome in NB [2] and is associated with 15–35% 
survival rate in high-risk patients, even in patients with 
otherwise favourable outcome profiles [3, 4]. As a result, 
detecting MNA is critical for the patients’ risk stratifi-
cation. Traditional biopsy, on the other hand, may not 
always be accessible and result in a variety of complica-
tion [5]. Meanwhile, the availability of MYCN detection 
is hampered by the limited access to genetic assays by 
many institutions [6], hence the need to develop another 
non-invasive method to characterise MNA.

In recent years, the increasing application of radi-
omics in solid tumours has led to the emergence of 
radiogenomics. Radiogenomics is based on analysing 
high-dimensional quantitative signatures extracted 
from tumour regions of interest (ROIs) in radiologi-
cal images [6] to identify and predict the expression of 

clinically significant molecular biomarkers of tumours 
[7]. Compared with histopathology and genetic testing 
methods, radiogenomics not only overcomes sampling 
bias and potential complications caused by biopsy but 
also is expected to provide more comprehensive and 
accurate information for predicting biomarkers [6].

Some studies attempted to predict MNA using a CT-
based radiogenomics model [5, 8, 9]. However, these 
studies were limited by the lack of validation cohort, 
small sample size or lack of radiological features. In 
addition, although there was evidence that includ-
ing clinical risk factors and radiological features could 
improve the diagnostic performance of the model, 
they had not been included in previous models [8.9]. 
Our previous studies have demonstrated the value of 
18F-fluorodeoxyglucose positron emission tomogra-
phy/computer tomography (18F-FDG PET/CT) based 
radiomics in the diagnosis of the mitosis-nuclear rup-
ture index in paediatric NB and in predicting recur-
rence in high-risk patients [10, 11].

As a result, in this study, we developed a radiog-
enomic model based on the radiomics signature of 
18F-FDGPET/CT before treatment to predict MNA 
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paediatric patients. In addition, we present a visual 
radiogenomics nomogram that incorporates radiomics 
signatures, clinical factors, and radiological features.

Materials and methods
Patients
Our institution’s institutional review board approved 
this retrospective study. From January 2019 to Septem-
ber 2021, we obtained the clinical data of 154 patients 
with NB confirmed by pathology and collected their pre-
operative 18F-FDG PET/CT images. The inclusion cri-
teria were as follows: (1) pathologically confirmed NB; 
(2) ≤  18 years at first diagnosis; (3) A 18F-FDG PET/
TC scan was made before operation or biopsy (within 4 
weeks) (4) without any radiotherapy, chemotherapy or 
surgical treatment received before the 18F-FDG PET/CT 
examination included or of interest; (5) complete clinical 
information (Laboratory examination and bone marrow 
biopsy results); (6) available MNA data. Subsequently, 
50 patients were excluded, including 27 patients without 
complete clinical information, and 23 patients had the 
above treatment at first diagnosis. According to the result 
of biopsy or surgery, there were 65 patients with MNA 
and 39 patients without MYCN amplification (Wild). 
All patients were assigned to the training and validation 

cohorts at random in a 7:3 ratio. Figure 1 depicts the flow 
chart for patient selection.

The baseline data of each patient were obtained by 
reviewing the medical records and 18F-FDGPET/CT 
imaging. Clinical factors included age, gender, neu-
ron-specific enolase (NSE), serum ferritin (SF), lactate 
dehydrogenase (LDH), vanillylmandelic acid (VMA) 
and homovanillic acid (HVA) level in a 24-h urine 
sample.

The radiological features (Table  1) of all patients were 
evaluated on a workstation (syngo.via, Siemens) by two 
nuclear medicine physicians with 5 and 10 years of expe-
rience in paediatric oncology diagnosis, respectively. But 
they were blinded to the clinical and histopathological 
diagnosis. In the event of a disagreement, a consensus was 
reached after further discussion. 18F-FDGPET/CT radio-
logical features included International Neuroblastoma 
Risk Group Staging System (INRGSS), anatomical com-
partment, infiltration across the midline, calcification, and 
necrosis. Meanwhile, three conventional PET parameters 
were extracted from primary tumours (maximum stand-
ard uptake values (SUVmax), metabolic tumour volume 
(MTV), and total lesion glycolysis (TLG). Table  1 sum-
marises the clinical factors and radiological features of the 
patients in the training and validation cohorts.

Fig. 1 The flow chart for patient selection
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Table 1 Characteristics of patients with neuroblastoma in the training cohort and validation cohort

NSE Neuron-specific enolase, SF Serum ferritin, LDH Lactate dehydrogenase, VMA VAnillylmandelic acid, HVA Vanillylmandelic acidand, INRGSS International 
Neuroblastoma Risk Group Staging System, SUVmax Maximum standard uptake values, MTV Metabolic tumour volume, TLG Total lesion glycolysis, L1 Localised 
tumour not involving vital structures as defined by the list of image-defined risk factors and confined to one body compart men, L2 Locoregional tumour with 
presence of one or more image-defined risk factors, M Distant metastatic disease (except stage MS), MS Metastatic disease in children younger than 18 months with 
metastases confined to skin, liver, and/or bone marrow

Characteristics All Patients (n = 104) Training cohort (n = 74) Validation cohort (n = 30) p value

MYCN gene status 0.263

 Amplified 65 (62.5%) 41 (55.4%) 24 (80.0%)

 Not Amplified 39 (37.5%) 33 (44.6%) 6 (20.00%)

Clinical factors
 Age at diagnosis 0.828

  ≥ 18 mos at diagnosis 80 (76.9%) 56 (75.7%) 24 (80.0%)

  < 18 mos at diagnosis 24 (23.1%) 18 (24.3%) 6 (20.0%)

 Gender 0.541

  Female 62 (59.6%) 46 (62.2%) 16 (53.3%)

  Male 42 (40.4%) 28 (37.8%) 14 (46.7%)

High NSE (> 16.3 ng/mL) 103 (99.0%) 73 (98.7%) 30 (100.0%) 1.000

Normal NSE(≤ 16.3 ng/mL) 1 (1.0%) 1 (1.3%) 0 (0.0%)

High SF (> 115 ng/mL) 49 (47.1%) 32 (43.2%) 17 (56.7%) 0.305

Normal SF(≤ 115 ng/mL) 55 (52.9%) 42 (56.8%) 13 (43.3%)

High LDH(> 662.5 U/L) 36 (34.6%) 24 (32.4%) 12 (40.0%) 0.612

Normal LDH(≤ 662.5 U/L) 68 (65.4%) 50 (67.6%) 18 (60.0%)

High VMA (> 68.6 μmo/L) 70 (67.3%) 50 (67.6%) 20 (66.7%) 1.000

Normal VMA(≤ 68.6 μmo/L) 34 (32.7%) 24 (32.4%) 10 (33.3%)

High HVA(> 40 μmol/L) 56 (53.8%) 36 (48.7%) 20 (66.7%) 0.146

Normal HVA(≤ 40 μmol/L) 48 (46.2%) 38 (51.3%) 10 (33.3%)

PET/CT radiological features
 INRGSS 0.920

  L1, L2, MS 39 (37.5%) 42 (56.8%) 16 (53.3%)

  M 65 (62.5%) 32 (43.2%) 14 (46.7%)

 Thoracic primary 1.000

  Yes 13 (12.5%) 9 (12.2%) 4 (13.3%)

  No 91 (87.5%) 65 (87.8%) 26 (86.7%)

 Adrenal primary 0.705

  Yes 73 (70.2%) 52 (70.3%) 21 (70.0%)

  No 31 (29.8%) 22 (29.7%) 9 (30.0%)

 Infiltrating across midline 0.473

  Yes 48 (46.2%) 32 (43.2%) 16 (53.3%)

  No 56 (53.8%) 42 (56.8%) 14 (46.7%)

 Calcification 0.200

  Yes 72 (69.2%) 48 (64.9%) 24 (80.0%)

  No 32 (30.8%) 26 (35.1%) 6 (20.0%)

 Necrosis 0.887

  Yes 77 (74.0%) 54 (73.0%) 23 (76.7%)

  No 27 (26.0%) 20 (27.0%) 7 (23.3%)

SUVmax (Median ± IQR) 4.600 (3.8, 6.200) 4.500 (3.625, 6.175) 4.750 (4.225, 6.150) 0.482

MTV (mL) (Median ± IQR) 116.8 (40.2, 208.5) 221.650 (73.700, 415.625) 322.750 (137.050, 632.825) 0.113

TLG (Median ± IQR) 253.5 (81.6, 486.2) 103.750 (39.475, 163.450) 136.750 (48.600, 291.000) 0.149
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Analysis of the MYCN gene status
MNA was determined using FISH from paraffin-embedded 
tissue obtained by biopsy or surgery at the time of initial 
diagnosis, as previously published [12]. MNA was defined 
as a > fourfold increase in signals, according to the Euro-
pean Neuroblastoma Quality Assessment group [13, 14].

PET/CT image acquisition
All patients were performed with a full body (from apex 
to toe) 18F-FDGPET/CT scanner (Biograph mCT-64 
PET/CT; Siemens) [15]. They were asked to fast for at 
least 6  h and cut back on high-intensity exercise for at 
least 24 h before the injection. 18F-FDG (provided by 
Beijing Atomic High-tech Company) were injected intra-
venously 40–60 min before PET/CT scan. First, anatomi-
cal reference and attenuation correction were performed 
using low-dose CT scans, corrected with 120 kV tube 
voltage and auto-modulated tube current. CT image 
parameters are as follows: resolution 0.586 mm ×  0.586 
mm, slice thickness 2 mm, matrix size 512 ×  512. PET 
scan was performed immediately after whole-body CT 
scan for 2 min per bed. The ordered subset expectation 
maximisation (OSEM) time-of-flight (TOF) algorithm 
was used to reconstruct PET images. PET image param-
eters are as follows: resolution 4.07 mm × 4.07 mm, slicer 
thickness 3 mm, matrix size 200 × 200.

Radiomics signature selection
Tumour segmentation and feature extraction were done 
as follows: to ensure the quality of the extracted radi-
omics features, 3D Slicer (version 4.10.2, funded by the 
National Institutes of Health) was used for medical image 
registration. The primary tumour delineation was per-
formed using fixed SUV threshold method. According 
to the result of previous studies, 40% of SUVmax is set 
as the threshold for the images [16–18]. In this method, 
3-D contours are drawn around voxels equal to or greater 
than 40% SUVmax. For the volume of interest (VOI) con-
taining more than one cluster, the cluster which has max-
imum uptake intensity and volume is selected. A manual 
verification after automatic segmentation was performed; 
special attention was paid to tumour located near the uri-
nary bladder due to intense physiological urinary tracer 
activity. If the VOI was found to be incorrect, additional 
manual adjustments were required. The VOIs included 
the lesion’s calcification and necrosis areas [19]. To mini-
mise between-observer differences [20], each VOI was 
confirmed by two children’s nuclear medicine doctors 
(Q.L.D. and W.W.). For each precisely segmented VOI, 
the radiomics signature in the VOI was automatically 
extracted using radiomics in the open-source Python 
package (https:// pyrad iomics. readt hedocs. io/ en/ Latest/). 
In each VOI, 1720 radiomics signatures were extracted 

from PET and CT images. These signatures include the 
following: (1) first-order features, (2) shape features, (3) 
and texture signatures (including grey-level co-occur-
rence matrix signatures (GLCM); grey-level dependence 
matrix signatures (GLDM); grey-level size zone matrix 
signatures (GLSZM); grey-level run-length matrix sig-
natures (GLRLM); and neighbouring grey-tone differ-
ence matrix signatures (NGTDM)); we used Laplacian of 
Gaussian (LoG, sigma= 1, 3, 5, 7) and wavelet filtering to 
extract texture features.

Three months later, 40 patients were randomly selected 
from the training cohort to evaluate the reproducibil-
ity and robustness of the signature extraction process, 
and the nuclear medicine doctors (Q.L.D.) divided the 
data again and constructed a re-divided cohort. A value 
greater than 0.80 indicates good agreement when calcu-
lating intra/interclass correlation coefficients (ICCs).

Signature selection was done as follows: (1) use the 
z-score method to standardise all radiomics signatures in 
the training cohort; (2) Mann-Whitney U test retain sig-
natures with p values less than 0.05; (3) Spearman cor-
relation analysis and remove signatures with a correlation 
coefficient less than 0.9; (4) to find the most relevant pre-
dictive signatures, the least absolute shrinkage selection 
operator (LASSO) was used. Radiomics features under-
went a multi-step selection process to overcome the limi-
tations of traditional logistic regression methods, namely 
overfitting and multicollinearity problems in modelling 
high-dimensional radiomics signatures. The workflow 
was presented in Fig. 2.

Constructing radiomics signatures was done as fol-
lows: after removing the redundant signatures, we feed 
the last set of radiomics signatures into the classifier to 
create a radiomics feature, which was used for biological 
assessment. In this study, we evaluated three classifiers: 
logistic regression (LR), decision tree (DT) and support 
vector machine (SVM). All classifiers choose the best 
performing model by using 10-fold cross validation in 
training cohort. To evaluate the performance of different 
radiomics models, the area under the curve (AUC), sensi-
tivity, specificity, and accuracy were calculated using the 
receiver operating characteristic (ROC) curve, and the 
best model was the selected radiomics model with the 
highest AUC.

Establishment and evaluation of the models
The clinical and radiological features were chosen pri-
marily for their association with the MNA [21]. First, 
univariate analysis was used to identify clinical and radio-
logical features that differed significantly from the MNA 
in the training cohort; then, multiple logistic regression 
analysis was used to identify the most relevant variables. 
Following multivariate analysis, clinical and radiological 

https://pyradiomics.readthedocs.io/en/Latest/
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features independently related to MNA were used to 
develop a clinical-radiology (C-R) model. The radiomics 
model with the highest AUC outputs probability values 
for everyone, which are combined with clinical-radio-
logical parameters to construct a multivariable logistic 
regression model (clinical-radiological-radiomics; C-R-
R) and calculate the diagnostic efficiency of the model. 
The calibration curve and the Hosmer-Lemeshow test 
[22] were used to assess the model’s goodness of fit. To 
evaluate the clinical effectiveness of the model, a deci-
sion curve analysis (DCA) was used for the training and 
validation cohorts to calculate the net benefits under the 
threshold probability.

Statistical analysis
Statistical analyses were performed using R (version 4.1.0, 
Statistical Calculation Basics). A two-sided p value of less 
than 0.05 was considered statistically significant. Differ-
ences in all clinical features between two groups were 
assessed by independent samples t test, Mann-Whitney 
U test, and chi-squared or Fisher’s exact tests, as appro-
priate. DeLong test was used to compare the differences 
in AUC values between models. Accuracy, specificity, 
and sensitivity were calculated based on the cut-off value 
of the maximum Youden index.

Results
Clinical and radiological features of patients
The patients were randomly divided into a training 
and validation cohort in the ratio of 7:3. There was no 

statistically significant difference in MNA rates and clini-
cal and imaging features between the two cohorts (p > 
0.05). The rate of MNA in total, training, and validation 
groups was 62.5% (65/104), 55.4% (41/74), and 80.0% 
(24/30), respectively (Table 1).

Ten significant clinical and radiological features were 
identified by univariate regression analysis (Table 2). Mul-
tivariate logistic analysis revealed that SF (odds ratio [OR], 
1.484; 95% confidence interval [CI], 1.063–2.105; p = 
0.048), LDH (OR, 5.825; 95% CI, 2.015,18.489; p = 0.002), 
necrosis (OR, 2.206; 95% CI, 0.747,7.216; p = 0.167), and 
TLG (OR, 1.001; 95% CI, 1.000, 1.002; p = 0.156) were 
correlated independently with the MNA status (Table 2).

Radiomics feature selection and signature construction
After assessing the robustness, 928 signatures were 
retained for model building, with ICC > 0.8. Two hundred 
and seventeen signatures were identified as independ-
ent after Mann-Whitney U test and correlation analyses. 
Finally, four radiomics signatures (2 PET and 2 CT radi-
omics signatures) with non-zero coefficients were selected 
after LASSO regression. The four radiomic signatures 
mentioned above were used in the training cohort to build 
three different radiomics models for predicting MNA, 
including LR, DT, and SVM classifiers. Figure  3 depicts 
the correlation analysis of two clinical factors and two 
radiological features with four radiomics signatures.

Model comparisons
The diagnostic performance of the three radiomics and 
C-R and C-R-R models were shown in Table 3 and Fig. 4. 

Fig. 2 Radiomics signature workflow
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In training and validation cohorts, the AUC values were 
0.742 (95% CI, 0.627–0.857) and 0.741 (95% CI, 0.539–
0.942) for LR and 0.806 (95% CI, 0.704–0.908) and 0.775 
(95% CI, 0.588–0.963) for DT, respectively. The AUC 
values for the SVM in both cohorts were 0.834 (95% CI, 

0.721–0.948) and 0.819 (95% CI, 0.632–1.000), respec-
tively, which were higher than LR and DT classifiers. The 
AUC values of the C-R model in both cohorts were 0.672 
(95% CI, 0.542–0.803) and 0.681 (95% CI, 0.468–0.893), 
respectively.

Table 2 Univariate and multivariate logistic regression analysis of risk factors associated with MYCN amplified in the training cohort

CI Confidence interval, OR Odds ratio, NSE Neuron-specific enolase, SF Serum ferritin, LDH lactate dehydrogenase, VMA Vanillylmandelic acid, HVA Vanillylmandelic 
acidand, INRGSS International Neuroblastoma Risk Group Staging System, M distant metastatic disease (except stage MS), MTV Metabolic tumour volume, TLG Total 
lesion glycolysis

Characteristics Univariate Multivariate

OR (95% CI) p value OR (95% CI) p value

Clinical factors

 Age at diagnosis (years, ≥ 18 mos) 0.711 (0.279, 1.828) 0.008 ‑ ‑

 Gender (Male) 2.081 (0.928, 4.736) 0.045 ‑ ‑

 NSE (ng/mL, high) 1.004 (1.002, 1.005) 0.020 ‑ ‑

 SF (ng/mL, high) 1.308 (0.591, 2.912) < 0.001 1.484 (1.063–2.105) 0.048

 LDH (U/L, high) 5.843 (2.452, 14.698) < 0.001 5.825 (2.015, 18.489) 0.002

 VMA (μmol/L, high) 0.897 (0.387, 2.106) 0.800 ‑ ‑

 HVA (μmol/L, high) 1.361 (0.614, 3.059) 0.449 ‑ ‑

 INRGSS (M) 1.770 (0.615, 5.489) 0.294 ‑ ‑

 Thoracic primary (Yes) 0.664 (0.163, 1.248) 0.171 ‑ ‑

 Adrenal primary (Yes) 1.535 (0.640, 3.870) 0.691 ‑ ‑

 Infiltrating across midline (Yes) 3.325 (1.262, 9.337) 0.015 ‑ ‑

 Calcification (Yes) 3.680 (1.362, 10.570) 0.064 ‑ ‑

 Necrosis (Yes) 1.024 (0.353, 2.916) 0.010 2.206 (0.747, 7.216) 0.167

 SUVmax (Median ± IQR) 1.123 (0.969, 1.301) 0.070 ‑ ‑

 MTV (Median ± IQR, mL) 1.001 (1.000, 1.002) 0.006 ‑ ‑

 TLG (Median ± IQR) 1.001 (0.998, 1.004) < 0.001 1.001 (1.000, 1.002) 0.156

 Rad score 1.338 (0.342, 5.233) < 0.001 13.515 (3.364, 36.802) < 0.001

Fig. 3 Chord diagram of the correlation between two clinical variable and two radiological and four radiomics features. Correlation analysis 
between selected radiomics features and clinical and radiological features in the training (A) and validation (B) cohorts
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The C-R-R model developed by combining the SVM 
and the C-R model obtained higher AUC values in the 
training and validation cohorts: 0.860 (95% CI, 0.757–
0.963) and 0.824 (95% CI, 0.657–0.992), respectively. 
In addition, the C-R-R model had the best discrimina-
tion ability in both cohorts, with sensitivities of 0.793 
(95% CI, 0.474–0.931) and 0.750 (95% CI, 0.000–1.000) 
and specificities of 0.933 (95% CI, 0.333–1.000) and 

0.944 (95% CI, 0.333–1.000). In the training cohort, 
the SVM classifier and C-R model and C-R-R model 
scored significantly higher in the MNA group than the 
wild group. This result was confirmed in the validation 
cohort (Fig. 5).

Table A1  shows the results of the Delong tests per-
formed on the different models. Based on these results, 
the C-R-R model significantly outperformed the SVM 

Table 3 The diagnostic performance of the different models for the MYCN amplification in the training and validation cohorts

AUC  Area under the curve, CI Confidence interval, C-R Clinical-radiological, C-R-R clinical-radiological-radiomics, DT Decision tree; LR Logistic regression; SVM Support 
vector machine

AUC (95%CI) Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

Training cohort
 LR 0.742 (0.627–0.857) 0.716 (0.599–0.815) 0.724 (0.379–0.897) 0.711 (0.400–0.844)

 DT 0.806 (0.704–0.908) 0.784 (0.673–0.871) 0.621 (0.420–0.813) 0.889 (0.692–0.967)

 SVM 0.834 (0.721–0.948) 0.892 (0.798–0.952) 0.793 (0.000–0.897) 0.956 (0.222–1.000)

 C‑R 0.672 (0.542–0.803) 0.716 (0.599–0.815) 0.345 (0.137–0.517) 0.956 (0.689–1.000)

 C‑R‑R 0.860 (0.757–0.963) 0.878 (0.782–0.943) 0.793 (0.474–0.931) 0.933 (0.333–1.000)

Validation cohort
 LR 0.741 (0.539–0.942) 0.533 (0.343–0.717) 0.750 (0.500–1.000) 0.389 (0.165–1.000)

 DT 0.775 (0.588–0.963) 0.833 (0.653–0.944) 0.667 (0.139–0.917) 0.944 (0.355–1.000)

 SVM 0.819 (0.632–1.000) 0.867 (0.693–0.962) 0.833 (0.000–1.000) 0.889 (0.110–1.000)

 C‑R 0.681 (0.468–0.893) 0.633 (0.439–0.801) 0.500 (0.250–1.000) 0.722 (0.500–1.000)

 C‑R‑R 0.824 (0.657–0.992) 0.867 (0.693–0.962) 0.750 (0.000–1.000) 0.944 (0.333–1.000)

Fig. 4 A Receiver operating characteristic (ROC) curves for the LR, DT, SVM classifiers, C‑R model and C‑R‑R model in the training cohort. B ROC 
curves for the LR, DT, SVM classifiers, C‑R model and C‑R‑R in the validation cohort. LR, logistic regression; DT, decision tree; SVM, support vector 
machine, C‑R, clinical‑radiological; C‑R‑R, clinical‑radiological‑radiomics
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classifier (AUC, 0.834; p = 0.005), the LR classifier (AUC, 
0.742; p < 0.001), the DT classifier (AUC, 0.801; p < 0.001) 
and the C-R model (AUC, 0.672; p < 0.001) in the train-
ing cohort. Again, in the validation cohort, the C-R-R 
model outperformed the C-R model and was significantly 
different from the C-R model (p = 0.007), but not from 
the other three classifiers (p > 0.05).

In short, the C-R-R model had high predictive value for 
MNA. Compared with other classifiers and C-R models, 
C-R-R model has higher AUC value, accuracy, and sensi-
tivity in predicting MNA, and SVM classifier is superior 
to LR and DT classifier and C-R model.

Evaluating model performance
Based on the radiomics model with the highest AUC value, 
two clinical factors and two imaging features were com-
bined to create a nomogram. Of the five models, the C-R-R 
model had the best discrimination ability (Figs. 4 and 6).

The calibration curve showed that the probability of the 
C-R-R model predicting MNA matched the actual prob-
ability well, while the Hosmer-Lemeshow test yielded an 
insignificant p-value, indicating no deviation from per-
fect fit (Fig.  7a). The threshold probability of the C-R-R 
model was 10–90%, and its area under the decision curve 
was greater than that of the other models in the train-
ing and validation cohorts, indicating that the model had 
optimal clinical utility (Fig. 7b).

Discussion
In this study, we used a relatively large data set to build a 
C-R-R model based on the combination of an 18F-FDG 
PET/CT radiomics signature with clinical and radiologi-
cal features to predict MNA in paediatric NB. We calcu-
lated the diagnostic performance of radiomic signatures 
using three classifiers (LR, DT, and SVM), and the SVM 

classifier with the highest AUC value was chosen. In the 
training and validation cohorts, the AUC values of the 
C-R-R model were higher, which were 0.860 and 0.824, 
respectively. Therefore, this model may help to determine 
the MNA of paediatric NB and guide personalised strati-
fied treatment.

Our study found that age at initial diagnosis, gender 
and NSE, SF and LDH levels were significantly associ-
ated with MNA: male patients older than 18 months 
and with higher levels of NSE, SF and LDH were more 
likely to have MNA, which was consistent with that in 
previous studies [23, 24]. Besides, our findings showed 
that primary adrenal tumours were more frequently 
associated with MNA (OR, 1.535; 95% CI, 0.640,3.870; 
p =  0.691); in contrast, the number of patients with a 
primary thoracic tumour decreased (OR, 0.664; 95% CI, 
0.163,1.248; p  =  0.171), but no statistical significance 
was found. Five radiological features were significantly 
related to the MNA (P < 0.05). For example, necrosis, 
lesions infiltrating across the midline, higher TLG, SUV-
max, and MTV values were more common in patients 
with MNA, which was consistent with previous studies 
[25, 26]. In multivariate logistic regression analysis, SF, 
LDH, necrosis and TLG were independently correlated 
with MNA (P < 0.05).

To construct the radiomics signature, we screened 
1720 candidate features for 4 independent features 
that were highly correlated with MNA and were sta-
ble in the validation cohort. These signatures were 
closely related to radiological features. For example, SF 
and LDH were significantly correlated with signatures 
such as CT_HLL_ngtdm_Strength, CT_HHL_glcm_IV 
and PET_logarithm_GLCM_ClusterShade, necrosis 
was significantly correlated with signatures such as 
PET_HHH_glszm_SALGLE and CT_HHL_glcm_IV 

Fig. 5 Boxplot showing the comparison of radiomics scores from the SVM classifier (A), C‑R model (B), and C‑R‑R model (C) in the training. C‑R, 
clinical‑radiological; C‑R‑R, clinical‑radiological‑radiomics; SVM, support vector machine
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and TLG was significantly correlated with signatures 
such as PET_HHH_glszm_SALGLE and PET_loga-
rithm_GLCM_ClusterShade. The correlation between 
these features shows that although the texture-based 

signatures are invisible to the naked eye, the spe-
cific combination of several texture signatures can be 
explained by some radiological features to a certain 
extent.

Fig. 6 The nomogram developed based on the C‑R‑R model, which incorporated the Necrosis, SF, TLG, LDH and Rad score. It is used 
to non‑invasively predict MYCN amplification in paediatric neuroblastoma patients. C‑R‑R, clinical‑radiological‑radiomics; SF, serum ferritin; TLG, total 
lesion glycolysis; LDH, lactate dehydrogenase

Fig. 7 A Calibration curves of the C‑R‑R model in the training and validation cohorts. B Decision curve analysis (DCA) for the LR, DT, SVM classifiers, 
C‑R model and C‑R‑R model in the training cohorts. C DCA for the LR, DT, SVM classifiers, C‑R model and C‑R‑R model in the validation cohort. LR, 
logistic regression; DT, decision tree; SVM, support vector machine, C‑R, clinical‑radiological; C‑R‑R, clinical‑radiological‑radiomics
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To our knowledge, this is the first report on prediction 
of the MNA using a relatively large data set based on 18F-
FDG PET/CT radiomics signature combined with clini-
cal and radiological features. Meanwhile, we evaluated 
the performance of radiomic model using three differ-
ent classifiers. Finally, the SVM classifier with the high-
est diagnostic performance was selected. Wu H et al. [5] 
reported that a model based on a three-phase CT radi-
omics signature could be used to predict MNA in paedi-
atric NB with an AUC of 0.82 in the training cohort and 
only 0.70 in the validation cohort; however, the study did 
not include clinical factors. Chen X et al. [8] found that 
the CT radiomics signature can predict MNA of paedi-
atric NB based on SVM high-precision, logistic and ran-
dom forest classifiers, and having the SVM classifier the 
better prediction performance which is consistent with 
our study. The possible explanation is that SVM clas-
sifiers have more stable performance and are therefore 
more suitable for clinical promotion. Our previous stud-
ies [27] confirmed the value of 18F-FDGPET/CT in pre-
dicting MNA and 1p and 11q aberrations of paediatric 
NB, but it lacks radiological features, whereas the present 
study concluded by multifactorial logistic regression that 
necrosis is an independent risk factor of MNA, which 
has important clinical significance. It implies the pres-
ence of hypoxia within the intratumoural areas which is 
associated with the activation of a more aggressive phe-
notype, with a higher potential for metastatic spread and 
a poorer prognosis [26, 28]. In this study, the proposed 
C-R-R model showed good prediction performance in 
both the training cohort (AUC, 0.860) and validation 
cohort (AUC, 0.824). Furthermore, DCA confirmed the 
clinical utility of the C-R-R model.

Despite the significance of this study, we acknowledge 
there were some limitations. Firstly, this study adopted 
a single-centre design, and the sample size is still small. 
The proportion of patients with MYCN amplification 
was higher than that of the NB group in both the train-
ing cohort and the validation cohort, which may affect 
its diagnostic effectiveness. Therefore, the sample size 
should be increased in future studies. Secondly, our 
validation cohort used to test the model efficacy was 
from the same hospital as the training cohort, making 
it challenging to generalise our results to other hospi-
tals. So, it is necessary to validate the results in a multi-
centre cohort.

In conclusion, the C-R-R model is based on the radi-
omic signatures of 18F-FDG PET/CT, combined with 
clinical variables and radiological features. The model 
has good diagnostic performance and high accuracy in 
predicting MNA, which can provide useful image-based 
biological information for stratified treatment of patients.
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