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Abstract 

Purpose In recent decades, diverse nomograms have been proposed to predict extraprostatic extension (EPE) 
in prostate cancer (PCa). We aimed to systematically evaluate the accuracy of MRI-inclusive nomograms and tradi-
tional clinical nomograms in predicting EPE in PCa. The purpose of this meta-analysis is to provide baseline summa-
tive and comparative estimates for future study designs.

Materials and methods The PubMed, Embase, and Cochrane databases were searched up to May 17, 2023, to identify 
studies on prediction nomograms for EPE of PCa. The risk of bias in studies was assessed by using the Prediction model 
Risk Of Bias ASsessment Tool (PROBAST). Summary estimates of sensitivity and specificity were obtained with bivariate 
random-effects model. Heterogeneity was investigated through meta-regression and subgroup analysis.

Results Forty-eight studies with a total of 57 contingency tables and 20,395 patients were included. No significant 
publication bias was observed for either the MRI-inclusive nomograms or clinical nomograms. For MRI-inclusive 
nomograms predicting EPE, the pooled AUC of validation cohorts was 0.80 (95% CI: 0.76, 0.83). For traditional clini-
cal nomograms predicting EPE, the pooled AUCs of the Partin table and Memorial Sloan Kettering Cancer Center 
(MSKCC) nomogram were 0.72 (95% CI: 0.68, 0.76) and 0.79 (95% CI: 0.75, 0.82), respectively.

Conclusion Preoperative risk stratification is essential for PCa patients; both MRI-inclusive nomograms and traditional clin-
ical nomograms had moderate diagnostic performance for predicting EPE in PCa. This study provides baseline compara-
tive values for EPE prediction for future studies which is useful for evaluating preoperative risk stratification in PCa patients.

Critical relevance statement This meta-analysis firstly evaluated the diagnostic performance of preoperative MRI-
inclusive nomograms and clinical nomograms for predicting extraprostatic extension (EPE) in prostate cancer (PCa) 
(moderate AUCs: 0.72–0.80). We provide baseline estimates for EPE prediction, these findings will be useful in assess-
ing preoperative risk stratification of PCa patients.

Key points  
• MRI-inclusive nomograms and traditional clinical nomograms had moderate AUCs (0.72–0.80) for predicting EPE.

• MRI combined clinical nomogram may improve diagnostic accuracy of MRI alone for EPE prediction.

• MSKCC nomogram had a higher specificity than Partin table for predicting EPE.

• This meta-analysis provided baseline and comparative estimates of nomograms for EPE prediction for future studies.
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Introduction
Oncologic radicality and good functional outcomes 
are two clinical priorities for the surgical treatment of 
prostate cancer patients. Nerve-sparing surgery could 
be chosen to preserve urinary continence and erectile 
function for low-risk patients. However, nerve-sparing 
surgery in high- or moderate-risk patients is associ-
ated with an increased risk of positive surgical margins 
(PSMs) in postoperative specimens. Therefore, planning 
the therapeutic schedule for PCa patients must be based 
on comprehensive risk assessment and staging. Making 
these clinical decisions depends on the predicted prob-
ability of EPE of prostate cancer. EPE is associated with 
a high risk of PSMs and early biochemical recurrence 
and can cause a worse prognosis than organ-confined 
tumors [1, 2]. Consequently, accurate prediction of EPE 
is of high priority in clinical, radiotherapy, and surgical 
decision-making.

There are several widely used clinical prediction tools 
for evaluating EPE, such as the Partin table [3], the 
Cancer of the Prostate Risk Assessment (CAPRA) score 

[4], and the Memorial Sloan Kettering Cancer Center 
(MSKCC) nomogram [5]. These tools rely on conven-
tional clinical and histopathological parameters, such 
as clinical T stage, prostate-specific antigen (PSA) level 
and biopsy Gleason score (GS). However, the diagnos-
tic performance of these nomograms was varied, with 
reported areas under the curve (AUCs) ranging from 
0.60 to 0.86. MRI has good tissue resolution, and some 
multiparametric MRI findings like capsular irregularity 
and bulge, curvilinear contact length (CCL) > 15  mm 
and invasion of periprostatic fat are associated with 
pathological EPE [6]. Although MRI was reported to be 
insensitive for diagnosing EPE (57%) by de Rooij et al., 
it does offer high specificity (91%) [7]. Particularly, sev-
eral MRI-EPE grading systems were proposed in recent 
years, such as the ESUR score [8] and the EPE grade [9], 
which are promising to promote structure of MRI-EPE 
report and improve diagnostic performance. In addi-
tion, many studies have suggested that integrating MRI 
information with clinical characteristics might result 
in more precise clinical staging for PCa [10]. However, 
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some scholars reported that MRI did not significantly 
increase the precision of the clinical nomogram [11, 
12]. There has no well-defined MRI-inclusive nomo-
gram to predict EPE in PCa; thus far, it is still incon-
clusive how to use MRI characteristics to improve the 
diagnostic accuracy of traditional clinical nomograms.

The previous study has summatively determined the 
accuracy of MRI for diagnosing EPE [7]. To our knowl-
edge, a systematic review and meta-analysis evaluating 
preoperative MRI-inclusive or traditional clinical nomo-
grams for predicting EPE has not been performed. A 
comprehensive systematic review is valuable for assessing 
the vast amount of currently available information. The 
purpose of this systematic review and meta-analysis is 
to provide baseline summative estimates for EPE predic-
tion of PCa as well as evaluate the influence of prediction 
variables, to provide comparative estimates for future 
trial designs. We assessed study methods, adherence to 
reporting guidelines, and risk of bias of studies.

Materials and methods
Study design and search strategy
This systematic review and meta-analysis was registered 
with PROSPERO (CRD42022361098). This study was 
conducted following the Preferred Reporting Items for a 
Systematic Review and Meta-analysis of Diagnostic Test 
Accuracy Studies [13].

A systematic literature search was performed on the 
PubMed, Embase, and Cochrane databases up to May 17, 
2023. The search terms included prostate cancer, pros-
tate neoplasm, prostate carcinoma, extranodal extension, 
extraprostatic extension, extracapsular extension, nomo-
gram, risk model, Partin table, and prediction. No lan-
guage restriction was applied. We also manually reviewed 
the reference lists of the included studies.

Study selection and data extraction
Two investigators (both with 6 years of research experi-
ence) independently assessed all citations according to 
the predefined inclusion and exclusion criteria. Disagree-
ments were resolved through discussion and consensus. 
The following inclusion criteria were used: (1) primary 
studies for developing, validating, or updating preopera-
tive nomograms/models (combining multiple clinical and 
MRI characteristics or clinical characteristics alone) to 
predict pathological EPE (pT3 stage) of PCa patients; and 
(2) studies published in English.

One investigator (with > 6  years of research experi-
ence) extracted the characteristics of all included studies 
independently, including study type; country; reference 
standards; patient age; sample size; clinical and MRI 
predictors; and TP, FN, TN, and FP values. To reduce 
the risk of data duplication and overlapping cohorts, for 

studies that reported multiple readers, we only extracted 
the results of reader 1 as a representative and incor-
porated them into the meta-analysis. For studies that 
reported multiple sensitivities/specificities of the same 
cohort based on different algorithms, we only extracted 
the highest sensitivity/specificity. For studies that 
reported multiple sensitivities/specificities based on dif-
ferent cohorts or different nomograms, we extracted all 
of them as independent contingency table results.

Quality and risk of bias assessment
We assessed eligible studies for adherence to reporting 
guidelines according to the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) checklist, which consists of 37 
items in 22 criteria to aid transparent reporting of studies 
that develop and/or validate prediction models [14]. Five 
items (4b: “Specify the key study dates, including start of 
accrual; end of accrual; and, if applicable, end of follow-
up”, 5c: “Give details of treatments received, if relevant”, 
11: “Provide details on how risk groups were created, if 
done”, 14b: “If done, report the unadjusted association 
between each candidate predictor and outcome”, and 22: 
“Give the source of funding and the role of the funders 
for the present study”) were omitted since they were 
irrelevant to the quality assessment in this review. We 
deleted the element “when” in Item 6a.

The Prediction model Risk Of Bias ASsessment Tool 
(PROBAST) [15] was used to assess the risk of bias and 
applicability of each study by two investigators indepen-
dently. The tool includes four domains (participants, 
predictors, outcome, and analysis) for risk of bias assess-
ment and three domains (participants, predictors, and 
outcomes) for applicability assessment, consisting of 23 
signal questions in total. Any disagreement between the 
two investigators was resolved by a third investigator 
(with > 25  years of research experience), and consensus 
was finally reached in all domains.

Statistical analysis
Meta-analysis was performed with the recommended 
bivariate random-effects meta-analysis model [16]. Sta-
tistical heterogeneity was assessed with an I2 estimate 
[17]. Contingency tables were used to construct hier-
archical summary receiver operating characteristic 
(HSROC) curves to calculate pooled sensitivities and 
specificities [18]. Funnel plots and Egger’s test were used 
to identify publication bias. A statistical significance of  
p < 0.05 indicated the presence of bias. Univariate meta-
regression analysis was performed to investigate poten-
tial heterogeneity from predictors of nomograms, as well  
as other baseline parameters, including side-specific or 
whole-gland pathological EPE-based, pathological EPE 
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rate, MRI predictor and slice thickness. Meta-analysis 
was conducted with Stata version 15.0.

Results
The search strategy yielded a total of 671 results (299 
from Embase, 362 from PubMed, and 10 from Cochrane 
Library). After duplicates were removed (101), 570 stud-
ies were screened. After screening abstracts and full 
texts, 522 articles were excluded; the exclusion criteria 
are shown in Fig.  1. Finally, forty-eight full-text studies 
were assessed as eligible, with a total of 57 contingency 
tables. Twenty-two studies [9, 11, 12, 19–37] head-to-
head compared the diagnostic performance of the MRI-
inclusive nomogram with that of the traditional clinical 
nomogram but lacked data to calculate TP, FN, TN and 
FP; they therefore were included in the qualitative analy-
sis only. The remaining 26 studies (13 for MRI-inclusive 
nomograms [29, 38–49], eight for clinical nomograms 
[50–57] and 5 for both MRI-inclusive nomograms and 
clinical nomograms [58–62]) were included in the quan-
titative analysis.

Basic characteristics of the studies
A total of 20,395 patients were included. The main char-
acteristics, demographics, and MRI information for the 
MRI-inclusive nomograms and clinical nomograms are 
presented in Tables  1 and 2, respectively. According to 
the TRIPOD statement (Type 1a: development only; 
Type 1b: development and validation using resampling; 
Type 2a: random split-sample development and valida-
tion; Type 3: development and validation using sepa-
rate data; Type 4: validation only) [14], seventeen (35%) 
studies were Type 1a, eleven (23%) studies were Type 1b, 
four (8.3%) studies were Type 2a, one (2%) is Type 2b, 
six (12.5%) studies were Type 3, and nine (19%) studies 
were Type 4. For all included studies, the range of mean/
median patient age was 61.5–70.2 years old; the range of 
mean/median serum PSA level was 5.75–60  ng/ml; and 
the range of pathological EPE rate was 0.16–0.73. Sixteen 
studies assessed the diagnostic performance for side-spe-
cific EPE, and the remaining 32 studies for whole-gland 
EPE. For quantitative analysis, three studies reported 
multiple different nomograms [55, 60, 61], and we only 
extracted the highest one into the analysis.

Fig. 1 Study flow diagram
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Studies quality assessment
According to TRIPOD items (Fig. 2), the total adherence 
rate was 64.7% (857/1325) after excluding 290 inappli-
cable items. None of the studies met Item 8 (sample size 
estimation). In addition, 5 items were poorly reported 
(< 50% adherence): title (Item 1), abstract (Item 2), blind 
assessment of outcome (6b), blind assessment of predic-
tors (Item 7b), specify participants and outcome numbers 
(Item 14a), and availability of supplementary resources 
(Item 21).

The risk of bias and applicability concerns of all studies 
were assessed by PROBAST (Fig.  3). For the 3 domains 
of participants, outcomes and analysis, there were 27 
(56.3%), 4 (8.3%), and 35 (72.9%) studies had a high risk 
of bias, respectively. The main contributing factors to 
this assessment were as follows: (1) the data source of 27 
(56.3%) studies was a retrospective cohort, and 6 studies 
did not report; (2) nineteen (39.6%) studies lacked infor-
mation on whether predictor assessment was made with-
out knowledge of outcome data; (3) four studies (8.3%) 
determined outcomes with knowledge of predictor(s), 
and most studies did not report information on out-
comes determined or did not report the time interval 
between predictor assessment and outcome determina-
tion; and (4) the sample sizes of 18 (37.5%) studies were 
unreasonable (events per variable < 20), sixteen studies 

used univariable analysis, and 20 (41.7%) studies did not 
perform calibration assessment or internal validation.

Qualitative analysis results
A summary of the qualitative analysis is presented in Sup-
plementary Table  S1, a total of 22 studies head-to-head 
compared the diagnostic performance of the MRI-inclu-
sive nomogram with that of the traditional clinical nomo-
gram. The ranges of AUCs for MRI-inclusive nomograms 
and clinical nomograms were 0.62–0.94 and 0.59–0.86, 
respectively. Twelve of the 22 studies showed that the 
MRI-inclusive nomogram significantly outperformed the 
traditional clinical nomogram (all p < 0.05). Two studies 
showed that the MRI + MSKCC/Partin nomogram pro-
vided no additional risk discrimination over the clini-
cal nomogram alone (p > 0.05) [11, 12]. The remaining 8 
studies also suggested that the AUC increased when MRI 
was added to clinical nomograms, but did not provide 
statistical significance.

Main statistical analysis results
Considering overfitting of performance in development 
models commonly existed, we therefore included valida-
tion cohorts only into meta-analysis in order to reduce 
overoptimism estimates. As shown in Table 3, for MRI-
inclusive nomograms, a total of 13 validation cohorts [29, 

Table 2 Basic characteristics of included studies for quantitative analysis (clinical nomograms)

EPE extraprostatic extension, GS Gleason Score, cT clinical tumor stage, ND not described, MSKCCn Memorial Sloan Kettering Cancer Center nomogram, CAPRA Cancer 
of the Prostate Risk Assessment

Author (publication year) Country TRIPOD style No EPE rate Whole-gland vs. 
side-specific

Nomogram name Clinical variables

Boyce 2013 [50] Ireland 4 603 0.30 Whole-gland ND PSA, cT, biopsy GS

DalMoro1 2018 [51] Italy 4 94 0.58 Side-specific Partin 1997 PSA, cT, biopsy GS

Egawa 1998 [52] Japan 1a 81 0.43 Whole-gland ND PSA, cT, biopsy GS, number 
of cancer cores, maximum 
cancer length in biopsy cores

Majchrzak 2021 [58] Poland 4 61 0.31 Side-specific MSKCC PSA, cT, biopsy GS, % positive 
cores, % Ca

Patin 1997 [56] USA 1b 4133 0.40 Whole-gland Partin 1997 PSA, cT, biopsy GS

Sighinolfi 2023 [57] Italy 4 141 0.47 Side-specific PRECE nomogram [63] Age, PSA, cT, GS, % positive 
cores

Song 2004 [54] Korean 4 317 0.40 Whole-gland Partin 1997 PSA, cT, biopsy GS

Thalgott 2018 [55] Germany 4 73 0.73 Whole-gland MSKCC, Partin 2013 PSA, cT, bGS, % positive cores, 
% Ca

Tsao 2014 [53] China 4 299 0.36 Whole-gland Partin 2007 PSA, cT, biopsy GS sum

Wang 2018 [59] China 4 541 0.54 Whole-gland Partin 2017 PSA, cT, biopsy GS

Xiang 2022 [62] China 4 105 0.42 Whole-gland MSKCC, Partin PSA, cT, bGS, % positive cores, 
% Ca

Xu 2021 [60] China 4 130 0.48 Whole-gland CAPRA 2005, MSKCC age, PSA, cT, primary 
and secondary GS, positive 
cores ratio

Zanelli 2019 [61] Italy 4 73 0.33 Whole-gland Partin 2013, MSKCC, 
CAPRA 2017

age, PSA, cT, primary 
and secondary GS, positive 
cores ratio
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Fig. 2 Summary of study adherence to Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 
reporting guidelines

Fig. 3 Summary of Prediction Model Study Risk of Bias Assessment Tool (PROBAST) for risk of bias and concerns of applicability
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38–45, 47, 48, 64] showed a pooled AUC of 0.80 (95% CI: 
0.76, 0.83) for EPE prediction. For clinical nomograms, 
a total of 11 independent validation cohorts showed a 
pooled AUC of 0.75 (95% CI: 0.71, 0.79). No significant 
funnel plot asymmetry was observed for studies with 
MRI-inclusive nomogram (Fig.  4a, P= 0.17); however, 
significant funnel plot asymmetry was observed for 
studies with clinical nomogram (Fig.  4b, P= 0.02). The 
pooled sensitivities, specificities, and AUCs estimated 
by the HSROC curve (Fig. 5) of MRI-inclusive and clini-
cal nomograms for predicting EPE are shown in Table 3. 
The forest plots of validation cohorts for MRI-inclusive 
and clinical nomograms are presented in Supplementary 

Figures  S1-  S4. In the subgroup analysis, eight external 
validations of the Partin table [50, 51, 53–55, 59, 61, 62] 
showed a pooled AUC of 0.72(95% CI: 0.68, 0.76), and 5 
external validations of the MSKCC nomogram [55, 58, 
60–62] showed a pooled AUC of 0.79(95% CI: 0.75, 0.82).

Univariable meta-regression analysis
Meta-regression analysis was performed for all validation 
cohorts to identify the source of pooled heterogeneity 
(Table  4). For MRI-inclusive nomograms, the hetero-
geneity of pooled sensitivity was found in EPE-basing 
and AI/radiomics-based, and the sensitivity of nomo-
grams which predicted side-specific EPE was higher 

Table 3 Pooled sensitivities, specificities, and AUCs for MRI-inclusive and clinical nomograms for predicting EPE (validation cohorts 
only)

CI confidence interval, AUC  area under the receiver operating characteristic curve, MSKCCn Memorial Sloan Kettering Cancer Center nomogram

Nomogram No. of 
cohorts

No. of 
patients

Sensitivity 
(95% CI)

Heterogeneity Specificity 
(95% CI)

Heterogeneity AUC (95% CI)

I 2 (%) Cochran
Q p value

I2 (%) Cochran
Q p value

MRI-inclusive 
nomograms

13 2177 0.76 (0.67, 
0.83)

81.18 (71.69, 
90.66)

 < 0.001 0.71 (0.59, 
0.80)

94.75 (92.92, 
96.58)

 < 0.001 0.80 (0.76, 0.83)

Clinical 
nomograms

11 2437 0.68 (0.59, 
0.75)

84.21 (75.93, 
92.49)

 < 0.001 0.71 (0.64, 
0.78)

88.50 (82.98, 
94.02)

 < 0.001 0.75 (0.71, 0.79)

Partin table 8 2105 0.73 (0.62, 
0.82)

88.29 (82.57, 
95.01)

 < 0.001 0.60 (0.47, 
0.72)

93.26 (89.97, 
96.56)

 < 0.001 0.72 (0.68, 0.76)

MSKCCn 5 442 0.68 (0.60, 
0.75)

26.26 (0, 
94.20)

0.25 0.76 (0.70, 
0.82)

28.18 (0, 
95.54)

0.23 0.79 (0.75, 0.82)

Fig. 4 The funnel plots of publication bias for (a) MRI-inclusive nomograms and (b) traditional clinical nomograms (validation cohorts only)
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than predicting whole-gland EPE (p = 0.01). The source 
of heterogeneity of pooled specificity did not be found 
from EPE basing, pathological EPE rate, slice thickness, 
MRI time, or AI-based predictors (all p > 0.05). For clini-
cal nomograms, the pooled specificity of the MSKCC 
nomogram was significantly higher than that of the Par-
tin table (p < 0.001); there was no significant difference of 
pooled sensitivity between the Partin table and MSKCC 
nomogram.

Evaluation of clinical utility
Fagan plots were drawn to calculate the posttest prob-
abilities of all validation cohorts for MRI-inclusive 
nomogram and clinical nomogram respectively (Fig.  6). 
Within 50% as the pretest probability, for MRI-inclu-
sive nomograms and clinical nomograms, the positive 
posttest probabilities were 72% and 70%, respectively; 
the negative posttest probabilities were 25% and 31%, 

Fig. 5 Hierarchical summary receiver operating characteristic (HSROC) curves for (a) MRI-inclusive nomograms on validation cohorts and (b) 
clinical nomograms on validation cohorts

Table 4 Univariable meta-regression evaluating the effect of confounding factors on sensitivities and specificities of MRI-inclusive 
nomograms and clinical nomograms for EPE prediction

EPE extraprostatic extension, pEPE pathological EPE, AI artificial intelligence, DCE dynamic contrast enhancement, MSKCCn Memorial Sloan Kettering Cancer Center 
nomogram

Parameter Category No. of 
cohorts

Sensitivity (95% CI) p value Specificity (95% CI) p value

MRI-inclusive nomograms

 EPE based on Whole-gland 9 0.73 (0.64–0.82) 0.01 0.76 (0.68–0.85) 0.42

Side-specific 4 0.81 (0.71–0.92) 0.54 (0.37–0.71)

 pEPE rate  ≥ 0.4 5 0.74 (0.61–0.87) 0.09 0.81 (0.67–0.94) 0.82

 < 0.4 8 0.77 (0.68–0.86) 0.65 (0.52–0.78)

 MRI time Before biopsy 4 0.72 (0.59–0.85) 0.09 0.72 (0.49–0.95) 0.97

After biopsy 4 0.77 (0.66–0.88) 0.68 (0.42–0.94)

 Slice thickness  > 3 mm 4 0.68 (0.52–0.84) 0.07 0.70 (0.53–0.87) 0.84

 ≤ 3 mm 3 0.82 (0.68–0.95) 0.61 (0.37–0.84)

 AI/radiomics-based Yes 6 0.69 (0.57–0.82) 0.01 0.73 (0.59–0.88) 0.60

No 7 0.80 (0.71–0.88) 0.69 (0.54–0.84)

Clinical nomograms

 Model Partin Table 8 0.73 (0.64–0.81) 0.26 0.60 (0.50–0.70)  < 0.001
MSKCCn 5 0.68 (0.56–0.80) 0.77 (0.67–0.87)
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respectively; and the positive likelihood ratios were 3 and 
2, respectively.

Discussion
This present meta-analysis first systematically evaluated 
the diagnostic performance of preoperative MRI-inclu-
sive nomograms and traditional clinical nomograms for 
predicting pathological EPE of PCa. Our meta-analysis 
based on validation cohorts showed that both MRI-
inclusive nomograms and traditional clinical nomograms 
had moderate AUCs (0.72–0.80) for predicting EPE. We 
found that the pooled specificity of MSKCC nomograms 
was higher than that of Partin table. Our study provides 
baseline summative estimates for EPE prediction in PCa 
as well as provide comparative estimates for future study 
designs. These findings will be useful in the assessment of 
preoperative risk stratification and individual treatment 
strategies for PCa patients.

There are multitudinous studies that tried to head-to-
head compare the diagnostic performance of the MRI-
inclusive nomogram and traditional clinical nomogram 
for EPE prediction and suggested that MRI combined 
clinical nomogram can improve the diagnostic perfor-
mance of traditional clinical nomogram. However, in 
our systematic review of 22 studies, we found that most 
of these studies were TRIPOD 1 type, which means 
they were limited to developing model. As we know, 
the overfitting of prediction model generally exists in 

development cohorts, particularly in a small data set. 
And the degree of overfitting can vary widely depending 
on the type of internal validation techniques employed, 
such as cross-validation or bootstrapping, leading to 
biased or over-optimistic performance results [15]. 
Therefore, these conclusions need to be validated in more 
external validation cohorts to make them more reliable. 
However, what predictors or how to add MRI variables 
into clinical nomograms was still not well-defined.

Compared with a previous meta-analysis by de Rooij 
et al. [7], which reported that MRI had poor and hetero-
geneous sensitivity (0.57) for EPE diagnosis, our results 
may provide evidence that MRI combined clinical nomo-
gram had relatively higher sensitivity (0.76). Reasons for 
the low and variable sensitivity of MRI for EPE diagnosis 
may be as follows. First, image acquisition protocol can 
largely influence image quality. Moreover, connective tis-
sue hyperplasia reaction or inflammation may change the 
appearance of prostatic capsule, subjectivity of assessing 
some qualitative features like bulging and irregularity of 
prostatic capsule could not be ruled out, and radiologic 
interpretation may be influenced by the specialization 
and experience of radiologists [65]. Thus, its accuracy for 
EPE diagnosis on MRI evaluation remains challenging. 
To overcome this issue, radiologists have been devoted 
to standardize the EPE reporting to improve its preci-
sion and repeatability, and several EPE grading systems 
have been proposed in recent years with relatively good 

Fig. 6 Likelihood ratios and posttest probabilities for (a) MRI-inclusive nomograms and (b) clinical nomograms for predicting EPE (validation 
cohorts only)
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performance [8, 9, 66]. Moreover, several scholars have 
reported that combined MRI-EPE grade with traditional 
clinical nomograms can significantly improve the diag-
nostic accuracy [9, 25]. Therefore, we suggested that 
more external validation studies for the MRI-EPE grade 
combined clinical nomograms should be carried on in 
the future research. Second, it was realized that sensitiv-
ity for detecting EPE on MRI can never match pathology, 
where the standard is microscopy [67]. However, few 
studies have focused on the prediction of microscopic 
EPE to date. Thus, improvements are needed for both the 
clinic and imaging to further investigate the predictive 
efficiency for detecting microscopic EPE.

In particular, although our regression analysis did not 
find significant diagnostic superiority of nomogram 
which using AI/radiomics-based MRI predictors in EPE 
prediction, this may be due to the limited statistic power 
given the small number of studies on AI/radiomics-based 
MRI predictors (6 contingency tables from 4 studies [39, 
42, 43, 45]). Moreover, the AI/radiomics-based MRI pre-
dictors of these 4 studies were heterogeneous, involving 
peritumoral region radiomic features [39], tumor radi-
omic signatures extracted from ADC [42], the ResNeXt 
network model [43], and the self-defined radiomic score 
[45]. Thus, more studies are needed to evaluate the opti-
mal and repeatable radiomic characteristics of multi-
ple MR sequences for EPE diagnosis. Many studies have 
proposed that artificial intelligence, including radiomics 
and deep learning, is a promising solution to diagnosis 
and stage PCa [68–70]. However, the combination of AI-
based MRI characteristics and clinical variables to pre-
dict EPE has not yet been fully explored.

In our meta-regression analysis, no significant dif-
ference in sensitivity was observed between the Par-
tin tables and MSKCC nomogram. The specificity of 
the MSKCC nomogram was significantly higher than 
that of the Partin table (0.77 vs. 0.60). One difference 
between the MSKCC nomogram and the Partin table 
is the addition of the biopsy-positive core ratio. It has 
been reported that using continuous risk variables in 
nomograms rather than binary variables can substan-
tially improve predictive accuracy [71], which may be 
a probable explanation for why the MSKCC nomogram 
had a better diagnostic performance. In general, the 
predictive accuracy for EPE of all clinical nomograms 
was relatively low and diverse (AUC: 0.60–0.86). Several 
molecular markers have been discovered for predicting 
EPE (e.g., interleukin-6 soluble receptor, transforming 
growth factor-b1, GRE), incorporating these new mark-
ers into traditional nomograms may improve the pre-
diction ability of disease progression [71, 72]. Therefore, 

in the era of PSA screening, as the composition of 
patients with localized disease increases, nomograms 
need to be periodically updated, and new biomarkers 
need to be added to reflect these population changes 
and to improve the prediction accuracy [73].

Some limitations existed in our study. First, the num-
ber of eligible studies included was small, and a large 
number of studies were excluded due to a lack of data 
to calculate TP, FN, FP, and TN. Second, there was sig-
nificant heterogeneity in patient populations, clinical 
characteristics, and MRI practice, which increased the 
risk of intrinsic bias and led to significant heterogeneity 
(I2). Third, we could not explain the heterogeneity com-
pletely because many studies did not report sufficient 
information for all characteristics. Finally, there are 
no established MRI assessment criteria for EPE; there-
fore, the imaging predictors varied widely. To overcome 
these issues, we suggest that studies should be devoted 
to establishing a standardized MRI-EPE evaluation 
system, which would be helpful to improve diagnostic 
accuracy and repeatability. Moreover, nomograms need 
to be updated, and new biomarkers need to be added 
to further improve the diagnostic performance. In 
addition, no studies have focused on predicting micro-
scopic EPE, which is the most relevant for RP purposes, 
as overt EPE is presumably easily found on MRI; thus, 
more studies should be carried out to evaluate micro-
scopic EPE in the future.

Conclusion
This systematic review and meta-analysis first summa-
tively evaluated the diagnostic accuracy of preopera-
tive MRI-inclusive nomograms and traditional clinical 
nomograms in predicting pathological EPE of PCa. 
Both MRI-inclusive nomograms and traditional clini-
cal nomograms had moderate AUCs (0.72–0.80) for 
predicting EPE. MRI combined clinical predictors can 
improve diagnostic value to MRI alone, which could aid 
urologists in making decision protocols for local PCa 
patient treatment.

Abbreviations
AUC   Area under the curve
CAPRA  Cancer of the Prostate Risk Assessment
EPE  Extraprostatic extension
FN  False negative
FP  False positive
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PCa  Prostate cancer
TN  True negative
TP  True positive
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