
Habert et al. Insights into Imaging          (2023) 14:148  
https://doi.org/10.1186/s13244-023-01484-9

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Best imaging signs identified by radiomics 
could outperform the model: application 
to differentiating lung carcinoid tumors 
from atypical hamartomas
Paul Habert1,2,3*   , Antoine Decoux3, Lilia Chermati1, Laure Gibault4, Pascal Thomas5, Arthur Varoquaux6, 
Françoise Le Pimpec‑Barthes7, Armelle Arnoux8, Loïc Juquel9,10, Kathia Chaumoitre1, Stéphane Garcia9,10, 
Jean‑Yves Gaubert2,11, Loïc Duron3,12 and Laure Fournier13 

Abstract 

Objectives  Lung carcinoids and atypical hamartomas may be difficult to differentiate but require different treatment. 
The aim was to differentiate these tumors using contrast-enhanced CT semantic and radiomics criteria.

Methods  Between November 2009 and June 2020, consecutives patient operated for hamartomas or carcinoids 
with contrast-enhanced chest-CT were retrospectively reviewed. Semantic criteria were recorded and radiomics 
features were extracted from 3D segmentations using Pyradiomics. Reproducible and non-redundant radiomics fea‑
tures were used to training a random forest algorithm with cross-validation. A validation-set from another institution 
was used to evaluate of the radiomics signature, the 3D ‘median’ attenuation feature (3D-median) alone and the mean 
value from 2D-ROIs.

Results  Seventy-three patients (median 58 years [43‒70]) were analyzed (16 hamartomas; 57 carcinoids). The 
radiomics signature predicted hamartomas vs carcinoids on the external dataset (22 hamartomas; 32 carcinoids) 
with an AUC = 0.76. The 3D-median was the most important in the model. Density thresholds < 10 HU to predict 
hamartoma and > 60 HU to predict carcinoids were chosen for their high specificity > 0.90. On the external dataset, 
sensitivity and specificity of the 3D-median and 2D-ROIs were, respectively, 0.23, 1.00 and 0.13, 1.00 < 10 HU; 0.63, 0.95 
and 0.69, 0.91 > 60 HU. The 3D-median was more reproducible than 2D-ROIs (ICC = 0.97 95% CI [0.95‒0.99]; bias: 3 ± 7 
HU limits of agreement (LoA) [− 10‒16] vs. ICC = 0.90 95% CI [0.85‒0.94]; bias: − 0.7 ± 21 HU LoA [− 4‒40], respectively).

Conclusions  A radiomics signature can distinguish hamartomas from carcinoids with an AUC = 0.76. Median den‑
sity < 10 HU and > 60 HU on 3D or 2D-ROIs may be useful in clinical practice to diagnose these tumors with confi‑
dence, but 3D is more reproducible.

Critical relevance statement  Radiomic features help to identify the most discriminating imaging signs using ran‑
dom forest. ‘Median’ attenuation value (Hounsfield units), extracted from 3D-segmentations on contrast-enhanced 
chest-CTs, could distinguish carcinoids from atypical hamartomas (AUC = 0.85), was reproducible (ICC = 0.97), and gen‑
eralized to an external dataset.
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Introduction
Lung carcinoid tumors represent between 1 and 2% of 
primary pulmonary neoplasms in adults meaning 1.6 per 
100,000 people in 2003 in the US [1, 2]. These tumors 
arise from neuroendocrine cells which are physiologically 
present throughout the lung tract [3]. The bronchopul-
monary system is the second most frequent location of 
carcinoid tumors after the gastrointestinal tract [4]. Car-
cinoids have endobronchial localization in 85% of cases 
[2]. Typically, an atelectasis reveals the tumor with the 
macroscopic appearance of a “strawberry” when seen on 
bronchoscopy. Thanks to the wider use of chest CT, an 
increasing number of carcinoids are initially detected as 
incidental solid peripheral nodule [5]. In contrast, pulmo-
nary hamartomas are benign tumors, often incidentally 
discovered and asymptomatic. Their histopathological 

Key points   
• 3D-‘Median’ was the best feature to differentiate carcinoids from atypical hamartomas (AUC = 0.85).

• 3D-‘Median’ feature is reproducible (ICC = 0.97) and was generalized to an external dataset.

• Radiomics signature from 3D-segmentations differentiated carcinoids from atypical hamartomas with an AUC = 0.76.

• 2D-ROI value reached similar performance to 3D-‘median’ but was less reproducible (ICC = 0.90).
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characteristics may include fat, cartilage and epithelial 
tissue [6]. As the amount of fat and/or cartilage is vari-
able [7], attenuation patterns on CT may vary and result 
in difficulties to non-invasively confirm the diagnosis. 
Based only on morphological CT features, hamartomas 
thus can mimic carcinoids, especially if there is neither 
macroscopic fat nor calcifications. Conversely, carcinoids 
may also contain fat and calcifications in varying pro-
portions [8]. Clinically, both tumors are asymptomatic 
or present with cough or pneumonia if responsible for 
atelectasis [8, 9]. In these cases the radiological features 
of these tumors overlap, leading to difficulty in making a 
confident diagnosis by imaging and misdiagnosis is com-
mon. The differentiation between carcinoids and hamar-
tomas is of clinical importance because localized forms 
of carcinoids require a surgical resection whereas no 
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treatment is required for hamartomas. Surgery for these 
kinds of tumors vary from enucleation to pneumonec-
tomy, with a morbidity rate reaching 15% for open thor-
acotomy [10]. There would be a clear clinical benefit to 
detect hamartomas pre-operatively, to avoid unnecessary 
surgery, without misdiagnosing a carcinoid tumor.

Radiomics is a data-driven research field using high-
throughput mining of quantitative features extracted 
from medical images to discover new imaging bio-
markers and enable phenotypic profiling of lesions 
[11]. There is an increasing interest for using radiom-
ics to implement personalized medicine, especially in 
oncology [12] and in lung cancer [13]. As histological 
patterns for hamartomas and carcinoids are different, 
we hypothesized that radiomics may help differentiate 
these two tumor types.

The aim of this study therefore was to determine 
whether radiomics features on baseline lung contrast-
enhanced CT images could distinguish carcinoids from 
atypical hamartomas.

Materials and methods
This retrospective study from two independent centers 
received approval from the Institutional Review Board 
(Comité d’Ethique pour la Recherche en Imagerie Médi-
cale n°CRM-2202–229). One center was used as the 
training set to develop and cross-validate a model which 

was tested on an external validation set from the second 
institution (Fig. 1).

Training set
Atypical hamartoma was defined as hamartomas misdi-
agnose in multidisciplinary tumor board and treated with 
surgery. Using a thoracic surgeons’ register, all patients 
with histologically-confirmed diagnosis of carcinoids or 
hamartomas after surgery between November 2009 and 
June 2020 from Hopital Nord – Marseille – APHM—
France were collected. The inclusion criteria were: 1) a 
pre-operative chest CT available in the Picture Archiving 
and Communication System of the institutions, 2) pres-
ence of a post-contrast acquisition in a soft tissue recon-
struction kernel, 3) slice thickness ≤ 2 mm. The exclusion 
criteria were: 1) two tumors in the same operated lobe, 2) 
tumor including less than 64 voxels as suggested in previ-
ous studies [14], and 3) insufficient image quality for the 
measures (motion or beam hardening artifacts).

Examinations came from different institutions and 
CT devices and therefore were performed with variable 
parameters (Supplementary Material). The median slice 
thickness was 1.25 mm [Q1–Q3, 1.25–1.50].

The age and gender of the patients, and the type of sur-
gery performed were collected. Visual imaging signs on 
CT previously described for these tumors were analyzed: 
central or peripheral (i.e., sub-segmental bronchus or 

Fig. 1  Illustrated full process of the study, from data curation to analyses
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lower) localization; endobronchial position (if the tumor 
was located entirely or partially within bronchus); pres-
ence of atelectasis (partial or total); bronchial contact 
(distortion of a bronchus near the tumor); calcifications; 
border (lobulated or smooth). The longest diameter on 
the axial plane (mm) was also measured. These charac-
teristics were recorded by a radiologist (L.C., 4  years of 
experience in chest imaging), blinded to histology.

Feature extraction
Two radiologists (L.C. and P.H.) independently segmented 
volumes-of-interest (VOI) of the lesions on the soft ker-
nel images, using 3D Slicer (version 4.7, National Insti-
tutes of Health–funded; https://​www.​slicer.​org) [15, 16]. 
Large vessels and bronchi were not included. Radiologists 
were blinded to histology. The option to set the window 
width and window level was let to the radiologist prefer-
ence within the software to efficiently delineate the nod-
ule (examples in Fig. 2).

The Pyradiomics library (version 3.0.1, Computa-
tional Imaging & Bioinformatics Lab—Harvard Medi-
cal School) was used to extract radiomics features from 
the VOI using Python (version 3.8.8) [17]. Fixed bin 
width was set to 64 with no other preprocessing filter. 
One hundred five radiomics features were extracted, 

including shape-based (14 features), first-order statistics 
(18 features) and textural features (73 features). Their 
definitions are detailed in Additional file 1: Table e1 and 
follow the Image Biomarker Standardization Initiative 
guidelines [18].

Feature reduction, selection, and model building
Feature reduction was performed based on inter-observer 
reproducibility and feature redundancy. Inter-observer 
reproducibility was evaluated for all features, and fea-
tures presenting with pairwise intraclass correlation 
coefficients (ICC, two-way random effect, single rater, 
absolute agreement) < 0.8 were considered not reproduc-
ible [19] and excluded. Reproducible features were then 
compared two-by-two using a Spearman correlation, and 
highly correlated features with a coefficient ≥ 0.9 were 
considered redundant and only one was retained.

After feature reduction, a sequential step forward fea-
ture selection method was performed with a fivefold 
cross-validation setup to find the best performing feature 
combination on the training set. The scoring criterion 
was the area under the receiver operating characteristic 
curve (AUC). The radiomics signature that obtained the 
highest AUC value was selected to retraining a Random 
Forest Classifier (RF) with a tenfold cross-validation on 

Fig. 2  a axial, (b) coronal and (c) sagittal plane of contrast-enhanced chest CT in mediastinal window setting showing the 3D segmentation of one 
tumor, in blue, from which the ‘median’ feature was extracted (d) along with the volume rendering reconstruction of the merged segmentations 
of the two radiologists (blue and green) to illustrate reproducibility. e, f are two examples of red circular 2D ROIs used for measurement of mean 
attenuation. These circle was drawn using the dedicated tool of the viewer and place over 90% of the lesion, choosing the slice in which the tumor 
is the largest

https://www.slicer.org
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the whole training set. The RF hyperparameters were 
fine-tuned using a grid search approach. The best operat-
ing point of the model was defined on the training set as 
the threshold maximizing the Youden index. AUC, sensi-
tivity, and specificity were calculated. Their 95% CI were 
computed using bootstraps with 1000 repetitions.

Analysis of performance of the most important feature
The radiomics signature features were analyzed accord-
ing to their importance in the model. The most important 
feature was analyzed independently to determine whether 
it could predict histology on its own, using the senior 
radiologist’s segmentations. The threshold optimizing the 
Negative Likelihood Ratio for predicting hamartomas was 
determined. Two thresholds were chosen also to optimize 
respective specificity for each type of tumor.

To approximate the 3D feature using widely available 
clinical tools, mean attenuation was also calculated from 
a circle-shaped 2D-ROI placed over 90% of the lesion, 
on the slice in which the nodule was the largest, avoid-
ing calcifications if present, and performed by the two 
radiologists.

Reproducibility of 3D and 2D measures
The inter-reader reproducibility of the measure of the 
most important feature in the model (3D and 2D meas-
ure) was assessed on the training set using the ICC (two-
way random effect, single rater, absolute agreement) and 
Bland–Altman method (bias, standard deviation of the 
bias, limits of agreement (LoA)). The reproducibility of 
three non-contiguous 2D measures within each tumor 
was assessed by the same methods.

Correlation between contrast enhancement quality 
and the most important feature
To be sure that concentration of contrast did not influ-
ence the measure made on carcinoids, a Spearman cor-
relation was performed between the aforementioned 
feature and mean attenuation value obtained with a 
2D-ROIs drawn in the pulmonary artery trunk.

Carcinoids were split in two groups using the cut-off 
of 250 HU in the pulmonary artery trunk obtained with 
2D-ROIs, as previously validated as a quality criterion 
for chest-CT arterial enhancement [20] and compared to 
ensure that contrast concentration did not influence the 
measure.

External validation set
An external validation set from an independent center 
(Hopital Européen Georges Pompidou—APHP—Paris—
France) was collected, identified from the pathology 
register, to test the model using the same inclusion and 

exclusion criteria as the training set. The lesions were 
delineated by one radiologist (P.H.), blinded to histology.

The radiomics signature, the three thresholds for the 
most important feature alone, and the 2D-derived measure 
were tested on this external validation dataset, and their 
performance was evaluated (AUC, sensitivity, specificity).

Corrected positive and negative predictive values (PPV 
and NPV) were calculated using the mean of the ten 
years’ prevalence observed in the two centers.

Statistical analysis
Continuous data were expressed as median [Q1-Q3]. 
Categorical data were expressed as frequency or per-
centage. A two-sided p-value < 0.05 was considered 
statistically significant. The Radiomics Quality Score 
was calculated [18]. Quantitative data are given with 
their 95% CI. A Mann–Whitney test was used to com-
pare quantitative data. To compare semantic criteria of 
hamartomas and carcinoid tumors Mann–Whitney test 
was used to compare quantitative data and Chi-square 
test to compare qualitative data.

The following packages of Python were used: Numpy 
(version 1.20.1) and Pandas (version 1.2.4) for data han-
dling; Mlxtend (version 0.19.0) and Scikit-Learn (version 
0.24.1) for preprocessing, machine learning, and per-
formance evaluation; and matplotlib (version 3.3.4) for 
plots. The ICC function was assessed using R (version 
3.6.1) from the IRR package (version 0.84.1).

Results
Training and external validation datasets
Two hundred and six patients which had available post-
operative histopathological reports of carcinoids or 
hamartomas were reviewed for the training set. Among 
them, 82 patients met the inclusion criteria. The fol-
lowing patients were excluded: two tumors in the same 
resected part of the lung (N = 1), small tumor size (N = 1), 
or insufficient image quality (N = 7). Finally, 73 patients 
with a median age of 58 [43–69] years, including 16 
hamartomas and 57 carcinoids (42 typical and 15 atypi-
cal) were retrospectively analyzed (Fig.  3). The exter-
nal validation dataset, following the same inclusion and 
exclusion criteria as the training set, included 54 patients 
(32 carcinoids including 25 typical and 7 atypical, and 22 
hamartomas).

There was no statistically significant difference in 
semantic characteristics for each type of tumors between 
the training and external validation datasets, except for 
endobronchial protrusion in hamartomas which was 
more frequent in the training set (Table 1). Comparison 
between all hamartoma and carcinoid tumors has been 
added in supplemental material (Table 2).
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Radiomics criteria
Median number of pixels in 3D VOIs was 2296 [Q1‒Q3, 
417‒7856]. Median number of pixels in 2D ROIs was 
200 [62‒428]. Radiomics feature reduction according to 
ICC ≥ 0.8 resulted in 56 reproducible features. Among 
them, 32 were redundant (Spearman correlation coeffi-
cient ≥ 0.9), leaving 24 features for subsequent analyses. 
The sequential step forward feature selection using the 
bagging classifier on the training set yielded a radiom-
ics signature of five features that maximized the AUC 
value in distinguishing the two tumors (0.89 [95% CI: 
0.81–0.98]).

These features were: first-order features (’Median’ and 
’Maximum’ attenuation) and texture features (’Differ-
enceVariance,’ ‘SmallDependenceHighGrayLevelEm-
phasis’ and ’Coarseness’). The Youden index was 0.61. 
When applied on the external validation set, the radi-
omics signature AUC, sensitivity and specificity were 
0.76 [95% CI: 0.71–0.82], 91% [95% CI: 86–95%] and 
46% [95% CI: 37–55%], respectively (Fig. 4). The impor-
tance of each feature in the model was 0.31, 0.26, 0.18, 
0.15 and 0.10, respectively.

The Radiomics Quality Score was performed accord-
ing to the standard for radiomics studies and was 
47/100 (Additional file 1: Table e2).

Most important feature 3D and 2D‑ROIs thresholds
The radiomics 3D ‘median’ attenuation feature, cor-
responding to the median HU value in the 3D VOI, 
reached a cross-validated AUC score of 0.85 [95% CI: 

0.74–0.96] on the training set (Additional file 1: Figure 
e1). We selected the following intensity thresholds to 
predict hamartoma or carcinoids with high specific-
ity on the training set: < 10 HU to predict hamartomas 
(specificity 96%, [95% CI: 96–99%]), > 60 HU to pre-
dict carcinoids (specificity 68%, [95% CI: 55–79%]). 
The threshold that maximized the Negative Likeli-
hood Ratio (4.9) was 40 HU, with a sensitivity of 69% 
([95% CI: 44–86%]) and a specificity of 86% ([95% CI: 
75–93%]) to predict hamartomas on the training set for 
tumors with a 3D ‘median’ attenuation value below 40 
HU.

These thresholds were then applied on the external 
validation dataset using the 3D ‘median’ attenuation 
feature and the easy-to-use in clinical practice mean 
attenuation measured on the 2D-ROI. These results are 
summarized in Fig. 5 and detailed in Table 3. The posi-
tive and negative predictive values were calculated and 
corrected using the mean prevalence of hamartomas of 
the two centers (prevalence from the center one: 35%, 
from the center two: 18%, mean prevalence: 26%).

Reproducibility of the most important feature
The ICC of the 3D ‘median’ attenuation feature and 2D 
mean attenuation were 0.97 ([95% CI: 0.95–0.99]) and 
0.90 ([95% CI: 0.85–0.94]), respectively. The evaluation 
of reproducibility of the 3D ‘median’ attenuation feature 
and 2D-mean density using the Bland & Altman method 
showed that the 3D ‘median’ attenuation feature was 
more reproducible than the 2D mean attenuation (bias 

Fig. 3  Flowchart of the study
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3 ± 7 HU, LoA [–10–16] vs − 0.7 ± 20 HU, LoA [–40–40] 
(Fig. 6).

The ICC of mean values from 2D mean attenuation at 
three different levels of the tumor was excellent (0.93, 
[95% CI: 0.90–0.96]). But the LoA was wide and diffi-
cult to adapt to the scale previously described to predict 
hamartomas and carcinoids (Additional file 1: Figure e2).

There was no correlation between the pulmonary 
artery trunk enhancement and the 3D ‘median’ attenu-
ation of carcinoids in the training set (r = 0.07), and no 
significant difference in the value of the 3D ‘median’ 
attenuation feature between chest CT with 2D-ROIs 
in pulmonary trunk > 250 HU versus those < 250 HU 
(p = 0.544) (Additional file 1: Figure e3).

Discussion
Radiomics features allowed identifying imaging features 
differentiating lung atypical hamartomas from carci-
noids, with an AUC of 0.76. The ‘median’ attenuation 

(HU) was the most important feature in the model, this 
feature alone and on the training set reached an AUC of 
0.85. Best thresholds to predict hamartomas and carci-
noids on the external dataset were < 10 HU and > 60 FHU, 
respectively. 2D mean attenuation measured on circular 
ROIs gave good results, with a difference in sensitivity 
and specificity below 10% compared to the 3D ‘median’ 
attenuation feature. The 3D ‘median’ attenuation feature 
was slightly more reproducible than the 2D mean attenu-
ation. In this case the simple attenuation features outper-
form the model and was more efficient.

Typical hamartomas combining fat, tissue and carti-
laginous calcifications are easy to diagnose but infre-
quent [21], especially when small. Hamartomas do not 
require treatment, but they can easily be confounded 
with carcinoid tumors when the radiological presentation 
is atypical that mean without calcification or fat, leading 
to unnecessary surgeries and potential complications. 
Clinical presentation could be the same: asymptomatic, 

Table 1  Population characteristics

Demographic and clinical data. Results were expressed in median [Q1-Q3] for quantitative data or number (percentage) for qualitative data. ‘n = ’ corresponds to the 
number of patients operated. HU—Hounsfield units. A p-value lower than 0.05 was considered as significant. $ Comparison between hamartoma on training and 
validation set. § Comparison between carcinoids on training and validation set. p-value < 0.05 was highlighted in bold

Hamartoma 
training set n = 16

Hamartoma 
validation set 
n = 22

p-value$ Carcinoid tumor 
training set n = 57

Carcinoid tumor 
validation set n = 32

p-value§

Age (years) 62 [43–76] 58 [50–64] p = 0.68 58 [41–70] 62 [51–67] p = 0.28

Gender

  Male 10 (62%) 11 (50%) p = 0.53 10 (25%) 8 (25%) p = 0.99

  Female 6 (38%) 11 (50%) 47 (75%) 24 (75%)

Type of surgery

  Pneumonectomy 0 (0%) 0 (0%) p = 0.72 2 (3%) 2 (6%) p = 0.94

  Lobectomy 7 (44%) 1 (5%) 42 (74%) 26 (82%)

  Segmentectomy 0 (0%) 0 (0%) 8 (14%) 2 (6%)

  Wedge resection 7 (44%) 15 (68%) 5 (9%) 2 (6%)

  Enucleation 1 (6%) 6 (27%) 0 (0%) 0 (0%)

  Biopsy 1 (6%) 0 (0%) 0 (0%) 0 (0%)

Diameter (mm) 17 [11–26] 12 [8–18] p = 0.16 18 [12–26] 18 [13–25] p = 0.95

Calcifications 7 (44%) 4 (18%) p = 0.15 9 (16%) 2 (7%) p = 0.32

Anatomic location

  Central 6 (37%) 4 (18%) p = 0.27 30 (53%) 16 (50%) p = 0.83

  Peripheral 10 (62%) 18 (82%) 27 (47%) 16 (50%)

Bronchial contact 5 (31%) 5 (23%) p = 0.71 38 (67%) 25 (78%) p = 0.33

Endobronchial protrusion 4 (25%) 0 (0%) p = 0.02 23 (40%) 16 (50%) p = 0.50

Atelectasis 2 (13%) 0 (0%) p = 0.17 16 (28%) 12 (38%) p = 0.48

Borders shape

  Smooth 11 (69%) 11 (50%) p = 0.33 40 (70%) 19 (61%) p = 0.48

  Lobulated 5 (31%) 11 (50%) 17 (30%) 12 (39%)

Mean 2DROI value (HU) 30 [12–40] 26 [18–33] p = 0.51 80 [50–103] 78 [57–107] p = 0.99

Mean 2DROI value (HU) 
in pulmonary artery trunk

210 [144–283] 225 [186–336] p = 0.35 229 [183–309] 179 [151–260] p = 0.03
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cough, pneumonitis. Semantic radiological criteria have 
an area of overlap for atypical hamartomas and carcinoid 
tumors [22, 23]. To add difficulty, carcinoid tumors may 
present with calcifications, Huang et  al. report a series 
on 21 cases [21], in which 12% of carcinoids contained 
calcifications while others studies found calcifications in 
33% or 40% [23, 24]. Another area of overlap concerns 
the traditional “central and endobronchial” description 
of carcinoids (opposite to the description of “peripheral 
and extra bronchial” hamartoma) as it seems to have 
been overestimated in the past, as shown in recent stud-
ies (down from 84% in older series to 47–57% in recent 
series) [23–25] probably due to the increased use of CT. 
Presentation entirely inside the bronchial lumen is not 
the most frequent situation for carcinoids, 69% were not 
endobronchial in our study, similar to previous recent 
publications reporting 75% and 77% [23, 24]. As all these 
publications are retrospective and on small numbers of 
patients, sensitivity and specificity of semantic signs are 
not reported.

PET/CT may not have additional value as carcinoids 
and hamartomas both can present with either slightly 
increased or no 18FDG uptake [22]. The best tool seems 
68  Ga-DOTATOC, achieving a detection rate of 88.4% 

with threshold of SUVmax > 2.5 but with a high rate of 
false-negatives [26].

Radiomics is a promising field for tumor characteri-
zation and has already proven its efficiency for car-
cinoids, to discriminate the different levels of Ki-67 
expression or metastatic diseases [8]. From an initial 
strategy based on machine learning using radiom-
ics features, we identified a five feature-signature with 
good results on an external validation dataset. We 
wished to explore whether this signature could be sim-
plified. Using the 3D ‘median’ attenuation feature alone 
performed better on the external validation dataset 
than the RF algorithm and the signature. This illustrates 
the limitation of these signatures built on training sets, 
the meaning of which are often difficult to understand, 
and the challenge to find a generalizable, robust and 
reproducible signature for clinical practice [27]. There 
are different methods to reduce and select radiomics 
features. The extraction using the open-source Pyradi-
omics tool is today widely used thanks to its availability 
[28]. The chosen method to reduce features, removing 
non reproducible and redundant features, has already 
been published with good results [29] but there is not 
today a single accepted method.

Table 2  Comparison between hamartoma and carcinoid tumors

Demographic and clinical data. Results were expressed in median [Q1-Q3] for quantitative data or number (percentage) for qualitative data. ‘n = ’ corresponds to the 
number of patients operated. HU—Hounsfield units. A p-value lower than 0.05 was considered as significant. p-value < 0.05 was highlighted in bold

Population characteristics Hamartoma n = 38 Carcinoid tumor n = 89 p-value

Age (years) 58 [49–67] 60 [45–68] p = 0.93

Gender

  Male 21 (55%) 18 (20%) p = 0.01
  Female 17 (45%) 71 (80%)

Type of surgery

  Pneumonectomy 0 (0%) 4 (4%) p = 0.01
  Lobectomy 8 (21%) 68 (76%)

  Segmentectomy 0 (0%) 10 (11%)

  Wedge resection 22 (58%) 7 (9%)

  Enucleation 7 (18%) 0 (0%)

  Biopsy 1 (3%) 0 (0%)

Diameter (mm) 14 [10–24] 18 [12–26] p = 0.03
Calcifications 11 (44%) 11 (18%) p = 0.02
Anatomic location

  Central 10 (26%) 46 (52%) p = 0.01
  Peripheral 28 (74%) 43 (48%)

Bronchial contact 10 (26%) 63 (71%) p = 0.01
Endobronchial protrusion 4 (11%) 39 (44%) p = 0.01
Atelectasis 2 (5%) 28 (31%) p = 0.01
Borders shape

  Smooth 22 (58%) 59 (66%) p = 0.37

  Lobulated 16 (42%) 30 (34%)

Mean 2DROI value (HU) 28 [17–36] 79 [55–105] p = 0.01
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Radiomics feature are dependent on acquisition 
parameters, such as pixel size and kernel [30]. Multiple 
CT machines were used in our study leading to hetero-
geneity in CT protocols. To limit this bias, we excluded 
patients with slice thickness > 2  mm, and we used only 
smooth kernel reconstructions for segmentations. The 
use of an external dataset to validate the model and the 
other diagnostic features is a key point in the IBSI guide-
line. Three-dimensional segmentations were drawn, 
more time consuming than 2D-segmentations, but gave 
results which seemed more reproducible for clinical use, 
and allowed getting rid of the inter-slice variability of 2D 
measure. The manual segmentations of tumors could 
introduce measurement bias, but we performed dou-
ble independent segmentations and we controlled for 

reproducibility according to imaging biomarkers recom-
mendations [31, 32].

This study has some limitations. We did not ana-
lyze all the hamartomas of the centers but only those 
who had been surgically removed. Though this led to 
a selection bias, this dataset represents hamartomas 
that are challenging in a clinical context, since they 
were not diagnosed pre-operatively. Finally, we tried 
to simplify the 3D measure by a 2D measure simpler to 
implement in routine, but calculated the mean instead 
of the median, as it was the measure most frequently 
available on clinical PACS. Mean value is influenced by 
extreme values while median is not, but due to the high 
number of pixels in each tumor, we hypothesized that 
the distribution of the HU value within tumors could 

Fig. 4  ROC curve of the RF model on the external validation set and the corresponding confusion matrix. Example of two axial slice of enhanced 
chest CTs showing a hamartoma (a) with a 3D median attenuation of − 15 HU and 2D mean attenuation of − 22 HU, and a carcinoid tumor (b) 
with a 3D median attenuation of 71 HU and a 2D mean attenuation of 77 HU
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tend toward a Gaussian distribution. However, though 
performance was similar for 2D and 3D, the latter’s 
higher reproducibility makes it a more reliable poten-
tial biomarker. We could guess what the goal of using 

radiomics in this study if simple attenuation feature 
outperforms the model. But to select these features and 
understand their importance in the machine learning 
model we must use radiomics. It seems that the second 

Fig. 5  Results of the application of different thresholds selected from the training set ROC curve, to predict hamartoma of carcinoids 
on the external validation dataset using the ‘median’ feature extracted from 3D segmentations and the 2D mean attenuation

Table 3  Confusion matrix for different thresholds on validation set with corrected prevalence

This table illustrates different confusion matrix for different thresholds (< 10 and > 60 HU) chosen on the training set, measured using 2D or 3D segmentations on 
the external validation set. Best threshold was chosen according to highest Likelihood Ratio (= 4.9). The corrected prevalence was set to 26%. HU—Hounsfield units; 
cNPV—corrected negative predictive values; cPPV—corrected positive predictive values

To predict hamartoma True hamartoma True carcinoid Sensitivity Specificity cPPV cNPV

3D < 10 HU 0.23
[0.10–0.43]

1.00
[0.89–1.00]

1.00
[0.24–1.00]

0.79
[0.74–0.83] Predict hamartoma 5 0

 Predict carcinoid 17 32

2D < 10 HU 0.13
[0.05–0.33]

1.00
[0.89–1.00]

1.00
[0.14–1.00]

0.77
[0.73–0.81] Predict hamartoma 3 0

 Predict carcinoid 19 32

Best threshold (To predict 
hamartoma)

True hamartoma True carcinoid Sensitivity Specificity PPV NPV

3D < 40 HU 0.82
[0.61–0.93]

0.78
[0.61–0.89]

0.57
[0.35–0.75]

0.93
[0.82–0.97] Predict hamartoma 18 7

 Predict carcinoid 4 25

2D < 40 HU 0.82
[0.61–0.93]

0.81
[0.65–0.91]

0.60
[0.34–0.78]

0.93
[0.83–0.97] Predict hamartoma 18 6

 Predict carcinoid 4 26

To predict carcinoid True carcinoid True hamartoma Sensitivity Specificity PPV NPV

3D > 60 HU 0.63
[0.45–0.77]

0.95
[0.78–0.99]

0.82
[0.42–0.96]

0.88
[0.80–0.92] Predict carcinoid 20 1

 Predict hamartoma 12 21

2D > 60 HU 0.69
[0.51–0.82]

0.91
[0.72–0.98]

0.73
[0.39–0.94]

0.89
[0.81–0.94] Predict carcinoid 22 2

Predict hamartoma 10 20
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order features disturb the machine learning process 
and lower the performance of the model compared to 
the simple attenuation features.

In conclusion, a RF algorithm using radiomics fea-
tures extracted from 3D-segmentations could differenti-
ate atypical hamartomas from carcinoid tumors in lung 
on an external validation set with good performance 
(AUC = 0.76). Features based on HU participated for 57% 
in the model. The 3D ‘median’ attenuation alone reached 
an AUC = 0.85 on the training set. We propose diagnos-
tic thresholds < 10 HU to confidently predict hamartomas 
and > 60 HU to confidently predict carcinoids with high 
specificity. 3D ‘median’ attenuation was a highly repro-
ducible feature between two readers. The simpler 2D 
mean attenuation measurement was equally accurate but 
not reproducible enough between readers to be used.
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