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Abstract 

Abstract Health systems worldwide are implementing lung cancer screening programmes to identify early‑stage 
lung cancer and maximise patient survival. Volumetry is recommended for follow‑up of pulmonary nodules and out‑
performs other measurement methods. However, volumetry is known to be influenced by multiple factors. The objec‑
tives of this systematic review (PROSPERO CRD42022370233) are to summarise the current knowledge regarding fac‑
tors that influence volumetry tools used in the analysis of pulmonary nodules, assess for significant clinical impact, 
identify gaps in current knowledge and suggest future research. Five databases (Medline, Scopus, Journals@Ovid, 
Embase and Emcare) were searched on the 21st of September, 2022, and 137 original research studies were included, 
explicitly testing the potential impact of influencing factors on the outcome of volumetry tools. The summary of these 
studies is tabulated, and a narrative review is provided. A subset of studies (n = 16) reporting clinical significance were 
selected, and their results were combined, if appropriate, using meta‑analysis. Factors with clinical significance include 
the segmentation algorithm, quality of the segmentation, slice thickness, the level of inspiration for solid nodules, 
and the reconstruction algorithm and kernel in subsolid nodules. Although there is a large body of evidence in this 
field, it is unclear how to apply the results from these studies in clinical practice as most studies do not test for clinical 
relevance. The meta‑analysis did not improve our understanding due to the small number and heterogeneity of stud‑
ies testing for clinical significance.

Critical relevance statement Many studies have investigated the influencing factors of pulmonary nodule volume‑
try, but only 11% of these questioned their clinical relevance in their management. The heterogeneity among these 
studies presents a challenge in consolidating results and clinical application of the evidence.

Key points  
• Factors influencing the volumetry of pulmonary nodules have been extensively investigated.

• Just 11% of studies test clinical significance (wrongly diagnosing growth).

• Nodule size interacts with most other influencing factors (especially for smaller nodules).

• Heterogeneity among studies makes comparison and consolidation of results challenging.

• Future research should focus on clinical applicability, screening, and updated technology.
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Introduction
Health systems worldwide are implementing Lung Can-
cer Screening programmes (LCS) to identify early-stage 
lung cancer and maximise patient survival. However, 
false positive findings presenting as mostly benign, small, 
non-calcified pulmonary nodules are present in 22–51% 
of participants, which may cause morbidity and under-
mines the cost-effectiveness of LCS [1, 2].

Before the Dutch-Belgian randomised lung cancer 
screening (NELSON) trial, any pulmonary nodule was con-
sidered potentially malignant until proven stable for two 
years. This trial linked the risk of malignancy to the nodule’s 
size, with small nodules (≤ 100  mm3 in volume or ≤ 5 mm 
in diameter) having a low risk of cancer (0.4%), while large 
nodules (> 300  mm3 or > 10 mm) see this risk raise to 16.9%. 
The risk of malignancy for medium-sized nodules depends 
on their growth rate, increasing from 0.8% for nodules with 
a volume doubling time (VDT) ≥ 600 days to 9.9% for nod-
ules with a VDT < 400 days [1].

Volumetry has consistently outperformed other meth-
ods of measuring pulmonary nodules and has been 

recommended by several international scientific societies 
for their follow-up [1, 3, 4]. However, the growth curves 
based on volumetry are highly variable and influenced 
by multiple known factors [5, 6]. These influencing fac-
tors can be related to the scanner, acquisition (e.g., radia-
tion dose exposure, slice thickness) and reconstruction 
parameters (e.g., kernel), software package, nodule (e.g., 
size, shape, location), patient (e.g., breathing, comorbidi-
ties) or even to the observer (e.g., experience and train-
ing). The consistent use of the same scanner, protocol, 
and software during the follow-up of a pulmonary nodule 
reduces measurement variability. Still, it is often imprac-
tical, such as in cases of equipment failure, critical soft-
ware upgrades, or the patient moving house.

The primary objective of this systematic review is to 
summarise the current knowledge regarding the factors 
that influence the outcome of volumetry tools dedicated 
to pulmonary nodules. The secondary objectives are to 
assess the clinical significance of the evidence, identify 
gaps in current knowledge and suggest future research.
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Methods
The protocol and search strategy were registered 
with PROSPERO with the registration number 
CRD42022370233.

The authors defined the primary and secondary 
research questions as “What factors influence the out-
come of volumetry tools dedicated to pulmonary nod-
ules?” and “What is the clinical significance of their 
effect?” respectively.

The authors searched the following databases on the 
 21st of September 2022: MEDLINE, SCOPUS, Journals@
Ovid, Embase, and Ovid Emcare, using the query: (((Vol-
ume OR Volumetry OR Volumetric) AND (lung OR pul-
monary) AND (nodule OR nodules)).

Eligibility criteria
The inclusion criteria were defined as follows:

• Original research studies using dedicated volumetry 
tools in solid or part-solid pulmonary nodules.

• Study design explicitly tests the potential impact of 
influencing factors on these tools’ outcomes (i.e., vol-
ume, segmentation quality).

The exclusion criteria were defined as follows:

• Case reports reviews, or opinion articles.
• Study design exclusively investigating ground-glass 

opacities (GGOs), using a dedicated (i.e., less gener-
alisable) segmentation algorithm.

The authors excluded duplicate records using the 
Rayyan online tool (Perdue University).

Assessment of methodological quality
The quality of the included studies was assessed indepen-
dently by two authors (chest radiologists with over five 
years of experience in LCS) based on the revised Qual-
ity Assessment of Diagnostic Accuracy Studies (QUA-
DAS-2), and all disagreement was resolved through 
discussion with a third chest radiologist. The risk of bias 
was rated as high, low, or unclear.

Data extraction
Both authors agreed on the final list of reports and 
retrieved the respective full articles.

Non-English articles (i.e., Chinese, German) were 
translated using an online service (www. trans lated. com).

The authors then screened the complete reference lists 
of all included articles for additional pertinent entries. 

Grey literature reports were used to identify potential 
candidate studies.

The variables collected included: population, nodule 
features, statistical methodology, influencing factor(s), 
outcome variable, observed effect(s), interactions 
between different influencing factors, and the statistical 
significance of relevant tests.

Statistical analysis and data presentation
To assess the evidence for clinical significance, we 
selected all in vivo studies reporting interscan variability 
using relative Bland–Altman analysis. The variables col-
lected at this stage included: influencing factor(s), sys-
tematic bias, Limits of Agreement (LOA), and sub-group 
analysis. The LOA were deduced from the standard devi-
ation and systematic bias if needed. When appropriate, 
the authors synthesised LOA and systematic bias from 
groups of studies using the inverse-variance method with 
a random-effects model (SPSS v26 [IBM, Armonk, NY, 
USA]).

The heterogeneity between the primary studies was 
assessed using the heterogeneity variance (τ2) and Forest 
plots. The Deeks’ funnel plot was planned to determine 
study asymmetry and potential publication bias if com-
paring more than ten studies.

Missing values were excluded after an unsuccessful 
attempt to contact the corresponding author of the pri-
mary study.

Results
The search returned 1259 (MEDLINE), 1697 (SCOPUS), 
53 (Journals@Ovid), 223 (Embase), and 126 (Emcare) 
results from 1960 to 2022. The PRISMA flow diagram is 
presented in Fig. 1.

After the study selection and critical appraisal, the first 
stage of the systematic review included a cohort of 137 
studies. A consolidated summary of results is presented 
in Table  1, and the complete list of the summarised 
results is provided as Additional file 1: Table S1.

The second stage of the review identified a cohort of 16 
studies, summarising their results in Table 2. Meta-anal-
ysis was attempted in two study groups, with results pre-
sented as Additional file 1 (Table S3 and Figures S1 and 
S2). Funnel plots were not performed since the minimum 
of 10 studies was unmet.

Influencing factors related to the scanner
Acquisition parameters
Radiation dose exposure, tube current, and tube poten-
tial Minimising radiation dose exposure is essential to 
LCS and can be done by manipulating tube current and 
potential, often interchangeably. The interaction between 

http://www.translated.com
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dose exposure and tube current–time product (mAs) is 
linear and well understood. However, the interaction 
with tube potential is not, with a reduction of tube volt-
age from 100 to 80kVp resulting in a reduction of dose 
exposure in the order of 1.5 [23].

Several studies investigated the impact of radiation 
dose exposure, tube voltage, or tube current on the 
outcome of volumetry tools. Less than half of the stud-
ies showed a statistically significant difference in accu-
racy, and the vast majority concluded this difference to 
be clinically insignificant [13, 15, 24–38]. Some studies 
reported worsening segmentation quality with lower 
dose exposure [30] and reduced precision with lower 
dose exposure, tube current–time product, or tube 
voltage, limited to small 5 mm and non-solid nodules 
[28, 39–46].

The impact of radiation dose exposure on volume-
try showed clinically significant differences between 
standard-dose (SDCT) vs low-dose (LDCT) [18] CT 
protocols and SDCT vs ultra-low-dose CT proto-
cols (ULDCT) [15, 17], contradicting the consensus 
that reducing the radiation dose does not affect the 
outcome of volumetry. Studies comparing LDCT vs 

ULDCT did not confirm this result, thus supporting 
their use in LCS [10, 13]. Despite the acceptance of 
SDCT, LDCT and ULDCT protocols, their definition 
varies among authors, and the effective radiation dose 
depends on the patient’s body weight. The estimated 
effective dose acceptable for LCS is 2 mSv [47].

The signal-to-noise ratio (SNR) is not an independ-
ent influencing factor [32, 48].

Collimation
The effect of collimation is statistically significant 
between thin (≤ 0.75 mm) and thick (≥ 1.5 mm) settings, 
with some authors recommending thinner [37, 38] while 
others recommend thicker [49, 50] settings for volume-
try. However, the consensus considers collimation as not 
clinically significant.

High‑resolution scan mode
The development of garnet detectors in CT scanners ena-
bled the high-resolution scan mode, increasing the sam-
pling per gantry rotation, spatial resolution, and image 
quality while reducing volume overestimation [51].

Fig. 1 Prisma flow diagram describing the results of the search and selection process
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Table 1 Summary of studies included in the review

Factor Statistical significance Clinical relevance Observations

Acquisition parameters

Radiation dose exposure, tube current and tube 
potential

No consensus Yes Despite usually considered as non‑significant, 
there are numerous contradictory study results, 
with some studies even showing inter‑scan vari‑
ability of volumetry measures in the realm of clinical 
relevance

Signal‑to‑noise ratio (SNR) No Not an independent factor

Collimation Yes Untested Generally considered as clinically not relevant, 
but untested

High‑resolution scan mode Yes Untested Single study showing reduced volume overestima‑
tion of pulmonary nodules

Field of view (scan FOV) No

Pitch No Not significant unless using high pitch mode (pitch 
factor = 3) in small nodules (< 5 mm)

Contrast enhancement Yes Untested Overestimates the volume of the pulmonary 
nodule

Reconstruction parameters

Slice thickness Yes Yes Thinner slice thickness improves accuracy, preci‑
sion, and segmentation quality
Should be thin enough to allow any nodule to be 
visible in ≥ 3 consecutive slices
A thickness ≥ 2.5 mm is inadequate to detect 1 mm 
changes in nodule’s diameter

Field of view (display FOV) No

Reconstruction interval No consensus Untested Overlap (interval < thickness) improves accuracy 
and precision of volumetry in smaller nodules 
and thicker slices
Likely not significant using 1 mm slice thickness

Raw‑data reconstruction algorithm No Yes
(sub‑solid nodules)

Iterative reconstruction (IR) algorithms outperform 
filtered back projection (FBP) for small part‑solid 
nodules and at lower tube currents improving 
performance of volumetry tools
The noise reduction provided by IR is not uniform 
and less significant at the nodules’ edges

Kernel Yes Yes
(sub‑solid nodules)

Sharp kernel improves volumetry performance 
in thin 1 mm slices
Smooth kernel outperforms sharp kernel 
in thicker ≥ 2.5 mm slices

Post‑processing No Image compression and vessel suppression con‑
sidered as not significantly influencing volumetry 
of pulmonary nodules

CT scanner equipment

Vendor Yes Untested Only for small nodules not requiring follow‑up

Technology No consensus Untested Multi‑detector CT, flat‑panel, dual energy spectral 
CT

Software

Software (package and version) and segmenta‑
tion algorithm

Yes No The same software package and version should 
be consistently used through the follow‑up of any 
pulmonary nodule

Nodule

Size Yes Yes Performance of volumetry tools is degraded 
in smaller nodules and considered unreliable 
for growth estimation of nodules < 5 mm

Density Yes Untested Volumetry of non‑solid nodules has worse accuracy 
and precision than for solid nodules
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Field‑of‑view (FOV)
The scanners’ spatial resolution in the axial plane 
depends on the FOV and the matrix size. The scan FOV 
determines the amount of raw data acquired, but images 
can be later reconstructed with a different and smaller 
display FOV.

Several authors investigated the effect of changing the 
FOV (between 9.6 cm and 36 cm) and showed no statisti-
cally significant impact on volumetry [52–55].

Pitch
Likewise, the pitch parameter has no significant impact 
on volumetry within conventionally used values [36, 49, 
53, 56], apart from improved repeatability with smaller 
pitch values (0.9 vs 1.2) [49]. However, the high pitch 
mode (i.e., pitch factor of 3) reduces the accuracy of volu-
metry in small (< 5 mm) solid nodules [56].

Contrast enhancement
Contrast enhancement overestimates the volume, pos-
sibly by increasing the attenuation of the nodules or 
adjacent structures [57–61]. Rampinelli et  al. found 
volumetry comparable across different delay times (i.e., 
phases) in contrast-enhanced CT [58].

Reconstruction parameters
Slice thickness
Slice thickness has been investigated as an influencing 
factor of volumetry between 0.625 and 5  mm. Thinner 
slices resulted in statistically significant improvement in 
accuracy and precision in all but one study [19, 21, 31, 34, 
36, 39, 44, 48–50, 52–55, 62–67]. In comparison, thicker 
slices are related to lower measurement agreement and 
reduced segmentation quality [52, 54, 66].

The slice thickness determines the scan’s longitudi-
nal (z-axis) spatial resolution. The difference between 
the higher axial and lower longitudinal spatial resolu-
tion explains why the FOV is insignificant while the slice 
thickness is, especially for thicker slices.

Increasing the slice thickness increases the volume of 
voxels along the z-axis. Larger voxels may increase the 
volume measurement, but surface voxels will also suf-
fer more partial volume effects, increasing measurement 
variability [54]. Since smaller nodules have a higher ratio 
of surface to inner voxels, the volumetry of smaller nod-
ules is more affected by slice thickness [21, 36, 49, 52].

The slice thickness should be thin enough to make any 
nodule visible in at least three consecutive slices [52]. 

Table 1 (continued)

Factor Statistical significance Clinical relevance Observations

Shape Yes Untested Volumetry of nodules with irregular and spiculated 
shapes has lower accuracy and precision than volu‑
metry of nodules with round, elongated, smooth 
or lobulated shapes

Margin Yes Untested Volumetry of nodules with poorly defined margins 
have higher variability

Location Yes Untested Attachment to surrounding structures (e.g., pleura, 
vessels, bronchial walls) degrades the performance 
of volumetry tools

Patient

Parenchymal changes Yes Untested Only with increased attenuation of surrounding 
parenchyma (e.g., ILD)

Breathing Yes Yes Breathing artifacts are related to volume overesti‑
mation and increased measurement variability

Cardiopulmonary haemodynamics Yes Yes Complex cardiopulmonary interactions affecting 
the amount of blood inside or around a nodule, 
leading to increased volume measurement vari‑
ability

Observer

Manual correction Yes Untested Selectively correcting obvious segmentation errors 
improves the performance of volumetry tools

Experience No

Training Yes Untested Training with the volumetry tool is important 
in unexperienced observers
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Table 2 Summary of studies reporting percent Bland–Altman analysis of interscan variability

Ref. Population (n) Independent variable/subgroup Bias lowerLOA upperLOA

[7] Patients with known pulmonary nodules

100 Size: all − 0,90% − 16,40% 14,60%

58 Size: 30–< 80  mm3 − 0.3% − 16.8% 16.2%

42 Size: 80–150  mm3 − 1.7% − 15.5% 12.3%

[8] Patients with pulmonary nodules detected on CCTA 195 Cardiac cycle phase (systole vs diastole) 2.65% − 47.0% 52.3%

[9] Patients with part− solid nodules 66 Kernel

Solid component segmentation − 3.2% − 45.0% 39.0%

Whole nodule segmentation 13,00% − 21.0% 46.0%

[10] Patients under surveillance for < 2 mm solid nodules Radiation dose exposure (LDCT vs. ULDCT)

170 all nodules − 2.0% − 18.0% 22.7%

97 indeterminate nodules − 6.0% − 12.7% 21.9%

68 BMI < 25 − 2.5% − 17.5% 23.6%

102 BMI > 25 − 1.0% − 18.3% 20.8%

[11] Patients with preoperative scans for subsolid 
nodules

66 Reconstruction algorithm: FBP vs. MBIR

solid component segmentation 6.3% − 51.9% 64.6%

whole nodule segmentation 3.2% − 20.5% 27,00%

[12] Patients with emphysema 88 Level of inspiration (end‑inspiratory vs end‑expir‑
atory)

7,5% − 24,1% 39,1%

[13] Patients were enrolled prospectively 105 Radiation dose (LDCT vs. ULDCT with FBP or SAFIRE)

FBP 0.2% − 20.0% 20.4%

SAFIRE 0.3% − 9.7% 10.4%

[14] Patients with subsolid nodules 94 intraobserver (R1) − 1,5% − 17,3% 16,5%

Intraobserver (R2) 0,4% − 14,8% 18,5%

[15] Patients retrospectively enrolled 202 Radiation dose exposure (SDCT vs. ULDCT)

Intraobserver (R1) 1.4% − 25.1% 26.2%

Intraobserver (R2) 1.9% − 25.1% 28.9%

Interobserver (R1 vs R2) 1.2% − 25,0% 27.4%

interobserver (R2 vs R1) 2.1% − 23.9% 28.1%

[16] Consecutive patients referred for known or sus‑
pected pulmonary metastases (3.3 mm—30 mm)

89 Software

Software A 0,0% − 17,0% 17,0%

Software B 0,0% − 13,1% 13,1%

Software C 0,0% − 20,8% 20,8%

Software D 0,0% − 13,4% 13,4%

Software E 0,0% − 20,5% 20,5%

Software F 0,0% − 19,6% 19,6%

[17] Patients on follow‑up for lung cancer or scanned 
because of suspicious pulmonary nodules

Radiation dose exposure (SDCT vs. ULDCT)

229 Size: all

Intraobserver (R1) 1.5% − 25.1% 28.1%

Intraobserver (R2) 2,0% − 26.4% 30.4%

Interobserver (R1 vs R2) 1.3% − 26.5% 29.1%

interobserver (R2 vs R1) 2.2% − 25.2% 29.6%

153 size: < 10 mm

Intraobserver (R1) 2.3% − 28.5% 33.1%

Intraobserver (R2) 2.6% − 29.4% 34.6%

Interobserver (R1 vs R2) 1.9% − 28.3% 32.1%

Interobserver (R2 vs R1) 2.1% − 29,10% 33.3%

76 Size: ≥ 10 mm

Intraobserver (R1) 1.4% − 18.6% 21.4%

Intraobserver (R2) 0.4% − 18.6% 19.4%

Interobserver (R1 vs R2) 0.4% − 17,00% 17.8%
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Likewise, a thickness ≥ 2.5  mm is inadequate to detect 
1 mm changes in diameter [63, 65].

Reconstruction interval
When the reconstruction interval is smaller than the slice 
thickness (i.e., overlap), the longitudinal spatial resolu-
tion improves independently of slice thickness [36, 55].

In a study by Gavrielides et al., the accuracy and preci-
sion of volumetry tools improved with 50% overlap, with 
significant cross-effects between reconstruction interval, 
slice thickness, nodule size, and radiation dose exposure 
[36]. Honda et  al. reported that non-overlapping recon-
structions were associated with volume overestimation 
in scans obtained with 2.5 mm and 3.75 mm slice thick-
nesses [54]. Eberhard et al. found no significant benefit of 
overlapping protocols when using a 1 mm slice thickness, 
arguing in favour of skipping them to improve LCS cost-
effectiveness [68].

Raw‑data reconstruction algorithm and kernel
CT image reconstruction involves converting the raw data 
to a sinogram (representing the number and angulation of 
photons as they hit the detectors) and then to a matrix of 
attenuation values, known as the image model. This pro-
cess is called direct back-projection and results in signifi-
cant blurring. In filtered back projection (FBP), filters (or 
kernels) are applied to the image model to reduce the blur-
ring effect, provide smoothing or edge enhancement, and 
highlight certain features and anatomical components.

Most studies investigating the impact of kernels on 
volumetry have considered them statistically significant 
(10 out of 13 studies). High-spatial frequency (sharp) 

kernels, like lung or bone, improved accuracy, precision, 
and repeatability in most studies [36, 45, 49, 63]. In con-
trast, a single study reported increased repeatability with 
a low-spatial frequency (smooth) kernel [64]. Larici et al. 
investigated the interaction between kernel and slice 
thickness to conclude that a sharp kernel provides the 
best performance for volumetry in 1.25 mm slice thick-
ness. A smooth kernel outperforms the sharp kernel in 
2.5 mm slice thickness [66].

Several studies reported an overestimation of volume 
associated with the sharp kernel [54, 59, 64], especially in 
non-overlapping acquisition and solid nodules (or solid 
components of part-solid nodules) [54]. Conversely, vol-
umetry of GGOs (or ground-glass components of part-
solid nodules) results in higher estimates when using a 
smooth kernel [9].

In iterative reconstruction (IR), the scanner converts 
the image model into an artificial sinogram (forward 
projection). It then compares it to the original sinogram 
with each iteration, correcting random fluctuations in 
photon measurement. This process minimises noise and 
improves image quality at significantly lower radiation 
exposure [69]. However, this noise reduction is less sig-
nificant at the edges of the pulmonary nodules, resulting 
in IR-specific measurement error for small nodules and 
lower doses or higher noise levels [25, 34].

Multiple studies investigated the influence of raw data 
reconstruction algorithms on volumetry tools [13, 24, 
25, 28, 30, 32–34, 39–42, 51, 70–72], with the consensus 
being that IR outperforms FBP for small, part-solid nod-
ules or at lower tube currents [28, 39–41], allowing IR-
based protocols to replace FBP safely.

The independent variable is the influencing factor (if any) that changes between measurements of each nodule (e.g., standard dose [SDCT], low-dose CT [LDCT] vs. 
ultra-low-dose CT [ULDCT])

Table 2 (continued)

Ref. Population (n) Independent variable/subgroup Bias lowerLOA upperLOA

Interobserver (R2 vs R1) 0.6% − 18.4% 19.6%

[18] Patients with known nodules were prospectively 
enrolled

83 Radiation dose: SDCT vs. LDCT

SDCT 12.8% − 27.0% 40.0%

LDCT 17.0% − 38.0% 60.0%

[19] Patients with contrast‑enhanced chest CT 101 Slice thickness: 1 mm − 0.1% − 21.6% 20.3%

101 Slice thickness: 3 mm 1.0% − 15.4% 15.2%

101 Slice thickness: 5 mm 1.6% − 21.8% 27.6%

[20] Patients with pulmonary metastases 218 Segmentation: all 1.3% − 21.2% 23.8%

106 Segmentation: complete 0.28% − 11.9% 12.4%

112 Segmentation: incomplete 1.61% − 26.8% 30.0%

[21] Patients with pulmonary metastases 96 Segmentation algorithm 0.0% − 26.9% 26.9%

[22] Patients with pulmonary metastases 151 Size: all 0.7% − 20.4% 21.9%

105 Size: < 10 mm 0.55% − 19.3% 20.4%
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Recently, Kim et al. [73] investigated two deep learning 
(DL)-based raw-data reconstruction algorithms (True-
fidelity and ClariCT.AI), showing improved accuracy 
against the adaptive statistical iterative reconstruction 
(ASiR) algorithm using LDCT and ULDCT.

The scientific literature often refers to raw-data recon-
struction algorithms and kernels as just reconstruction 
algorithms, which could be confusing since the former 
is generally considered not to influence volumetry meas-
urements. At the same time, the latter is known to do so 
[42].

Post‑processing
Despite the earlier warning by Ko et al. regarding image 
compression [74], Santos et al. found no significant dete-
rioration in the performance of volumetry tools within 
the limits proposed in the European Society of Radiology 
(ESR) position paper [75, 76].

The influence of vessel suppression on volumetry was 
investigated by Milanese et al. using commercially avail-
able software (ClearRead, Riverain, Miamisburg, OH, 
USA). The authors reported high measurement agree-
ment with and without vessel suppression, although the 
rate of manual correction was unusually high (49/77, 
75.4%) [77].

CT scanner equipment
CT scanner vendor
Comparing the performance of volumetry tools using dif-
ferent scanners showed good accuracy regardless of the 
scanner vendor [37]. Two later studies found a statisti-
cally significant difference between scanner vendors, but 
only for small nodules, which would not require follow-
up according to current guidelines [26, 78].

CT scanner technology
Several studies have compared the performance of volu-
metry between different scanner technologies (e.g., sin-
gle or multiple detectors, flat-panel, and dual-energy CT 
scanners) [19, 37, 55, 79, 80]. Das et al. reported increas-
ing accuracy in volumetry with more detector rows [38], 
although Xie et al. did not confirm this [81].

Flat-panel scanners outperform multi-detector scan-
ners in pulmonary nodule volumetry, especially in small 
nodules (< 5 mm) [82–85].

Mono-energetic reconstructions at 70  keV using 
dual-energy spectral CT are considered equivalent to 
conventional CT images acquired using 120 kVp, and 
several authors found no significant difference in volu-
metry accuracy between them [86–88]. In addition, 

mono-energetic reconstructions improved the repeat-
ability of volumetry at the same radiation dose [87].

Influencing factors related to the software
Software package and segmentation algorithm
Several studies compared different software packages and 
different segmentation algorithms for pulmonary nodule 
volumetry, reporting statistically significant differences in 
all but one study [45, 83, 89–92] and even between dif-
ferent versions of the same software [93]. Adjusting the 
attenuation threshold, as some segmentation algorithms 
allow, also influences the volume measurement outcome 
[45, 55, 92].

Several international societies firmly recommend con-
sistently using the same software package, version, and 
segmentation algorithm during follow-up [94].

Influencing factors related to the nodule
Nodule size
Volumetry is less performant for small nodules [10, 13, 
16, 18, 21, 25, 28, 29, 31, 36–38, 40, 41, 45, 48–51, 53, 
55, 56, 60, 63, 70, 72, 74, 78, 79, 81, 82, 89, 92, 93, 95–
101], explained mainly by partial volume effects, and is 
considered unreliable for nodules < 5  mm in diameter 
[60, 102].

Multiple interactions between nodule size and other 
influencing factors are known, including collimation 
[31, 49], tube current [29, 41], reconstruction algorithm 
[29, 41, 51, 70, 72], kernel [36], reconstruction interval 
[36], slice thickness [20, 21, 31, 36, 48, 49, 53], scanner 
technology [41, 52, 82], software [16, 45, 89, 93], com-
pression level [74], density [28, 41], and level of inspira-
tion [16, 20].

Hwang et  al. suggested that raising the threshold to 
9  mm for starting follow-up would lead to a significant 
increase in specificity (i.e., from 91.7% to 96.7%) at the 
cost of only a modest decrease in sensitivity (i.e., from 
96.2% to 94.2%). The impact of such a change to current 
recommendations would result in a 60% reduction of fol-
low-up scans at the cost of delaying the diagnosis of 1.9% 
of lung cancer patients [103]. Volumetry tools should be 
robust to influencing factors for solid nodules ≥ 9  mm 
when using current LDCT protocols in LCS programmes.

Density
Published studies in the literature describe the density 
of a nodule as either a qualitative (e.g., solid, part-solid, 
ground-glass, calcified) or quantitative feature (i.e., in 
Hounsfield Units).

Non-solid nodules are more challenging to segment 
manually and using volumetry tools and present lower 
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accuracy and higher variability than solid nodules [11, 
25, 26, 28, 36, 41, 45, 92].

Interactions between density and other influencing 
factors have been described, including nodule size [28, 
36, 92], reconstruction algorithms [28, 41, 70], slice 
thickness [36], tube current [41], level of inspiration 
[104], and image compression [74]. Higher nodule den-
sity is correlated to larger volume [88].

Shape and margin
The shape of a pulmonary nodule can be round, elon-
gated, smooth, lobulated, spiculated, or irregular.

An irregular or spiculated shape is associated with 
lower accuracy [62, 64] and precision [20] of volumetry 
tools. It is also associated with a lower volume meas-
urement [78], lower segmentation quality [97, 105], and 
increased variability [21, 96, 97, 100, 106].

The ratio of surface to inner voxels increases in nod-
ules with an irregular or spiculated shape (i.e., larger 
surface area), deteriorating the performance of volume-
try tools due to partial volume effects [78, 100]. There-
fore, volumetry of small (≤ 6  mm) pulmonary nodules 
with irregular or spiculated shapes (i.e., high-risk fea-
tures for malignancy) may be unreliable and can justify 
an optional follow-up period [107].

The shape of a nodule also interacts with other influ-
encing factors, such as the nodule’s density [28], location, 
slice thickness, and kernel [64].

Several authors describe spiculation as a feature of the 
nodule’s margin, which can be a source of confusion. We 
defined the margin as either well or poorly defined. In a 
study by Iwano et al., volume measurements of nodules 
with poorly defined margins had a significantly higher 
variability [108].

Location
Most authors categorise a nodule’s location as either 
intra-parenchymal, juxta-pleural, juxta-fissural, or juxta-
vascular [37, 38, 51, 64, 66, 96, 109, 110], with intra-
parenchymal nodules further classified as either central 
or peripheric [74, 111, 112].

Attachments to adjacent structures (e.g., vessels, bron-
chial wall, and pleura) may result in the latter’s inclusion, 
overestimating the volume and increasing the measure-
ment variability [111, 112].

In a recent study by Guedes Pinto et  al., the authors 
reported the location in both the axial (anterior, mid-
dle, or posterior) and coronal (upper, middle, lower) 
planes, additionally measuring the vascular distance 
along the pulmonary arteries, from the main pulmonary 
artery (MPA) to the nodule using multiplanar reformat-
ting, which proved to be statistically significant [113]. 

Conversely, the location within a lobe [18] or segment 
[98] was not proven to be statistically significant.

Interactions have been reported between the location 
and software [111], shape [64], slice thickness [64, 66], 
kernel [64], tube current [66], and compression [74].

Influencing factors related to the patient
Parenchymal changes
Both global and regional parenchymal changes in 
emphysema patients (i.e., reduced parenchymal atten-
uation) have been investigated and found not sig-
nificantly to affect pulmonary nodule volumetry (108. 
However, in diseases with increased parenchyma atten-
uation, like interstitial lung disease (ILD), the reduced 
contrast between nodule and surrounding parenchyma 
could deteriorate the performance of volumetry tools. 
In two phantom studies by Gavrielides et  al., the dif-
ference in attenuation between a synthetic nodule 
and the background was statistically significant [39, 
67]. Recently, Penha et  al. reported that the quality of 
pulmonary nodule segmentation by volumetry tools 
decreases with increasing attenuation of the surround-
ing parenchyma [114].

Breathing
Breathing artefacts are related to overestimating vol-
ume and increased measurement variability of volume-
try tools [12, 16, 20, 43, 99, 104, 115, 116]. This effect is 
most significant at the end of expiration and for smaller 
nodules but is considered unlikely to be clinically rel-
evant [12, 16, 20, 115]. However, Goo et  al. reported 
a volume overestimation of 23.1% from inspiration to 
expiration, interpreted as clinically significant [116].

The level of inspiration interacts with other influenc-
ing factors like the nodule size [16], density [104], and 
software package [16].

Cardiopulmonary haemodynamic factors
Studies designed with coronary CT angiography 
(CCTA) can compare the performance of volumetry 
tools at different cardiac phases in a single acquisition.

Boll et  al. reported changes in volume measurement 
related to a complex interaction between the cardiac 
phase, location (i.e., pulmonary segments), and nodule 
size [98].

Guedes Pinto et  al. investigated the impact of car-
diopulmonary haemodynamic factors on volumetry 
tools, including the cardiac phase, calibre change of 
the MPA between systole and diastole, the vascular dis-
tance between the MPA and the nodule, and nodule’s 
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location along the axial (related to hydrostatic pres-
sure) and coronal plane (related to vascular section 
area), all statistically significant except the cardiac 
phase. The authors proposed a theoretical model where 
the volume of a given nodule is affected by the dynamic 
vascular pressure as blood travels from the heart to the 
nodule [113]. In another study by the same authors, the 
variability of volumetry vastly exceeded the criterion 
for clinical significance when comparing measurements 
in opposing cardiac phases (systole vs diastole [− 47%, 
52.3%]), with the lower variability seen when compar-
ing two measurements in diastole ([− 18.9%, 19.7%]) 
[8].

CCTA is not appropriate for LCS. However, there is 
considerable overlap in risk factors between coronary 
artery disease and lung cancer. Patients enrolled in 
LCS are also at risk of cardiovascular events, with some 
authors advocating a role for dual screening [113].

Influencing factors related to the observer
Manual correction, observer experience and training
The promise of (semi)automated tools is to reduce inter-
observer variability by limiting the observer’s influence in 
the measurement [102, 117]. Counter-intuitively, allow-
ing manual correction of the segmentation improves 
the tool’s performance [60, 102, 118]. This is explained 
because inadequately segmented nodules tend to be out-
liers (i.e., either including adjacent structures [113] or 
incompletely segmenting the nodule [20]), resulting in 
higher variability and lower observer agreement.

The outcome of volumetry tools is independent of 
observer experience (i.e., radiologists vs non-radiolo-
gists), even when manually correcting the segmentation 
result. However, in the un-experienced group of observ-
ers, training with the tool was statistically significant for 
volume measurements [119].

Regarding concerns of bias and excluded studies
The most common concern of bias in the included stud-
ies (Table 3) is the use of experimental algorithms [9, 28, 
45, 53, 74, 89, 92, 117, 120–152], followed by the assump-
tion of zero-change datasets over more extended periods, 
relying on the perceived stability of the nodules [80, 95, 
152]. Two studies use non-consecutive or convenience 
sample techniques, possibly introducing selection bias 
[60, 71]. Still, others present an incomplete description 
of their methods, poorly defining their population or the 
statistical analysis [26, 72, 77, 93, 148, 152].

Several promising candidate studies were excluded 
after full-text analysis based on their choice of outcome 
(Additional file  1: Table  S2). These outcomes include 

the risk of malignancy [1, 100, 103, 153–161], prognosis 
[162–167], growth [5, 67, 101, 112, 168–174], or com-
parison to other methods of measurement like diameter 
[100, 175], area [175], the diameter of an equivalent vol-
ume sphere [3] or manual segmentations (e.g., most of 
the recent research using DL-based segmentation).

Although these outcomes are clinically interesting, they 
are unrelated to our research questions.

Discussion
The influencing factors of volumetry tools have been 
investigated extensively. However, the possibility of 
wrongly diagnosing a nodule as stable or growing 
between follow-up scans has only been tested in a little 
over 10% of studies. Consolidating the results from dif-
ferent studies is difficult due to the heterogeneity, but an 
impact on clinical decision-making seems more likely in 
smaller nodules.

The contrast between nodule and surrounding lung 
parenchyma and the surface-to-inner voxel ratio are two 
key concepts in understanding how volumetry tools can 
be influenced.

Pulmonary nodule volumetry benefits from the con-
trast between the nodule and the surrounding well-
aerated lung parenchyma. This contrast is decreased in 
sub-solid nodules when the surrounding parenchyma has 
increased attenuation (e.g., ILD, expiratory phase, con-
trast enhancement) or when the nodule contacts adjacent 
structures. Image reconstruction with different kernels 
and raw-data reconstruction algorithms may also expand 
or contract the segmentation by changing the attenuation 
value of the voxels.

Surface voxels contain both nodule tissue and sur-
rounding parenchyma and suffer partial volume effects 
leading to measurement error and variability.

The surface-to-inner voxel ratio depends primarily 
on the size difference between the nodule and the voxel 
(i.e., how many voxels fit in the nodule). Still, it can also 

Table 3 Assessment of bias of the primary studies

Specific concerns of bias References

Experimental algorithm not com‑
mercially available

[9, 28, 45, 53, 74, 89, 92, 117, 
120–152]

Assumption of zero‑change data‑
set cannot be guaranteed

[80, 95, 152]

Inadequate description of statisti‑
cal analysis

[72, 93, 148, 152]

Non‑consecutive or convenience 
sample

[60, 71]

Study population is inadequately 
described

[26, 77]
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be increased by an irregular shape or ill-defined nodule 
margin (i.e., increased surface area).

Reducing the slice thickness and measuring nodules of 
increasing size rapidly decreases the ratio of surface to 
inner voxels, improving the performance of volumetry 
tools.

Apart from these two key concepts, implementation 
details involved in the segmentation algorithms account 
for most of the remaining observed influence in volume-
try tools.

Despite the large number of included studies in this 
review, comparing study results is problematic given a 
large number of influencing factors and heterogeneity in 
study design, outcomes, statistical analysis, nodule fea-
tures and demographics. Additionally, multiple authors 
report statistically significant results while openly ques-
tioning their clinical relevance. Changing a factor that 
influences a volumetry tool may not be enough to change 
our assessment of nodule growth and clinical manage-
ment. Therefore, using this evidence to support clinical 
decisions is challenging. We consider this a limitation of 
the evidence and a strong motivator for this review.

A clarification of clinical significance seems needed. 
The optimal waiting period for a follow-up scan is based 
on the inherent in vivo interscan measurement variability 
of volumetry tools, accepted as ≤ 25% of total volume [6]. 
Higher measurement variability implies a longer time to 
distinguish real growth from measurement error. There-
fore, we defined clinical significance as interscan variabil-
ity > 25% of volume change since false-positive growth 
estimation would become more likely in this setting. We 
used this criterion to select a subset of all studies report-
ing interscan variability using Bland–Altman analysis 
(n = 16). Influencing factors investigated regarding their 
clinical relevance include radiation dose exposure, slice 
thickness, raw-data reconstruction algorithms, kernels, 
size, cardiac cycle phase, software package, segmentation 
algorithm, and level of inspiration.

We combined the results of two studies comparing 
SDCT vs ULDCT protocols [15, 17], and the synthe-
sised result confirmed the primary studies’ conclusions. 
We also combined the results in a second group (three 
studies) by disregarding sub-group analysis concerning 
size [7, 22] and quality of segmentation [20], with a syn-
thesised result within the clinically acceptable a priori 
LOA, but losing the influence of the factors (i.e., size and 
quality of segmentation) under study. Due to significant 
population, outcome, and design heterogeneity, we could 
not combine other studies. Therefore, our attempted 
meta-analysis failed to advance the current knowledge 
meaningfully (Additional file 1: Table S3 and Figures S1 
and S2).

Several other factors have been statistically shown to 
influence the outcome of volumetry tools. However, the 
clinical relevance of these findings still needs to be inves-
tigated (Table  1) and represents gaps in current knowl-
edge and opportunities for future research.

Implications of the results for practice, policy, and future 
research
Findings from this review confirm the clinically significant 
impact of some known influencing factors on pulmonary 
nodule volumetry, including the segmentation algorithm, 
quality of the segmentation, slice thickness, the level of 
inspiration for solid nodules, and the reconstruction algo-
rithm and kernel in subsolid nodules (Table 3).

Much of the evidence collected has yet to be tested 
for potential clinical significance and is thus open for 
future research.

A concern related to this systematic review is the long 
period of the included studies in a rapidly changing field, 
suggesting that this review may not reflect current perfor-
mance. A comparison of recent (i.e., last five years) and older 
studies show an improving performance trend likely related 
to software and scanner technology innovations. In a recent 
study by Bartlett et al., the reported interscan variability was 
not clinically relevant (95CI [− 16.8%; 16%]) even for very 
small (30–80  mm3) solid, non-metastatic and non-calcified 
pulmonary nodules (n = 58), suggesting that a shorter opti-
mal waiting time may already be appropriate [7].

We propose a standard for future studies around the 
Bland–Altman analysis and restricted to nodules between 
5 and 10  mm where growth estimation is useful. Such 
studies should investigate the persisting gaps in current 
knowledge, focusing on clinical applicability and currently 
available technology. Future research should also explore 
the cost and benefits of potential changes to current prac-
tices, like raising the threshold for follow-up or shortening 
the optimal waiting period in the follow-up schedule.
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