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Abstract 

Objective To investigate the value of a radiomics model based on dual-energy computed tomography (DECT) 
venous-phase iodine map (IM) and 120 kVp equivalent mixed images (MIX) in predicting the Lauren classification 
of gastric cancer.

Methods A retrospective analysis of 240 patients undergoing preoperative DECT and postoperative pathologi-
cally confirmed gastric cancer was done. Training sets (n = 168) and testing sets (n = 72) were randomly assigned 
with a ratio of 7:3. Patients are divided into intestinal and non-intestinal groups. Traditional features were analyzed 
by two radiologists, using logistic regression to determine independent predictors for building clinical models. Using 
the Radiomics software, radiomics features were extracted from the IM and MIX images. ICC and Boruta algorithm 
were used for dimensionality reduction, and a random forest algorithm was applied to construct the radiomics model. 
ROC and DCA were used to evaluate the model performance.

Results Gender and maximum tumor thickness were independent predictors of Lauren classification and were used 
to build a clinical model. Separately establish IM-radiomics (R-IM), mixed radiomics (R-MIX), and combined IM + MIX 
image radiomics (R-COMB) models. In the training set, each radiomics model performed better than the clini-
cal model, and the R-COMB model showed the best prediction performance (AUC: 0.855). In the testing set also, 
the R-COMB model had better prediction performance than the clinical model (AUC: 0.802).

Conclusion The R-COMB radiomics model based on DECT-IM and 120 kVp equivalent MIX images can effectively be 
used for preoperative noninvasive prediction of the Lauren classification of gastric cancer.

Critical relevance statement The radiomics model based on dual-energy CT can be used for Lauren classification 
prediction of preoperative gastric cancer and help clinicians formulate individualized treatment plans and assess 
prognosis.

Key points 

1. Based on dual-energy images, three models were established to predict Lauren classification.
2. R-COMB model has the best performance, and iodine map features contribute greatly.
3. R-COMB model has greatly improved the performance compared with the clinical model.
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The radiomics model based on dual-energy CT can be used for Lauren classification prediction of preoperative 
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Introduction
Gastric cancer is one of the most common cancers 
worldwide and the third leading cause of cancer-related 
deaths [1]. Lauren classification is a common histologi-
cal classification method that categorizes gastric cancer 
into intestinal, mixed, and diffuse types [2]. The intesti-
nal and diffuse types have different clinical behavior and 
molecular features, and the clinicopathological manifes-
tations and prognosis of the mixed type are similar to 
those of the diffuse type [3, 4], Lauren classification is an 
important indicator of prognosis for patients with gastric 
cancer [3, 5]. It has been shown that postoperative recur-
rence rate is higher in diffuse gastric cancer than intesti-
nal type [3, 6], and 5-year overall survival rate is higher 
in intestinal gastric cancer than diffuse [3, 5]. Adjuvant 
chemoradiotherapy improves disease-free survival in 
patients with intestinal gastric cancer, but not in patients 
with diffuse gastric cancer after D2 resection [7]. In addi-
tion, patients showed different sensitivities to chemo-
therapy according to Lauren classification, with diffuse 
patients showing a higher efficiency to chemotherapy 
[8]. More importantly, in clinical practice, the surgical 

strategy can refer to Lauren classification [9], where dif-
fuse gastric cancer is highly invasive and the extent of 
surgical resection is greater than that of intestinal gastric 
cancer, and these patients often require adjuvant chemo-
therapy after surgery [10, 11].

Postoperative histopathological examination is the gold 
standard for determining Lauren classification, but there 
is a lag in obtaining Lauren classification through postop-
erative pathology. Although Lauren classification can be 
obtained preoperatively by gastroscopic biopsy, it is not 
only invasive but also few tissue specimens, which has a 
significant impact on the diagnostic accuracy of Lauren 
classification [12]. The literature reports that the con-
cordance rate of Lauren classification between biopsy 
and surgical samples is only 64.7% [13]. Therefore, accu-
rate preoperative Lauren classification of gastric can-
cer can facilitate individualized treatment and improve 
prognosis.

Computed tomography (CT) is a convenient and fast 
examination option for patients suspected of having gas-
tric cancer. Some studies have found that morphological 
features such as tumor size, location, and enhancement 
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pattern in gastric cancer are correlated with the Lau-
ren classification. However, due to a lack of quantitative 
parameters and diagnostic thresholds, the value of tradi-
tional imaging features in predicting the Lauren classifi-
cation is limited. In this regard, dual-energy CT (DECT) 
is a novel imaging modality that brings CT-based diag-
nosis from the morphological to the functional field by 
employing iodine mapping (IM) to quantitatively reflect 
the lesion’s blood supply [14]. A few imaging studies 
have reported positively on the diagnostic value of iodine 
mapping in gastric cancer [15, 16].

Radiomics transform visual information from imaging 
data into a large number of deep digital features for quan-
titative studies. Through feature extraction and dimen-
sionality reduction, high-dimensional features with great 
stability and reproducibility related to the disease’s bio-
logical behavior can be used for model building, which 
allows improved objective quantitative assessment and 
has potential advantages in tumor precision assessment. 
The value of radiomic for the serosal invasion [17], evalu-
ation of lymph node metastasis [18], prediction of occult 
peritoneal metastasis [19], treatment effect and prognosis 
prediction radiotherapy effect and prognosis [20, 21] in 
gastric cancer has been reported in previous studies.

Based on the existing knowledge of radiomics, we 
hypothesized that a radiomics model based on a DECT-
IM may contain abundant quantitative parameters to 
determine the Lauren classification of gastric cancer 
more accurately. Accordingly, in this study, we attempted 
to establish and evaluate a preoperative radiomics model 
based on DECT venous-phase IM and 120  kVp equiva-
lent mixed images (MIX) to predict the Lauren classifica-
tion of gastric cancer.

Materials and methods
Characteristics of patients
This study was approved by the Ethics Committee of The 
Fourth Hospital of Hebei Medical University. We retro-
spectively reviewed the medical records of gastric cancer 
patients who underwent surgery between April 2015 and 
December 2017 at our institution. The following criteria 
were used for inclusion: (1) The patient had not received 
any anti-tumor treatment before surgery; (2) a dual-
energy abdominal dual-phase enhancement CT scan was 
performed within 2  weeks preoperatively and the com-
plete imaging data were available; and (3) postoperative 
pathology of gastric adenocarcinoma was conformed to 
clear Lauren classification. Patients were excluded in the 
case of (1) inadequate preparation before the CT exami-
nation, such as insufficient gastric filling or excessive gas-
tric contents, which may affect the visualization of the 
lesion; (2) the presence of breathing or sclerotic artifacts 

in the image; and (3) the thickness is less than 0.5 cm (the 
range of the ROI is difficult to delineate).

Imaging protocol and postprocessing
Pre‑inspection preparation
All patients were made to fast for 6 h before the exami-
nation. Scopolamine (10  mg) was injected intramuscu-
larly 10 min before the scan and 800–1000 mL water or 
6 g aerogenic powder was given orally to fill the gastric 
cavity.

Examination method and scanning parameters
All CT scans were performed using a Siemens second-
generation dual-source CT (SOMATOM Definition 
Flash; Siemens Healthcare, Germany) in the supine posi-
tion. The scan was performed from 5 cm above the right 
diaphragm (at the level of the inferior pulmonary vein) 
to the superior border of the pubic symphysis. The fol-
lowing parameters were used during the plain CT scan: 
tube voltage: 120  kVp; tube current: 210  mAs; collima-
tor width: 128 × 0.6 mm; collimator pitch: 0.9. Non-ionic 
contrast agent (Iohexol, 300 mg/dL; GE Healthcare, USA) 
was injected intravenously through the elbow median 
vein at a flow rate of 3 mL/s (2 mL/kg body weight). Two 
phase enhanced with dual-energy scans were performed 
at 25  s (for the arterial phase) and 70  s (for the venous 
phase) after injection. Enhancement scan parameters 
were as follows: tube voltages: A: 100  kVp, B: 140  kVp; 
Care Dose: 4D on, reference tube currents: A: 230 mAs 
and B: 178 mAs; collimator width: 32 × 0.6 mm; collima-
tor pitch: 0.55.

Image reconstruction and postprocessing
The dual energy data of the venous phase with a slice 
thickness of 1  mm were transferred to a workstation 
(SyngoMMWP, VE36A) and analyzed by applying the 
LiverVNC mode of the dual energy software to obtain 
IMs. The IM and 120 kVp equivalent MIX (weighted fac-
tor: 0.5) were used together to construct the radiomics 
model.

Clinical model development
Traditional features
We collected the demographic data of the patients, 
including gender, age, and serum tumor marker levels 
(CEA, CA19-9, CA72-4).

Analysis of image semantic features: Two observ-
ers with 10 (L.M.) and 17  years (Y.L.) of experience in 
abdominal diagnostic imaging independently analyzed 
image semantic features using a dichotomous classifica-
tion method by combining the axial and MPR images 
without knowing the pathological findings. Referring 
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to the American Cancer Federation (AJCC) 8th Edi-
tion TNM staging system for gastric cancer, in the case 
of any disagreement, a consensus was reached through 
negotiation.

The image semantic features included:

a. Tumor range: The stomach is divided into four parts: 
cardia, fundus, body, and antrum; tumors involving 
a single part are considered a single region, whereas 
those involving two or more are designated as multi-
ple regions.

b. Tumor location: Bounded by the middle of the stom-
ach, the tumor was divided into the proximal stom-
ach and distal stomach.

c. Tumor thickness: The maximum tumor thickness is 
measured perpendicular to the stomach wall.

d. Tumor enhancement form: The difference between 
the maximum CT value and the minimum CT 
attenuation value in the venous stage of cancer is 
considered uniform enhancement if the difference 
is < 10 HU, and inhomogeneous enhancement if the 
difference is ≥ 10 HU.

e. Degree of tumor enhancement: CT attenuation of 
the venous stage carcinoma with a net added value of 
≥ 40 HU was marked enhancement, while those with 
< 40 HU were not obviously enhanced.

f. Clinical T (cT) staging: tumors with an unsmooth 
serosal surface, mural nodules, and fuzzy fat space 
were considered a T4 stage, and those with a smooth 
serosal surface were considered a non-T4 stage.

g. Clinical N (cN) staging as cN (−) or cN (+) lymph 
nodes: Regional lymph nodes, round or ovoid, with a 

short diameter (≥ 1.0 cm) or clustered with enhanced 
small lymph nodes.

Screening traditional features and establishing clinical 
models
Based on the training set data, the traditional features 
related to the Lauren classification were analyzed by uni-
variate analysis with logistic regression and multivariate 
analysis with stepwise logistic regression to screen inde-
pendent predictors for establishing the clinical model.

Radiomics model development
Tumor segmentation and feature extraction
Using the Radiomics software (Frontier, Siemens Health-
ineers, Forchheim, Germany), observer LM combined 
the MPR images and outlined layer by layer along the 
tumor border on the axial venous-phase MIX, avoiding 
the inclusion of perigastric fat, blood vessels, and gas-
tric contents. The segmentation range was automatically 
matched to the IM image to generate the same region of 
interest (ROI). Radiomic features were extracted from an 
IM of the venous phase and the 120 kVp equivalent MIX, 
using radiomic software. Detailed settings for radiomic 
feature extraction in radiomic software (Frontier, Sie-
mens Healthineers, Forchheim, Germany) are provided 
in Additional file  1. The tumor segmentation method 
used is shown in Fig. 1.

Radiomics feature screening and model development
To reduce feature redundancy and model overfitting, 
feature screening was performed in the following steps: 

Fig. 1 Tumor segmentation method. Axial venous-phase mixed images (a) venous-phase iodine map (b)
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(1) 1  month after the first tumor segmentation, 50 
patients were randomly selected and subdivided by the 
same observer (L.M.) and another observer (Y.L.) in the 
same way. The histological characteristics of intragroup 
and intergroup correlation coefficient (ICC) > 0.8 were 
retained. (2) We selected predictors using the Boruta 
algorithm based on a random forest. The radiomics 
model was constructed with the R package random-
ForestSRC [22]. Boruta is a recursive feature selection 
algorithm by disrupting the order of feature variables 
and calculating their importance in order to select the 
most important features [23]. There are several meth-
ods available for feature selection-based random for-
est algorithm. The computational efficiency of Boruta 
is higher for datasets with multiple predictor variables 
[24]. Using random forests, multiple classification and 
regression trees are constructed, and the results of each 
tree are aggregated to produce predictions. As com-
pared to other models, random forest consistently pro-
vides high prediction accuracy [25] and isn’t prone to 
overfitting.

Based on the image radiomic features screened by the 
highest weights in IM and 120 kVp equivalent MIX, we 
built the IM radiomics model (R-IM model) and MIX 
radiomics model (R-MIX model), respectively. Like-
wise, based on the radiomic features screened by the 

highest weights in IM + MIX, the IM + MIX combined 
radiomics model (R-COMB model) was established.

The radiomics workflow diagram of this study is pre-
sented in Fig. 2.

Statistical methods
R software (version 4.0.3; http:// www. Rproj ect. org) was 
used for statistical analysis. The Kruskal–Wallis rank 
sum test was used to compare the continuous variables, 
whereas the Chi-square or Fisher exact tests were used 
for categorical variables. Using the receiver operating 
characteristic (ROC) curve, we evaluated the area under 
the curve (AUC), accuracy (ACC), sensitivity (SEN), and 
specificity (SPE) of the model. The performance of each 
model was compared using the Delong test, and a deci-
sion curve analysis (DCA) was done to evaluate the clini-
cal applicability of the model.

Results
Comparison of traditional features of patients 
in the training and testing sets
As shown in Table  1, 240 patients (197 males and 43 
females, mean age: 59.8 ± 9.6  years, range 27–80  years) 
were included in this study. Based on the postopera-
tive pathology to determine the Lauren classification, 80 
patients had intestinal-type gastric cancer, 60 cases had a 

Fig. 2 Schematic representation of the radiomics workflow

http://www.Rproject.org
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mixed type, and the remaining 100 patients had the dif-
fuse variety.

The enrolled patients were randomly divided in a ratio 
of 7:3 into a training set (n = 168), including 56 cases 
of intestinal type and 112 cases of non-intestinal type 
(mixed and diffuse type), and the testing set (n = 72), 
included 24 cases of intestinal type and 48 cases of non-
intestinal type. There were no statistically significant 
differences between the two groups in terms of clinical 

features (p > 0.05). The comparison of baseline informa-
tion for intestinal and non-intestinal-type patient in the 
training and test set can be found in Additional file  1: 
Table S1.

Clinical features screening and model development
The univariate analysis revealed that gender, tumor 
extent, tumor morphology, maximum tumor thick-
ness, and cN staging were associated with the Lauren 

Table 1 Comparison of traditional features of patients in the training and testing sets

Data in parentheses are percentages. Data in the square brackets are quartiles

CEA carcinoembryonic antigen, CA19-9 glycoantigen, CA72-4 glycoantigen, cT stage clinical T stage, cN stage clinical N stage
a Pearson’s Chi-square test
b Kruskal–Wallis rank sum test

Traditional features Overall (n = 240) Training set (n = 168) Testing set (n = 72) x2 value p value

Gender 2.611 0.106a

 Female 43 (17.9%) 35 (20.8%) 8 (11.1%)

 Male 197 (82.1%) 133 (79.2%) 64 (88.9%)

Age < 0.001 1.000a

 < 60 years old 103 (42.9%) 72 (42.9%) 31 (43.1%)

 ≥ 60 years old 137 (57.1%) 96 (57.1%) 41 (56.9%)

Tumor range 1.876 0.171a

 Single region 176 (73.3%) 128 (76.2%) 48 (66.7%)

 Multi-regions 64 (26.7%) 40 (23.8%) 24 (33.3%)

Tumor location 0.001 0.977a

 Proximal 98 (40.8%) 68 (40.5%) 30 (41.7%)

 Distal 142 (59.2%) 100 (59.5%) 42 (58.3%)

Tumor thickness (cm) 1.37 [1.04; 1.73] 1.37 [1.04; 1.67] 1.37 [1.06; 1.82] 0.229 0.632b

Forms of tumor enhancement 3.252 0.071a

 Uniformity 123 (51.2%) 93 (55.4%) 30 (41.7%)

 Inhomogeneous 117 (48.8%) 75 (44.6%) 42 (58.3%)

Degree of tumor enhancement 0.048 0.825a

 Not obviously 66 (27.5%) 45 (26.8%) 21 (29.2%)

 Obviously 174 (72.5%) 123 (73.2%) 51 (70.8%)

cT staging 0.238 0.626a

 Non-cT4 60 (25.0%) 44 (26.2%) 16 (22.2%)

 cT4 180 (75.0%) 124 (73.8%) 56 (77.8%)

cN staging 2.979 0.084b

 Negative 76 (31.7%) 47 (28.0%) 29 (40.3%)

 Positive 164 (68.3%) 121 (72.0%) 43 (59.7%)

CEA (μg/L) 0.094 0.758a

 ≤ 5 188 (78.3%) 133 (79.2%) 55 (76.4%)

 > 5 52 (21.7%) 35 (20.8%) 17 (23.6%)

CA19-9 (kU/L) 1.750 0.186a

 ≤ 27 200 (83.3%) 144 (85.7%) 56 (77.8%)

 > 27 40 (16.7%) 24 (14.3%) 16 (22.2%)

CA72-4 (kU/L) 0.089 0.765a

 ≤ 6.9 199 (82.9%) 138 (82.1%) 61 (84.7%)

 > 6.9 41 (17.1%) 30 (17.9%) 11 (15.3%)
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classification (p < 0.1). Furthermore, a multivariate by 
stepwise logistic regression showed that gender (95% 
0.194–0.968, OR 0.453; p = 0.050) and maximum tumor 
thickness (95% 1090–2.943, OR 1.748; p = 0.027) were 
independent predictors of the Lauren classification 
(Table 2). A clinical model was developed based on these 
two features.

Radiomics model
A total of 3382 radiomic features (1691 × 2) were 
extracted from the IM and MIX images of each case; 
2482 features with an ICC > 0.80 were further filtered 
by using Boruta. Eight optimal radiomic features in the 
IM, including one first-order feature and seven texture 
features, were selected to build the R-IM model. Seven 
optimal radiomic features in the MIX images, including 
two second-order features and five texture features, were 
selected to build the R-MIX model. The 22 optimal radi-
omic features in the combined IM and MIX images were 

selected, including 14 features from the IM—one shape 
feature, one first-order feature, and 12 texture features, 
and eight features from the MIX images, including four 
first-order features and four texture features, were used 
to build the R-COMB model. The weights occupied by 
each feature of the three radiomics models are shown in 
Fig. 3.

Comparison of the predictive efficacy of the clinical model 
with the three radiomics models
In the training set, the prediction  performance of the 
R-COMB model was superior to the R-IM, the R-MIX, 
and the clinical models, with AUC values of 0.855, 0.756, 
0.75, and 0.611, respectively (p < 0.05 each). In the testing 
set, the prediction performance of the R-COMB model 
was better than that of the clinical model, with AUC val-
ues of 0.803 and 0.630, respectively (p < 0.05). However, 
the differences in the predictive performance of the R-IM 

Table 2 Univariate and multivariate regression analysis of clinical features

cN stage clinical N stage

Features Single factor analysis Multi-factor analysis

OR 95% CI p value OR 95% CI p value

Gender 0.469 0.201–0.997 0.061 0.453 0.194–0.968 0.050

Tumor range 1.912 1.013–3.778 0.052 – – –

Tumor thickness (cm) 1.722 1.073–2.898 0.032 1.748 1.090–2.943 0.027

cN staging 1.616 0.914–2.848 0.096 – – –

Fig. 3 Features importance in three radiomics models. a R-IM model; b R-MIX model; c R-COMB model

Table 3 Comparison of the prediction performance of different models between the training and testing groups

Models Training set (n = 168) Testing set (n = 72)

AUC (95% CI) Specificity Sensitivity Accuracy AUC (95% CI) Specificity Sensitivity Accuracy

Clinical model 0.611 (0.521–0.700) 0.785 0.473 0.565 0.630 (0.480–0.779) 0.708 0.437 0.527

R-IM model 0.756 (0.670–0.841) 0.642 0.830 0.767 0.730 (0.604–0.850) 0.458 0.791 0.680

R-MIX model 0.750 (0.673–0.826) 0.660 0.696 0.684 0.689 (0.566–0.811) 0.625 0.645 0.638

R-COMB model 0.855 (0.795–0.914) 0.714 0.848 0.803 0.803 (0.690–0.915) 0.750 0.770 0.763
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and the R-MIX models in the testing set were not statisti-
cally significant (p > 0.05) Table 3 and Fig. 4.

Furthermore, in the training set, the clinical benefit of 
the R-COMB model was higher than that of the clinical 
model, the R-IM model, and the R-MIX model. Whereas 
in the testing set, the clinical benefit of the R-COMB 
model was higher than the other three models when 
the prediction probability was in the range of 0.13–0.25, 
0.32–0.72, or 0.81–0.95. These results are presented in 
Fig. 5.

Discussion
Based on the DECT venous-phase IM, and MIX images, 
three radiomics models: R-IM, R-MIX, and R-COMB 
models were established, respectively. We observed that 
the prediction performance of each radiomics model in 

the training set was better than that of the clinical model, 
and that of the R-COMB model was the best (AUC: 0.855 
vs. 0.611). In the testing set as well, the R-COMB model 
outperformed the clinical model (AUC: 0.803 vs. 0.630). 
Therefore, we believe that the R-COMB model, based 
on a combination of DECT venous-phase IM and MIX 
images, can more accurately predict the Lauren classifi-
cation of gastric cancer.

The results of univariate logistic regression analysis 
showed that the traditional clinical features of gender, 
tumor extent, maximum tumor thickness, and cN stag-
ing were correlated with the Lauren classification of 
gastric cancer. In this group of cases, intestinal type gas-
tric cancer is mostly located in a single region without 
lymph node metastasis, which is consistent with its bio-
logical behavior of weak invasion ability, low heterogene-
ity, and low sensitivity to lymph node metastasis [3, 5]. 

Fig. 4 Receiver operating characteristic (ROC) curves of the four models for the training sets (a) and testing sets (b)

Fig. 5 Decision curve analysis (DCA) curves for the four models in the training sets (a) and testing sets (b)
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Additionally, the results of multivariable logistic regres-
sion showed that gender was one of the independent pre-
dictors of the Lauren classification of gastric cancer. In 
our study, the ratio of males to females was 4.58 (197/43). 
We found that males were more predominant in the 
intestinal type than in the non-intestinal type (88.7%, 
71/80 vs. 78.8%, 126/160), and instead, the number of 
female patients was higher in the non-intestinal type than 
in the intestinal type (21.2%, 34/160 vs. 11.3%, 9/80). This 
result is consistent with the observations of other studies 
[3, 5]. However, this difference was not statistically sig-
nificant in this study. This may be related to the limited 
sample size.

The maximum tumor thickness was another inde-
pendent predictor of the Lauren classification, with the 
maximum thickness of intestinal type less than that of 
non-intestinal types (training set: 1.35 vs. 1.4, test set: 
1.13 vs. 1.39). Rossi et al. [26] believe that this is related 
to the minimal invasiveness of the intestinal type of gas-
tric cancer, infrequent edema of the adjacent gastric wall, 
and mild fibroproliferative and inflammatory reaction. 
The predictive efficacy of the clinical model in this study 
(training sets AUC, 0.611; test sets AUC, 0.630) was com-
parable to the performance of the clinical model devel-
oped in the previous study [27, 28]. This suggests that 
traditional clinical features have limited predictive value 
for Lauren classification of gastric cancer.

We used a 3D segmentation tumor for extracting all 
tumor features [29–31] required to establish radiomics 
models that can reflect tumor heterogeneity more com-
prehensively [32]. The prediction performance of our 
three radiomics models was better than that of the pre-
diction model based on traditional image using 2D seg-
mentation [27]. Among the three radiomics models we 
developed, the R-COMB model based on IM and 120 kVp 
equivalent MIX images was the most effective in predict-
ing the Lauren classification of gastric cancer (training 
sets AUC, 0.855; test sets AUC, 0.802). The results indi-
cate that the predictive ability of the R-COMB model is 
better than the traditional radiomics model based on CT 
images reported in reference [33]. The R-COMB model 
extracted both IM and MIX images in the venous phase, 
which provided greater quantitative evaluation using 
radiomics modeling [34–36]. In addition, the IM also 
contains functional information reflecting tissue perfu-
sion [14, 37], which may be more valuable in model pre-
diction [38]. Notably, the features from the IM accounted 
for 63.6% (14/22) of the R-COMB model, and the shape, 
3D, Long Run High Gray-Level Empha, and square root 
features of the IM showed significantly higher weights 
than the radiomics features of MIX images. Therefore, 
we believe that IM contributes more to the establishment 
of the R-COMB model. In addition, our R-COMB model 

has a prediction accuracy of 80.3%, which is higher than 
preoperative gastroscopy biopsy [13].

Therefore, the R-COMB model based on DECT venous 
phase IM and 120 kVp equivalent MIX images can serve 
as a noninvasive and effective new method for predicting 
preoperative Lauren classification of cancer. This preop-
erative diagnosis will help in selecting personalized treat-
ment plan and evaluating prognosis.

Study limitations
First, the retrospective design of the study may have 
introduced a selection bias. Second, since this was a 
single-center study with limited sample size and consist-
ent CT scanner, the assessment of model reproducibility 
with external validation and different CT manufactur-
ers is required in future studies. The script of the model 
development and validation is available at GitHub 
(https:// github. com/ xby947/ RF- Model- devel opment. git) 
to improve the reproducibility of this research. Third, the 
primary aim of this study is to assess the diagnostic accu-
racy of dual-energy CT images for Lauren classification. 
And the further analysis in prognosis of patients with 
gastric cancer is necessary in following study.
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