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Abstract 

Background Tumour hypoxia is a negative predictive and prognostic biomarker in colorectal cancer typically 
assessed by invasive sampling methods, which suffer from many shortcomings. This retrospective proof‑of‑principle 
study explores the potential of MRI‑derived imaging markers in predicting tumour hypoxia non‑invasively in patients 
with colorectal liver metastases (CLM).

Methods A single‑centre cohort of 146 CLMs from 112 patients were segmented on preoperative T2‑weighted 
(T2W) images and diffusion‑weighted imaging (DWI). HIF‑1 alpha immunohistochemical staining index (high/low) 
was used as a reference standard. Radiomic features were extracted, and machine learning approaches were imple‑
mented to predict the degree of histopathological tumour hypoxia.

Results Radiomic signatures from DWI b200 (AUC = 0.79, 95% CI 0.61–0.93, p = 0.002) and ADC (AUC = 0.72, 95% CI 
0.50–0.90, p = 0.019) were significantly predictive of tumour hypoxia. Morphological T2W TE75 (AUC = 0.64, 95% CI 
0.42–0.82, p = 0.092) and functional DWI b0 (AUC = 0.66, 95% CI 0.46–0.84, p = 0.069) and b800 (AUC = 0.64, 95% CI 
0.44–0.82, p = 0.071) images also provided predictive information. T2W TE300 (AUC = 0.57, 95% CI 0.33–0.78, p = 0.312) 
and b = 10 (AUC = 0.53, 95% CI 0.33–0.74, p = 0.415) images were not predictive of tumour hypoxia.
Conclusions T2W and DWI sequences encode information predictive of tumour hypoxia. Prospective multicentre 
studies could help develop and validate robust non‑invasive hypoxia‑detection algorithms.

Critical relevance statement Hypoxia is a negative prognostic biomarker in colorectal cancer. Hypoxia is usually 
assessed by invasive sampling methods. This proof‑of‑principle retrospective study explores the role of AI‑based MRI‑
derived imaging biomarkers in non‑invasively predicting tumour hypoxia in patients with colorectal liver metastases 
(CLM).

Key points 

• Tumour hypoxia is a valuable prognostic/predictive biomarker in colorectal cancer.
• This proof‑of‑principle study demonstrates non‑invasive associations between MR‑radiomics and tumour hypoxia.
• Radiomics from DWI b200, ADC, and T2W TE75 predicted tumour hypoxia.
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Hypoxia is a negative prognostic biomarker in colorectal cancer. Hypoxia is usually assessed by invasive 
sampling methods. This proof-of-principle retrospective study explores the role of AI-based MRI-derived imaging 

biomarkers in non-invasively predicting tumour hypoxia in patients with colorectal liver metastases (CLM). 
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Introduction
Tumour hypoxia is a valuable prognostic and predictive 
biomarker in colorectal cancer (CRC) [1–4]. Genome-
wide and microRNA analyses have shown that CRC 
tumours with a hypoxic microenvironment showed 
significantly worsened clinical outcomes, especially 
disease-free survival [5, 6]. Resistance to chemotherapy, 
radiotherapy, and immunotherapy has been associated 
with tumour hypoxia in other solid tumours [7–13]. 
Furthermore, when evaluating the role of hypoxia on 
local therapies such as percutaneous ablation, tran-
sarterial chemotherapy, and radioembolisation, several 
studies have found that it also negatively impacts resist-
ance to the treatment and/or induces a more aggressive 
clonal cell selection [14–17]. Hypoxia-driven elevation 
of proangiogenic factors is a hallmark of colorectal 
cancer and its liver metastasis [18]. Specifically, in the 
treatment of colorectal liver metastases, the hypoxic 
status has also been shown to influence the resist-
ance to antiangiogenic drugs [19] or their susceptibil-
ity regarding radiation therapy, thereby impacting the 
dosimetric planning for Y-90 radioembolisation [20]. 

Moreover, in the era of immune therapies, hypoxia has 
also been revealed to play a major role in the current 
understanding of the immune microenvironment of 
colorectal liver metastases [21].

Polarographic electrodes inserted directly into the 
tumour are considered the gold standard for measur-
ing tumour hypoxia. However, in the routine clinical 
workflow, histopathological analysis is more commonly 
performed, with tissue hypoxia markers, such as hypoxia-
inducible factor-1 (HIF-1) alpha, being the most relevant 
[22]. Both approaches suffer from similar shortcom-
ings: invasiveness, limitation to accessible tumours, and 
inability to take tumour heterogeneity into account [23]. 
Moreover, these methods cannot provide longitudinal 
information on changes in the oxygenation of the micro-
environment. Developing a non-invasive, robust imag-
ing-based technique to assess tumour hypoxia would 
improve patient selection, treatment monitoring, and 
treatment modification.

As medical image analysis research has gained recog-
nition in the clinical world, increasingly relevant applica-
tions of radiomics coupled with machine learning have 
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emerged. Radiomic features and signatures have been 
associated with long-term prognosis and response to 
local and systemic therapy [24–28]. Prominent among 
the use cases for radiomics has been the domain of 
radiogenomics, where morphological phenotypes are 
linked to the underlying tumour genotype [29, 30]. As 
more information is gathered from tumours, the scope 
of radiogenomics has expanded beyond strict somatic 
mutation analysis and now encompasses broader biologi-
cal parameters, particularly from the tumour microenvi-
ronment [30, 31].

Past literature has attempted to perform histological/
radiological correlation using radiomics. More specifi-
cally, CT-derived radiomic features have been associated 
with PET imaging of hypoxia [32]. Other studies have 
shown links between radiomics-based patient stratifica-
tion (e.g. on response or survival) and gene signatures 
related to the hypoxia pathway [33–35].

In this proof-of-principle project, we aimed to use 
MRI-derived radiomic features and novel machine learn-
ing approaches to non-invasively predict the degree of 
histopathological tumour hypoxia in patients with colo-
rectal liver metastases. We hypothesise that by leverag-
ing medical image analysis techniques and ubiquitous 

imaging modalities, non-invasive insight into CRC 
hypoxia can be obtained.

Methods
Patient cohort and data collection
We retrospectively collected clinical patient data from 
all colorectal cancer patients with known liver metas-
tases who had undergone liver resection at our institu-
tion (The Netherlands Cancer Institute, Amsterdam) 
between April 2015 and January 2020. Our initial cohort 
comprised 370 patients, from which 248 subjects were 
excluded for prior systemic therapy (n = 143), miss-
ing or old MRIs (> 2  months, n = 29), non-cancerous 
liver lesions (n = 15) and mucinous subtype (n = 14). 
Patients that had received prior systemic therapy were 
excluded due to the expected impact the different treat-
ments would have on the microenvironment, introduc-
ing noise and variability. Cases where accurate matching 
between imaging and pathology was not possible were 
immediately excluded (n = 9). Reasons for failed match-
ing included the presence of multiple lesions within the 
same liver segment or a discrepancy in liver segments 
reported between the pathology and MRI report. Fig-
ure 1 depicts a detailed flowchart highlighting cases that 

Fig. 1 Study exclusion criteria. CRC‑colorectal cancer, CLM‑colorectal liver metastases, PA‑pathology
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were excluded. The final cohort used in this analysis was 
112 patients with 116 procedures and 142 metastases 
for whom both MRI data and histopathological tumour 
hypoxia information were collected. All research per-
formed has received bioethical approval from the Institu-
tional Review Board (IRB) of the The Netherlands Cancer 
Institute, Amsterdam (IRBdm20-066).

MRI and tumour segmentation
The Picture Archive and Communication System (PACS) 
was retrospectively queried to retrieve the preopera-
tive MRI scans for the patients in our cohort. For each 
liver resection, we selected the MRI scan closest to the 
date before the procedure. Apart from the echo time, two 
T2-weighted sequences were used (TE75, TE300) with 
a field-of-view of 400 × 400 × 233 (AP × RL × FH) mm, 
a reconstructed in-plane voxel of 1 × 1 (AP × RL) mm, 
slice thickness of 5 mm FH, echo times of 75 and 300 ms 
respectively and a repetition time of 2725 ms, without fat 
suppression. Five routinely available sequences were col-
lected from the diffusion-weighted scan (b0, b10, b200, 
b800, and ADC) with a field-of-view of 450 × 400 × 251 
(AP × RL × FH) mm, reconstructed in-plane voxel size 
of 1.75 × 1.75 (AP × RL) mm, echo time of 86 ms, repeti-
tion time of 1447 ms, and a SPAIR fat suppression pulse 
was used—leading to a maximum of seven sequences 
available per liver resection. The selected echo times 
and b-values were based on the standard MRI proto-
cols at our centre for the evaluation of colorectal liver 
metastases, established through a combination of clinical 
practice guidelines and the need to balance image qual-
ity and acquisition time, in accordance with the prefer-
ences of our institution’s radiology department. All four 
b-value sequences plus ADC were collected to explore 
all possible associations between diffusion-weighted 
imaging and hypoxia. The scans were acquired on a 
3  T Philips Achieva and a 3  T Philips Ingenia (Philips 
Healthcare, Best, the Netherlands), with an anterior 
and built-in posterior coil as receiver coils. Gadolinium-
containing contrast agents used in our liver examination 
were administered after the included T2W and DWI 
sequences were acquired. 3DSlicer (v.4.10.2) was used 
to view the radiological images and perform the manual 
segmentation (N.B., board-certified radiologist with four 
years of expertise in liver imaging). As a single radiologist 
performed all the segmentations, we were able to miti-
gate the risk of inter-reader variability. Each sequence 
was segmented independently. No assumptions were 
made regarding the possibility of generalising segmen-
tations between sequences. Additional file  1: S1 shows 
the pairwise correlation between the segmentations per 
sequence in terms of three dimensional diameter and 
volume.

Similar to how the two largest lesions (when pre-
sent) were resected and subsequently selected for stain-
ing, an expert radiologist applied the same criteria to 
CLM delineation on MRI images. Liver metastases were 
matched between MRI and pathology based on lesion 
location. Segmentations of the two largest liver metas-
tases were performed to account for inter-tumoural het-
erogeneity. Pairwise analysis was performed to assess 
the degree of correlation between the segmentations of 
different sequences (in terms of volume and diameter, 
Additional file 1: S1). All image and annotation files were 
saved according to the NRRD format.

Radiomic feature extraction and selection
From each delineated lesion, 4032 radiomics features 
were extracted using PyRadiomics (v3.0). The extracted 
features included first-order statistics, two-dimensional 
and three-dimensional shape features, grey level depend-
ence matrix (GLDM) features, grey level run length 
matrix (GLRLM) features, grey level co-occurrence 
matrix (GLCM) features, grey level size zone matrix 
(GLSZM) features, and neighboring grey tone differ-
ence (NGTDM) matrix features, each with a set of fil-
ters applied to them (square, square root, logarithm, 
exponential, gradient, wavelet, Laplacian of Gaussian, 
and three-dimensional local binary pattern). The dataset 
was normalised by centering the data at the mean with 
standard deviation to account for potential scanner level 
differences. Each radiomic feature vector represented 
the morphological phenotype of the segmented region 
of interest. A complete description of the radiomic fea-
tures generated by PyRadiomics can be found in van Gri-
ethuysen et al. [36].

The resulting feature space suffered from the curse 
of dimensionality, where the number of features was 
greater than the samples. This situation typically results 
in increased noise in the data and makes the machine 
learning model more prone to overfitting the training 
data and less likely to generalise to unseen information. 
We performed ensemble feature selection to identify the 
most representative/relevant features within the sizable 
radiomic feature space. In this method, seven supervised 
feature selection approaches (Chi-square, correlation 
with outcome, random forest, linear regression, logistic 
regression, recursive feature selection, and light gradi-
ent boost machine) would independently select the top 
100 most relevant features for the specific outcome (e.g. 
hypoxia staining index high vs. low). Subsequently, only 
the features chosen by the majority of methods (> = 4/7 
approaches) would be included in the analysis. Ensemble 
feature selection approaches help ensure that only the 
features with the maximum relevance would be used in 
the study by leveraging the strengths of specific selection 
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methods to overcome weaknesses in others [37, 38]. The 
feature selection was performed exclusively on the train-
ing set to prevent data leakage. The selected features were 
then generalised to the independent test set. The selected 
features per sequence can be seen in Additional file 1: S2.

Histopathological assessment of tumour hypoxia
Our institutional biobank was queried to obtain archi-
val resection specimens for the patients included in the 
final cohort. As a critical regulator of cellular response 
to hypoxia, HIF-1 alpha is a reliable and permanent his-
topathological marker of tumour hypoxia in colorectal 
cancer, which can be detected accurately after tissue exci-
sion and storage [39]. Tumour hypoxia was assessed by 
a consensus reading of two board-certified pathologists 
based on HIF-1 alpha immunohistochemical staining of 
each patient’s resection samples (Additional file  1: S3). 
When multiple liver lesions were resected, specimens 
from the two largest liver metastases were stained. The 
pathologists selected two representative colorectal liver 
metastases slides (centre and periphery) for each tumour. 
HIF-1 alpha expression was classified based on an estab-
lished semi-quantitative (and subjective) staining index 
[40, 41]. The staining index (range: 0–9) was determined 
by multiplying the score for the intensity of the stain-
ing (none = 0, weak = 1, moderate = 2, strong = 3) with 
the score of the proportion of positive HIF-1 alpha cells 
(< 10% = 1, 10–50% = 2, > 50% = 3) that were both qualita-
tively assessed in consensus reading with both patholo-
gists. In our cohort, the indices ranged from 0 to 6, with 
no cases having a score = 3 and a score = 5 being impos-
sible due to the multiplication process. The staining 
index cut-off value was set as 0–2 for negative/low HIF-1 
alpha expression and 3–6 for high expression, coinciding 
with the median [40]. As our pathologists deemed that 
approach more clinically relevant, the slide with a higher 
percentage of positive cells and stronger staining inten-
sity was used to calculate the staining index.

Modeling and machine learning
The analysis was performed on data from 116 resections 
consisting of a reference standard on pathology (HIF-1 
staining index, high vs. low) paired with a pre-resection 
MRI scan (with the available sequences). This data was 
divided into a training set (75%) to train and optimise 
the machine learning algorithm and an independent 
test set (25%) to evaluate the model’s ability to general-
ise to unseen data. To discover the best machine learn-
ing pipeline (composed of a classifier, hyperparameters, 
and processing steps) to model the data, a tree-based 
evolutionary algorithm was used (via the Python library, 
TPOT) [42]. We supplied the training data to the genetic 

algorithm in this setup, and the machine learning space 
was explored automatically using a genetic selection 
approach. In each generation, candidate pipelines are 
evaluated using a five-fold cross-validation scheme. The 
top-performing models are then automatically “mutated” 
in the sense of being modified to increase performance 
in the next round. This model creation and evaluation 
process continues until a final candidate machine learn-
ing algorithm emerges. The selected model and hyperpa-
rameters were tested on the unseen independent test set 
(Additional file 1: S4).

Statistical analysis
To assess predictive performance, we measured the area 
under the receiver operating curve (AUC). Additionally, 
we computed precision-recall AUC (PR AUC), accuracy, 
sensitivity, specificity, the F1 score, the negative predic-
tive value (NPV), and the positive predictive value (PPV). 
Bootstrapping with 1000 samples was performed to 
compute 95% confidence intervals for all the evaluation 
metrics. Mann–Whitney U test was used to compare the 
predictions between the classes and test for significance 
[27]. p values above the conventional threshold (0.05) 
were considered to be statistically significant.

Shapley values were calculated for the features used 
by the machine learning models to gain insight into the 
AI predictions on the unseen test set. The features with 
the most impact on the prediction were plotted for each 
MRI sequence. Figure  2 gives a broad overview of the 
study design and analysis workflow. All analyses were 
performed using Python 3.6 (scikit 0.22.1, pandas 1.0.1, 
numpy 1.18.1, matplotlib 3.1.3, tpot 0.11.2, shap 0.37.0).

Results
Clinical and imaging characteristics
A final cohort of 112 patients across 116 liver resections 
with 142 colorectal liver metastases was included in our 
analysis (Fig. 1). Four patients underwent resection twice 
at different points in their treatment history, resulting in 
a total of 116 resections with both imaging and biologi-
cal data. The average age of our patients was 64.1 years 
(± 10), with a slight preference for males (n = 68, 59%). All 
patients in our dataset underwent liver resection. In cases 
where only a single lesion was resected (n = 86 patients, 
77%), that lesion would be directly included in the study. 
In patients where > 1 lesion was resected (n = 26 patients, 
23%), the largest two lesions > 1  cm were included. 
Median time gap between the pre-resection MRI acqui-
sition and liver resection was 25.5  days (IQR = 16.5–
35  days). HIF-1 alpha staining was performed on the 
archival specimens from the NKI Core Facility—Molecu-
lar Pathology and Biobank (staining protocol Additional 
file 1: S3). Based on the hypoxia staining intensity index 
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score, patients were labeled as “hypoxia low” (n = 67, 
47%) or “hypoxia high” (n = 75, 53%) (Fig. 3). As the two 
classes (hypoxia high/low) were balanced, no upsam-
pling/undersampling technique was used.

Pre-resection MRI scans were then delineated by 
a radiologist focusing on T2W TE75 (available for 
n = 92/116, 79%), T2W TE300 (n = 85/116, 73%), DWI 
b0 (n = 100/116, 86%), DWI b10 (n = 113/116, 97%), DWI 
b200 (n = 99/116, 85%), DWI b800 (n = 116/116, 100%), 
and ADC (n = 110/116, 95%), when available. Detailed 
characterisation of our patient cohort can be found in 
Table 1. Each sequence was segmented individually and 
correlation between the segmentations of the sequences 
was found to be > 0.95 (for diameter) and > 0.97 (for vol-
ume). Detailed pairwise correlations between the seg-
mentations of each sequence can be seen in Additional 
file 1: S1.

Radiomic analysis
Feature extraction from each of the seven MRI sequences 
yielded 4032 radiomic features encoding the full mor-
phological phenotype of each segmented liver metas-
tasis. Supervised ensemble feature selection identified 
radiomic signatures per MRI sequence most relevant 
for predicting tumour hypoxia. These signatures ranged 
between 7 and 24 radiomic features based on the MR 
sequence (see Additional file  1: S2). For each radiomic 
MRI signature, we used an evolutionary tree-based algo-
rithm approach to select, train, and optimise the hyper-
parameters of a machine learning algorithm to predict 
hypoxia (Additional file 1: S4).

Radiomic signatures from DWI b200 (AUC = 0.79, 
95% CI = 0.61–0.93, p = 0.002) and ADC (AUC = 0.72, 
95% CI = 0.50–0.90, p = 0.019) were significantly pre-
dictive of tumour hypoxia. Anatomical imaging in the 
form of T2W TE75 (AUC = 0.64, 95% CI 0.42–0.82, 

Fig. 2 An illustrative diagram highlighting the (a) study design as well as the (b) radiomic/machine learning workflows. Expert readers delineated 
pre‑resection MRI images, and from these regions of interest, handcrafted radiomic features are extracted. Machine learning classifier selection, 
training, and hyperparameter optimisation were performed using an evolutionary genetic approach. The candidate model is then evaluated on its 
predictive performance with an unseen validation cohort
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p = 0.092) and functional b0 (AUC = 0.66, 95% CI 0.46–
0.84, p = 0.069) and b800 (AUC = 0.64, 95% CI 0.44–0.82, 
p = 0.071) images showed trends toward predictive abil-
ity. Although the p values did not reach the conventional 
threshold for statistical significance, they are close to this 
threshold, suggesting that there may be some predictive 
power associated with these imaging sequences, particu-
larly in the context of our modest dataset.

In our cohort, radiomic features derived from T2W 
TE300 (AUC = 0.57, 95% CI 0.33–0.78, p = 0.312) and b10 
(AUC = 0.53, 95% CI 0.33–0.74, p = 0.415) images were 
poorly predictive of tumour hypoxia (Fig. 4). Full perfor-
mance metrics of each algorithm on its respective MRI 
sequence can be found in Table 2.

Shapley values were computed for each of the machine 
learning algorithms to determine the impact of each 
feature on the prediction and their relative impor-
tance (Fig.  5). In the case of the two sequences where 
the AI model made statistically significant predictions, 
DWI b200 and ADC, the features within the radiomic 

signatures for hypoxia reflected morphological heteroge-
neity. On b200 images, the AI model relied on higher val-
ues of morphological heterogeneity to predict hypoxia. 
Conversely, a lower degree of heterogeneity was associ-
ated with hypoxia on ADC.

Discussion
In this proof-of-concept study, we aimed to explore the 
potential of MRI-derived radiomic features in the non-
invasive prediction of tumour hypoxia. Among the rou-
tinely-performed magnetic resonance imaging (MRI) 

Fig. 3 HIF‑1 alpha staining. HIF‑1 alpha staining in colorectal liver 
metastases. Upper panel: weak nuclear staining for HIF‑1 alpha 
in a minority of tumour cells (10%). Lower panel: strong nuclear 
staining for HIF‑1 alpha in a proportion of tumour cells (30%). Scale 
bar 500 µm

Table 1 Patient characteristics

Median age (median, IQR) 65 (57–71)

Gender (n, %)

Male 68 59%

Female 48 41%

Overall survival in months (median, IQR) 23.6 (11.3–34.1)

Tumour size in cm, pathology (median, IQR) 2.5 (1.8–3.5)

Tumour size in cm, on MRI (median, IQR) 2.1 (1.7–3.3)

Hypoxia staining score (n lesions, %)

Low 67 47%

High 75 53%

Hypoxia staining index score
(n resections, %)

Score = 0 20 14%

Score = 1 23 16%

Score = 2 24 17%

Score = 3 ‑ ‑

Score = 4 55 39%

Score = 5 ‑ ‑

Score = 6 20 14%

Location of tumours (n lesions, %)

S1 1 1%

S2 21 11%

S3 29 15%

S4 23 12%

S5 25 13%

S6 34 17%

S7 34 17%

S8 33 17%

Availability of sequence (n resections, %)

T2W TE75 92 79%

T2W TE300 85 73%

b0 100 86%

b10 113 97%

b200 99 85%

b800 116 100%

ADC 110 95%
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Fig. 4 Performance metrics of the machine learning algorithms that were selected for each of the MRI sequences. NPV, negative predictive value; 
PPV, positive predictive value; PR AUC, precision‑recall AUC 

Table 2 Performance metrics of the machine learning algorithms

ROC AUC PR AUC Accuracy Sensitivity Specificity NPV PPV F1 score p value

TE75 0.64 (0.42–
0.82)

0.63 (0.40–
0.83)

0.62 (0.45–
0.79)

0.80 (0.57–
1.00)

0.43 (0.15–
0.71)

0.67 (0.30–
1.00)

0.60 (0.37–
0.80)

0.69 (0.48–
0.83)

0.092

TE300 0.57 (0.33–
0.78)

0.52 (0.28–
0.70)

0.42 (0.23–
0.62)

0.30 (0.08–
0.58)

0.54 (0.27–
0.80)

0.44 (0.18–
0.69)

0.40 (0.10–
0.73)

0.33 (0.10–
0.56)

0.312

b0 0.66 (0.46–
0.84)

0.73 (0.48–
0.89)

0.55 (0.39–
0.71)

0.81 (0.60–
1.00)

0.26 (0.07–
0.50)

0.60 (0.17–
1.00)

0.54 (0.35–
0.74)

0.65 (0.44–
0.81)

0.069

b10 0.53 (0.33–
0.74)

0.58 (0.37–
0.79)

0.49 (0.31–
0.66)

0.68 (0.47–
0.89)

0.24 (0.06–
0.47)

0.40 (0.09–
0.71)

0.52 (0.32–
0.71)

0.59 (0.40–
0.75)

0.415

b200 0.79 (0.61–
0.93)

0.72 (0.51–
0.91)

0.68 (0.52–
0.84)

0.56 (0.31–
0.81)

0.81 (0.57–
1.00)

0.63 (0.41–
0.84)

0.75 (0.50–
1.00)

0.64 (0.40–
0.82)

0.002

b800 0.64 (0.44–
0.82)

0.74 (0.55–
0.88)

0.56 (0.42–
0.72)

0.64 (0.40–
0.83)

0.47 (0.23–
0.71)

0.53 (0.27–
0.79)

0.57 (0.37–
0.77)

0.59 (0.40–
0.76)

0.071

ADC 0.72 (0.50–
0.90)

0.75 (0.54–
0.94)

0.68 (0.53–
0.82)

0.80 (0.60–
0.95)

0.54 (0.27–
0.78)

0.69 (0.36–
0.91)

0.68 (0.50–
0.87)

0.74 (0.56–
0.87)

0.019
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scans in the clinical workflow, T2-weighted imaging and 
DWI have the most profound biological connection to 
hypoxia [43–45]. Preclinical studies have also shown that 
ADC and T2 mapping were helpful in imaging tumour 
hypoxia in murine models [46, 47]. With this in mind, we 
decided to focus the scope of our imaging study on T2W 
and DWI sequences and their derived parameter maps.

In our cohort of baseline colorectal liver metastases, 
radiomic signatures derived from the ADC map and 
DWI b200 image were significantly associated with his-
topathological tumour hypoxia. Imaging markers derived 
from T2W TE75, DWI b0, and DWI b800 were also 
predictive of the HIF-1 alpha staining index, albeit nar-
rowly short of statistical significance. In general, lower 
spin echo times and higher b-value images were able to 
encode more information regarding the hypoxia status. 

These findings are in line with our current understanding 
of hypoxia under MRI.

Tumour hypoxia is generally influenced by perfusion and 
diffusion, with the former being related to acute hypoxia 
and the latter being associated with chronic hypoxia [48, 
49]. As tissues rapidly grow, cellularity increases, a pos-
sible mechanism of water diffusion restriction. However, 
as tumour growth outpaces its vascularisation, hypoxia 
ensues, often resulting in necrotic areas with lower cellular 
density [50]. The ebb and flow between cell growth/den-
sity and vascularisation/hypoxia may be a mechanism for 
detecting hypoxic changes in functional DWI (and ADC). 
Diffusion is visualised primarily in the higher b-value 
sequences, outside the perfusion fraction range, and in the 
ADC map. In chronic tumour hypoxia, more information 
should be available from such images (i.e. b200, b800, and 
ADC).

Fig. 5 Shapley summary plots of the most relevant features for the prediction of tumour hypoxia in b200 and ADC. The SHAP value reflects 
the impact of the individual features on the prediction while the colour of the dots represents the value of that particular feature
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Alongside diffusion-weighted functional sequences, 
T2W imaging can also be linked to hypoxia. During 
acquisition, the balance between oxygen-related para-
magnetic molecules influences the T2 time constant 
of nearby tissue. The presence of electrons defines such 
molecules. Prominent examples include molecular oxy-
gen, deoxyhaemoglobin, methaemoglobin and oxygen-
related diamagnetic molecules such as oxyhaemoglobin. 
The higher the concentration of paramagnetic molecules, 
the shorter the T2 time constant [51, 52]. T2 images 
acquired under lower echo times yielded more use-
ful information for the model to predict hypoxia. In our 
cohort, we observed that liver metastases were poorly 
visible on TE300, possibly resulting in lower-quality, less 
predictive radiomic features. The reduction of contrast-
to-noise ratios among different tissues at higher echo 
times (due to T2 relaxation) could explain this phenom-
enon. In this case, the signal intensities of the various tis-
sues would approach each other while decaying into the 
noise.

We observed that the radiomic features selected for 
each sequence collectively encoded morphological het-
erogeneity (Additional file 1: S2). The radiomic signatures 
for the DWI b200 and ADC models consisted of radiomic 
features derived at both coarse and medium resolutions. 
The radiomic signature for the ADC model, in particular, 
selected multiple features representing skewness (with 
various resolutions/filters). SHAP analysis on the model 
trained using DWI b200 data showed that higher levels 
of morphological heterogeneity generally influenced the 
model to predict hypoxia (except for Coarse_wavelet-
LLL_firstorder_Skewness). The reverse was true for the 
ADC map, where lower morphological heterogeneity val-
ues were linked with tumour hypoxia prediction. Coarse_
wavelet-LLL_firstorder_Skewness was selected as an 
impactful feature in both the b200 and ADC algorithms, 
further highlighting the potential for skewness as an MR 
imaging marker of hypoxia.

Most attempts at unlocking hypoxia information using 
imaging have focused on using PET. Tracers targeting 
HX4, nitroimidazole analogues, and ATSM have all been 
shown to visualise hypoxia [53–56]. The challenge with 
PET hypoxia imaging is that tumours with low oxygena-
tion tend to be hypoperfused. Limited vascularisation 
and perfusion restrict the delivery of the PET tracer to 
the tumour (microenvironment) [57]. Radiomic features 
derived from non-targeted (anatomical and functional) 
imaging would help mitigate this shortcoming. Litera-
ture on the association between radiomics and tumour 
hypoxia, in general, is scarce, let alone specifically for 
colorectal cancer. Sanduleanu et  al. developed and 

validated disease-agnostic radiomic signatures derived 
from FDG-PET and CT images [32]. The predictive per-
formance of the PET/CT signatures was similar to those 
we identified in DWI/T2W imaging (AUC ranges = 0.7–
8). In a small cohort of cholangiocarcinoma patients, 
Sadot et al. found associations between CT texture analy-
sis and VEGF [58]. CT radiomic features were also used 
in histopathological correlation with pimonidazole, a 
nitroimidazole analogue hypoxia marker [59]. DCE MR 
imaging of 17 primary liver cancer patients also showed 
changes induced by anti-angiogenic therapy associated 
with hypoxia [60].

To our knowledge, this study is the first to explore asso-
ciations between tumour hypoxia and radiomic features 
derived from routine MR sequences. Our dataset was 
retrospective in nature and had a modest cohort size 
due to the fact that HIF-1 alpha hypoxia staining is not 
part of the routine clinical workflow. As such, our refer-
ence standard had to be actively generated using archival 
specimens in collaboration with our pathology depart-
ment. All hypoxia scores were generated from hypoxia 
staining of patient archival tissue performed exclusively 
for this project. Given the scarcity of suitable human tis-
sue and the associated costs, the sample size of this study 
remained relatively modest. Since our ground truth is not 
routinely generated, creating large training or external 
datasets is challenging. Moreover, as the dataset is ret-
rospectively derived, not all patients had all sequences 
available in the PACS, owing to the intricacies of real-
world clinical data (e.g. referring physician preferences, 
timing, and patient-specific factors). Exploration of asso-
ciation with survival was also not possible due to the het-
erogeneity of this modestly-sized retrospective cohort. 
Patients whose baseline tissue and MR scans were 
included in this study would later receive different treat-
ments making the comparison challenging, especially 
since the hypoxia status is derived from a lesion while the 
survival can be confounded by other patient-level differ-
ences (e.g., stage, comorbidities, etc.). Prospective stud-
ies with detailed patient inclusion and matching could 
explore the potential of hypoxia AI models to predict 
survival.

Notwithstanding these limitations, we could identify 
promising radiomic signatures for tumour hypoxia on 
T2W and DWI, especially on b200 and ADC. In clinical 
practice, the results of this study could open the gates for 
further research aimed at improving patient selection for 
various liver-directed therapies and prompt treatment 
modification by more aggressive tumour targeting or by 
the use of hypoxia-modifying drugs.



Page 11 of 13Bodalal et al. Insights into Imaging          (2023) 14:133  

Conclusions
Morphological phenotypes, as quantified by radiomic 
signatures, were found to predict tumour hypoxia. These 
findings suggest that anatomical T2W and functional 
DWI MRI sequences hold information that can be used 
for the non-invasive prediction of tumour hypoxia. 
Radiogenomic prediction of microenvironmental charac-
teristics such as hypoxia could add significant insight into 
tumour biology, especially in a longitudinal setting. How-
ever, as this study was proof of concept, large-scale pro-
spective multicentre studies would be needed to develop 
and validate robust hypoxia predictive algorithms.
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