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Abstract 

In recent years, with the increasing incidence of endometrial carcinoma in women of child-bearing age, to decision 
of whether to preserve patients’ fertility during treatment has become increasingly complex, presenting a formida-
ble challenge for both physicians and patients. Non-fertility-sparing treatment can remove lesions more thoroughly 
than fertility-sparing treatment. However, patients will permanently lose their fertility. In contrast, fertility-sparing 
treatment can treat tumors without impairing fertility, but the risk of disease progression is high as compared 
with non-fertility-sparing treatment. Therefore, it is extremely important to accurately identify patients who are suit-
able for fertility-sparing treatments. The evaluation of prognostic factors, including myometrial invasion, the presence 
of lymph node metastases, and histopathological type, is vital for determining whether a patient can receive fertility-
sparing treatment. As a non-invasive and quantitative approach, radiomics has the potential to assist radiologists 
and other clinicians in determining more precise judgments with regard to the above factors by extracting imaging 
features and establishing predictive models. In this review, we summarized currently available fertility-sparing strate-
gies and reviewed the performance of radiomics in predicting risk factors associated with fertility-sparing treatment. 
This review aims to assist clinicians in identifying patients suitable for fertility-sparing treatment more accurately 
and comprehensively and informs more appropriate and rigorous treatment decisions for endometrial cancer 
patients of child-bearing age.

Critical relevance statement: Radiomics is a promising tool that may assist clinicians identify risk factors about fertil-
ity-sparing more accurately and comprehensively.

Key points 

1.	 Patients who choose fertility-sparing treatment must undergo rigorous evaluations, especially with  regard 
to prognostic factors such as myometrial and lymphovascular space invasion.

2.	 We found that  MRI-based radiomics model performed well in  the  evaluation of  prognostic factors, includ-
ing myometrial and lymphovascular space invasion.

3.	 We conclude that the performance of the evaluated radiomics model including both clinical and radiomics fea-
tures was better than that of the evaluated model that was based on radiomics features only.
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4.	 The respective performances of  the  evaluated radiomics models need to  be comprehensively verified prior 
to clinical application.
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Graphical abstract

Radiomics is a promising tool that may assist clinicians identify risk factors about fertility-sparing 
more accurately and comprehensively.
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• Patients who choose fertility-sparing treatment must undergo rigorous 

evaluations, especially with regard to prognostic factors such as myometrial 

and lymphovascular space invasion.

• MRI-based radiomics model performed well in the evaluation of prognostic 

factors, including myometrial and lymphovascular space invasion.

• The performance of the evaluated radiomics model including both clinical 

and radiomics features was better than that of the evaluated model that was 

based on radiomics features only.

• The respective performances of the evaluated radiomics models need to be 

comprehensively verified prior to clinical application.
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Introduction
Endometrial carcinoma (EC) is one of the most com-
monly occurring gynecological malignant tumors, and its 
morbidity ranks sixth among malignant tumors world-
wide. According to cancer statistics published in 2020 
[1], the expected number of new cases of uterine body 
malignancies (i.e., mainly EC) in the USA was 65,620 as 
of 2020, and EC ranks fourth among malignancies occur-
ring in US women. EC usually occurs in postmenopausal 
women. However, in recent years, the incidence of EC in 
women of child-bearing age has been gradually increas-
ing. Approximately 4% of EC patients are younger than 
40 years of age [2]. Most of these patients strongly pre-
fer preserving their fertility if possible. However, the risk 
of disease extension is inevitable in women who choose 
fertility-sparing treatment [3–6].

Patients presenting with different individual char-
acteristics and histopathological features have differ-
ent profiles in terms of viable treatments and treatment 

outcomes. Thus, the identification of early-stage patients 
and the assessment of prognostic factors, including 
myometrial invasion (MI), lymphovascular space inva-
sion (LVSI), lymph node metastasis (LNM), and cervi-
cal stromal invasion (CSI), are critical for evaluating the 
appropriateness of fertility-sparing treatment [7–9]. As 
the current most commonly implemented preoperative 
assessment method, imaging can be used to preliminarily 
evaluate the size and location of lesions. However, some 
tiny lesions, such as early MI, are difficult to identify 
using imaging [9]. In addition, a large number of texture 
features that are potentially beneficial to diagnosis and 
staging are ignored [10].

As an emerging technology, radiomics can extract 
image features that cannot be identified by the human 
eye from imaging. Through processing, image features 
can be transformed into computer data. Based on these 
data or combining these data with clinical information, 
such as clinical features and pathology, it will be possible 
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to develop more valuable diagnosis and prognosis mod-
els, which will guide clinicians to make better decision 
[11].

This review summarizes currently available fertility-
sparing strategies and the performance of radiomics 
models based on magnetic resonance imaging (MRI), 
ultrasound (US), computed tomography (CT), and posi-
tron emission tomography combined with CT (PET/CT) 

in terms of elucidating predictive prognostic factors asso-
ciated with fertility-sparing treatments for EC (Fig.  1), 
including MI, LVSI, and LNM. We aimed to help clini-
cians determine better treatment choices for EC patients 
of child-bearing age.

Methods
A search strategy was developed and applied to PubMed, 
Web of Science, and Scopus. The following words were 
used for searching: ((endometrial OR endometrium) 
AND (neoplasm OR carcinoma OR cancer OR tumor) 
AND (radiomics OR texture)) OR ((endometrial OR 
endometrium) AND (neoplasm OR carcinoma OR can-
cer OR tumor) AND (fertility-sparing OR fertility pres-
ervation) AND (radiomics OR texture OR imaging)). The 
search date ends in August 2021. A total of 604 results 
were searched in three databases; after removing repeti-
tion, the articles that are associated with the evaluation of 
risk factors related to fertility-sparing were included.

Fertility‑sparing strategies
The selection of eligible patients (among those choosing 
fertility-sparing treatments) is highly rigorous. The indi-
cations recommended by the National Comprehensive 
Cancer Network [12], the European Society of Gyneco-
logical Oncology [13] guidelines, and the International 
Federation of Gynecology and Obstetrics Cancer 2018 
Report guidelines [14] for fertility-sparing treatment are 
shown in Table 1.

The standard treatment for women with EC who are 
of child-bearing age is total hysterectomy and bilateral 
salpingo-oophorectomy (TH/BSO). This is an effective 

Fig. 1  The application of radiomics in fertility-sparing treatment 
of endometrial carcinoma. MRI = magnetic resonance imaging. 
US = ultrasound. PET/CT = positron emission tomography/computed 
tomography. CT = computed tomography

Table 1  Indications recommended by the National Comprehensive Cancer Network 2021, the European Society of Gynecological 
Oncology guidelines 2021 and the International Federation of Gynecology and Obstetrics cancer report 2018 for fertility-sparing 
treatment

Patients who meet the above conditions should exclude pregnancy and consult a reproductive specialist before treatment. Genetic counseling and genetic testing 
are necessary for appropriate patients

MI, myometrial invasion; MRI, magnetic resonance imaging; US, ultrasound; TH/BSO, total hysterectomy and bilateral salpingo-oophorectomy
a To evaluate the extension of disease
b Fertility-sparing treatment is a non-standard treatment, which must be known for patients
c TH/BSO is recommended in the end, whether the treatment is successful or not

Guidelines Histopathologic types and 
grades

MI MRI/USa Dilatation and 
curettage or 
endometrial biopsya

Informed 
consentb

Close 
follow-up

Outcomesc

National Comprehensive Cancer 
Network 2021

Grade 1 endometrial adenocar-
cinoma

No Yes Yes Yes Yes TH/BSO

European Society of Gynecologi-
cal Oncology guidelines 2021

Grade 1 endometrioid carcinoma 
or atypical hyperplasia/endome-
trioid intra-epithelial neoplasia

No Yes Yes Yes Yes TH/BSO

International Federation of Gyne-
cology and Obstetrics cancer 
report 2018

Grade 1 endometrioid carcinoma No Yes - Yes Yes TH/BSO
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method with a high five-year survival rate of 93% [2]. 
However, many of these women prefer fertility-sparing 
treatment due to the permanent loss of fertility caused 
by TH/BSO. Recommended fertility-sparing treat-
ments are depicted in Fig. 2.

The most commonly prescribed therapeutic schedule 
is a standard regimen of high-dose oral medroxypro-
gesterone. The levonorgestrel intrauterine device can 
replace oral progesterone in women with complicated 
atypical hyperplasia [9]. In addition, there seems to 
be no correlation between diabetes and the outcomes 
of fertility-sparing treatment in women with atypical 
hyperplasia/endometrioid intra-epithelial neoplasia or 
early EC [15]. In contrast, the use of metformin may 
be associated with an increase in overall survival and a 
decrease in the risk of recurrence [16].

In addition to selecting appropriate treatments, 
close follow-up is an important factor in ensuring 
the safety and efficacy of fertility-sparing treatments. 
The surveillance strategies recommended by the 
National Comprehensive Cancer Network are shown 
in Fig. 3.

Moreover, the European Society for Medical 
Oncology has demonstrated that progesterone recep-
tor status can reliably predict therapeutic response 
in EC. However, this indicator is not recommended 
as a routine test, because 50% of progesterone recep-
tor-negative patients have been shown to respond to 
therapy [2].

Imaging in fertility‑sparing treatment
Currently, imaging (especially MRI and US) is one of the 
most commonly utilized methods for the preoperative 
assessment of EC [17–19]. Most clinical guidelines sug-
gest the use of MRI to determine the extent of the lesions 
[20].

MRI with good resolution of soft tissues can dis-
tinguish endometrial lesions and myometrial signals 
to clearly show the range of lesions through contrast 
dynamic enhancement scanning. In recent years, MRI 
has been used to describe the local extent and expansion 
of tumors in various studies [21–23].

Moreover, US conducted by imaging experts has a non-
negligible role in evaluating the extent of EC in the pel-
vis and abdominal cavity. As a non-invasive, cheap, and 
convenient imaging method, US is appropriate for all 
patients. Epstein et al. revealed that ultrasonic and Dop-
pler characteristics can be used for risk stratification in 
EC, and this finding was validated by a subsequent pro-
spective study [19].

In contrast, CT is unreliable for predicting EC stage. 
This is because the contrast between the tumor and 
the myometrium is difficult to identify, thus rendering 
the tumor invisible in CT imaging. Thus, CT cannot be 
used to assess the depth of MI and CSI [24]. Due to good 
multi-plane spatial resolution, CT is mostly used for 
the preoperative evaluation of LNM and distant metas-
tases. By analyzing CT images from 39 patients, Rizzo 
et  al. concluded that dual-energy CT can overcome the 

Fig. 2  Current recommended fertility-sparing treatments of endometrial carcinoma
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limitations of traditional CT to distinguish lesions from 
normal tissue, thus providing a potential method for 
assessing the depth of MI in EC [24].

Additionally, PET/CT has been proven to be equal in 
performance as compared with MRI in terms of predicting 
MI [25]. However, the high associated cost of this meth-
odology means that it cannot be considered a routine test.

Imaging has been widely used in clinical practice. 
However, the identification of tiny lesions is difficult in 
practice. In addition, it is difficult for radiologists and 

clinicians to acquire all imaging information associated 
with lesions through simple visual evaluations, and the 
differences between different imaging readers cannot be 
well controlled. Radiomics has the potential to overcome 
these problems.

Radiomics
As a non-invasive approach, radiomics can extract quan-
titative and repeatable image features for analysis. Radi-
omics analysis includes the following six steps.

Fig. 3  Flowchart of surveillance after fertility-sparing treatment. Responders: Complete response by 6 months. Non-responders: endometrial 
carcinoma present at 6–12 months. TH/BSO = Total hysterectomy and bilateral salpingo-oophorectomy
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Image acquisition
The acquisition of high-quality images is the foundation 
of radiomics, which has a meaningful impact on effective 
analyses. The uniformity of imaging machines and proto-
cols should be ensured. However, if this is not possible, 
biases should be corrected via previously described pro-
tocols [11, 26].

Image segmentation
The segmentation of images is critical for radiomics analy-
sis. The region used in the subsequent analysis is obtained 
through image segmentation. For tumor analysis, the 
focus was the pixels and voxels in target area, which can 
be either two-dimensional or three-dimensional region. 
The two-dimensional region usually was the axial sec-
tion where the maximum dimension of tumor is located 
and the three-dimensional region usually was the tumor 
itself. The segmentation method includes manual, semi-
automatic, and automatic segmentation. Manual segmen-
tation by an imaging expert is the gold standard for image 
segmentation [11, 26–30].

Data preparation
Some key elements, including imaging methods, imag-
ing protocols, and segmentation protocols, must be well 
defined through data preparation, which has a meaning-
ful impact on model creation [11].

Feature extraction
Radiomics features are defined as quantitative data 
extracted from imaging. Radiomic features are divided 
into four classes: first-order statistics, shape, texture fea-
tures, and features obtained by wavelet transformation of 
relevant image sections. First-order statistics features can 
describe the distributions of voxel intensities. The shape 
features are associated with the shape of the volume. Tex-
ture features can reflect heterogeneity within tumors, 
including many gray-associated features. Wavelet fea-
tures calculate the intensity and texture features from the 
wavelet decompositions of the original image [11, 27].

Feature selection
Relevant features should be selected from among many 
radiomics features, and alternative features should be 
removed or transformed. This process is termed dimen-
sionality reduction [29–31].

Modeling
Establishing a model that can precisely predict the clas-
sification or prognosis of a disease is the primary goal of 
radiomics. There are many methods for establishing a 
radiomics model. Deep learning is the preferred method 
when the sample size is sufficiently large [11, 26, 29].

Radiomics in fertility‑sparing treatment
The performance of different radiomics models in pre-
dicting prognostic factors associated with fertility-spar-
ing treatment is shown in Tables 2, 3, and 4.

MRI
DMI
Deep myometrial invasion (DMI) is considered the most 
significant single morphological prognostic factor in 
patients with EC [32]. Ueno et  al. [33] used a random 
forest model to assess DMI in 137 patients with EC. In 
terms of predicting DMI, prior research found that diag-
nostic accuracy (81.0%) and specificity (82.3%) were not 
statistically significantly different between the evaluated 
model and the evaluations of three radiologists with rich 
experience in gynecological imaging diagnostics, prov-
ing that this model can be considered a reliable auxiliary 
tool. However, their diagnostic accuracy for DMI was 
slightly lower than that of previous reports [34, 35]. This 
is because of the exclusion of 51 (24%) patients whose 
tumors may be too small to accurately determine con-
tours. In a retrospective study, Kristine et al. [36] gener-
ated prediction models by whole-tumor and single-slice 
radiomics. For prediction of DMI, the area under the 
curve (AUC) of training and test cohorts was 0.84 and 
0.76, respectively, in whole-tumor model. In single-slice 
model, the AUC was 0.85 and 0.77, respectively. Yan et al. 
[37] developed a nomogram by combining CA125, tumor 
size, and radiomics features to predict DMI. For radiolo-
gists, with the aid of nomogram, the performance of pre-
diction of DMI was better than without nomogram. Zhu 
et al. [38] developed an MRI-based computerized method 
to predict DMI. This method only required uterus region 
rather than tumor region. Researchers defined a geomet-
ric feature called LS to evaluate the irregularity of the 
tissue structure triggered by EC. They formed a model 
called EPSVM by combining LS and texture features. 
The results revealed that compared with models in oth-
ers studies, EPSVM had better performance in predict-
ing DMI. Alejandro et  al. [39] built four models using 
the Adaboost machine learning method to predict DMI. 
The best model included T2W texture, apparent diffu-
sion coefficient (ADC) texture and statistical descrip-
tors from ADC and semi-quantitative map images with 
the AUC of 0.87. A prospective cohort study designed by 
Ytre-Hauge et al. [40] included 180 patients with EC for 
magnetic resonance texture analysis. By delineating and 
analyzing the region of interest (ROI), 44 texture features 
were found to independently predict DMI. The most sig-
nificant predictor of DMI had better accuracy (78.0%) 
and specificity (84.0%) as compared with traditional MRI 
readings. Although this study differs from the study con-
ducted by Ueno et al. in terms of approach, these studies 
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Table 2  The performance of MRI-based radiomics in predicting DMI and LVSI

MRI, magnetic resonance imaging; AUC, area under curve; DMI, deep myometrial invasion; LVSI, lymph-vascular space invasion

ModelR: Model constructed by radiomics features. ModelCVF: Model constructed by radiomics and computer vision features. ModelCR: Models constructed by clinical 
and radiomics features. ModelWT: Model constructed by whole-tumor radiomics features. ModelSS: Model constructed by single-slice radiomics features

Factors and reference Model and dataset type Sensitivity Specificity Accuracy AUC​

DMI

Stanzione et al

ModelR

Training set 0.71 (10/14) 0.93 (27/29) 0.86 (37/43) 0.92

Test set 0.67 (2/3) 1.00 (8/8) 0.91 (10/11) 0.94

Ueno et al

ModelR

Only one set 0.79 (46/58) 0.82 (65/79) 0.81 (111/137) 0.84

Ytre-Hauge et al

ModelR

Only one set 0.70 (53/76) 0.84 (83/99) 0.78 (136/175) 0.81

Kristine et al

ModelWT

Training set NA NA NA 0.84

Test set NA NA NA 0.76

ModelSS

Training set NA NA NA 0.85

Test set NA NA NA 0.77

Yan et al

ModelCR

Training set 1.00 (NA) 0.83 (NA) 0.87 (NA) 0.96

Test set 0.72 (NA) 0.90 (NA) 0.87 (NA) 0.88

Zhu et al

ModelR

Training set 0.95 (NA) 0.93 (NA) 0.94 (NA) 0.93

Test set 0.95 (NA) 0.93 (NA) 0.94 (NA) 0.92

Alejandro et al

ModelR

Only one set 0.81 (NA) 0.93 (NA) 0.86 (NA) 0.87

LVSI

Ueno et al

ModelR

Only one set 0.81 (55/68) 0.72 (50/69) 0.77 (105/137) 0.80

Luo et al

ModelR

Training set 0.83 (NA) 0.73 (NA) NA 0.82

Test set 0.78 (NA) 0.79 (NA) NA 0.81

Long et al

ModelR

Training set 0.89 (32/36) 0.58 (59/102) 0.66 (91/138) 0.70

Test set 0.86 (12/14) 0.63 (20/32) 0.70 (32/46) 0.75

ModelCVF

Training set 0.92 (33/36) 0.96 (98/102) 0.95 (131/138) 0.93

Test set 0.93 (13/14) 0.63 (20/32) 0.72 (33/46) 0.81

Bereby-Kahane et al

ModelR

Only one set 0.70 (19/27) 0.59 (27/46) 0.63 (46/73) 0.59
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Table 3  The performance of MRI-based radiomics in predicting LNM, CSI and histological grades

LNM, lymph node metastasis; CSI, cervical stromal invasion; AUC, area under curve

ModelR: Model constructed by radiomics features. ModelC: Model constructed by clinical features. ModelCR1, ModelCR2, ModelM: Models constructed by clinical and 
radiomics features. ModelADC: Model constructed by apparent diffusion coefficient value. ModelWT: Model constructed by whole-tumor radiomics features. ModelSS: 
Model constructed by single-slice radiomics features

Factors and reference Model and dataset type Sensitivity Specificity Accuracy AUC​

LNM

Ytre-Hauge et al

ModelR

Only one set 0.68 (13/19) 0.73 (99/135) 0.73 (112/154) 0.73

Yan et al

ModelR

Test set 1 NA NA 0.80 (291/351) 0.91

Test set 2 NA NA 0.89 (240/271) 0.89

Xu et al

ModelR

Training set NA NA NA 0.79

Test set NA NA NA 0.75

ModelC

Training set NA NA NA 0.87

Test set NA NA NA 0.83

ModelCR1

Training set NA NA NA 0.89

Test set NA NA NA 0.88

ModelCR2

Training set NA NA NA 0.84

Test set NA NA NA 0.82

Kristine et al

ModelWT

Training set NA NA NA 0.73

Test set NA NA NA 0.72

ModelSS

Training set NA NA NA 0.83

Test set NA NA NA 0.56

CSI

Ytre-Hauge et al

ModelR

Only one set 0.53 (17/32) 0.78 (114/146) 0.74 (131/178) 0.64

Histological grades

Ytre-Hauge et al

ModelR

Only one set NA NA NA 0.66

Zheng et al

ModelR

Training set 0.72 (NA) 0.86 (NA) 0.79 (NA) 0.87

Test set 0.77 (NA) 0.90 (NA) 0.83 (NA) 0.89

ModelADC

Training set 0.61 (NA) 0.74 (NA) 0.68 (NA) 0.72

Test set 0.43 (NA) 0.79 (NA) 0.62 (NA) 0.62

ModelM

Training set 0.89 (NA) 0.82 (NA) 0.85 (NA) 0.93

Test set 0.92 (NA) 0.79 (NA) 0.85 (NA) 0.92
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each indicate that MRI-based texture analysis has excel-
lent potential for preoperative assessments of DMI in EC. 
Moreover, Stanzione et al. [32] established an MRI radi-
omics powered machine learning model to identify DMI 
in EC. The study included 54 patients, 17 of whom had 
DMI. With the help of the evaluated machine learning 
model, the accuracy of prediction increased from 82 to 
100% (p = 0.48).

LVSI
The definition of LVSI is that tumor cells are lined by 
endothelial cells outside the immediate invasive border 

[41]. The model developed by Ueno et al. was found to 
be as accurate as a prior study using magnetic resonance 
volumetry in terms of predicting LVSI [42]. Moreover, 
in a retrospective study designed by Luo et  al. [43], 
researchers discovered five radiomics features that pre-
dicted LVSI independently via least absolute shrinkage 
and selection operator (LASSO) regression analysis. 
The results demonstrated that the evaluated multipara-
metric MRI-based radiomics nomogram model pre-
dicted EC-associated LVSI effectively with an AUC of 
0.807. This finding agrees with the conclusions of Ueno 
et  al. However, Ueno et  al. extracted only first-order 

Table 4  The performance of US, CT and PET/CT in predicting DMI, LNM and CSI

US, ultrasound; DECT, dual-energy computed tomography; PET/CT, positron emission tomography/computed tomography; AUC, area under curve; DMI, deep 
myometrial invasion; LNM, lymph node metastasis; CSI, cervical stromal invasion

ModelR: Model constructed by radiomics features

Factors and reference Model and dataset type Sensitivity Specificity Accuracy AUC​

US

DMI

Alcazar et al

Van Holsbeke’s subjective model

Only one set 0.80 (33/41) 0.90 (103/114) 0.88 (136/155) NA

CT

DMI

Ytre-Hauge et al

ModelR

Only one set NA NA NA 0.71

LNM

Ytre-Hauge et al

ModelR

Only one set NA NA NA 0.69

CSI

Ytre-Hauge et al

ModelR

Only one set NA NA NA 0.67

DECT

DMI

Rizzo et al

NA

Only one set 1.00 (13/13) 0.91 (20/22) 0.94 (33/35) NA

PET/CT

LNM

Crivellaro et al

NA

Training set NA NA NA 0.77

Test set 0.43 (6/14) 0.93 (13/14) 0.68 (19/28) NA

Elisabetta et al

ModelR

Training set 0.75 (NA) 0.81 (NA) NA NA

Test set 0.89 (NA) 0.80 (NA) NA NA
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statistical features. In contrast, the study conducted by 
Luo et  al. extracted multiple comprehensive radiom-
ics features and added clinical demographic features. 
Long et  al. [44] extracted traditional radiomics fea-
tures and computer vision features from preoperative 
T2-weighted and dynamic contrast-enhanced MRI and 
developed two models to predict LVSI. Model 1 was 
established according to traditional radiomics features, 
while Model 2 was established to assess improvements 
in performance after adding computer vision features 
to Model 1. The AUC for Model 1 was 0.79 and 0.75 
in the training and test cohorts, respectively, whereas 
that for Model 2 was 0.93 and 0.81, respectively. These 
finding demonstrate that MRI-based computer vision 
nomograms have good performance in terms of predic-
tion and applicability. Although the model established 
by Ueno et al. performed better than Model 1 in terms 
of predicting LVSI, the study conducted by Ueno et al. 
lacked an independent validation cohort. Additionally, 
research conducted by Bereby-Kahane et  al. [45] sug-
gested that the ability of MRI-based texture analysis to 
predict LVSI was limited. The reason for this finding 
may be that the enrolled sample size was small.

LNM
LNM is an important factor affecting EC progno-
ses [46]. Although the rate of LNM is low in the early 
stages of EC [47], the assessment of LNM is crucial 
for effective treatment decision-making and progno-
ses within EC. In a study conducted by Ytre-Hauge 
et  al., five texture features were found to be statisti-
cally significant predictors of LNM via magnetic reso-
nance texture analysis [40]. For prediction of LNM, 
the AUC of whole-tumor radiomics model established 
by Kristine et al. was 0.73 and 0.72 in training and test 
cohorts, respectively. And in single-slice model, the 
AUC was 0.83 and 0.56, respectively [36]. In addition, 
a multicenter study that established a radiomics model 
on preoperative MRI in 662 patients with EC helped 
radiologists predict LNM in EC using a random forest 
model [48]. The results showed that radiologists who 
were assisted by a radiomics model performed better 
than those without help in terms of predicting LNM, 
meaning that this model has satisfactory identifica-
tion ability for detecting LNM in EC. However, under 
certain circumstances, even with positive prediction 
of LNM via the evaluated radiomics model, radiolo-
gists did not discover a LNM that was later verified by 
histopathology; this might be attributed to the uterus 
covering tiny lymph nodes or to the limited spatial res-
olution in MRI. Finally, Xu et  al. [49] established four 
models showing good performance in LNM prediction 

based on the imaging and clinical characteristics of 200 
patients with EC. The model integrating imaging fea-
tures and clinical features (i.e., lymph node sizes and 
CA125) showed the best discrimination and accuracy, 
especially for normal-sized lymph nodes.

CSI
CSI is a risk factor for poor prognoses in EC. For early 
CSI, superficial lesions are often indistinguishable 
from the cervical mucosa on MRI, and the presence 
of chronic inflammation of the cervix often interferes 
with establishing diagnoses. This may in turn influ-
ence treatment decisions. If the presence of CSI can be 
accurately identified prior to surgery, this information 
would provide critical help for subsequent treatment 
decisions. However, according to a study conducted by 
Ytre-Hauge et al., there is no evidence that MRI-based 
texture analysis is conducive to the identification of CSI 
when compared with traditional MRI [40].

Histological grades
Histological grades, a vital prognostic factor, are impor-
tant for choosing effective treatment strategies. Ytre-
Hauge et  al. reported that magnetic resonance texture 
analysis has the potential to predict histological grades 
in EC, as they found some features that were predic-
tive high-risk histological subtypes [40]. Moreover, 
a retrospective study conducted by Zheng et  al. [50] 
developed three models to predict histological grades 
in EC: ModelADC, which delineated the ROI manu-
ally in the apparent diffusion coefficient map; ModelR, 
which segmented the tumor manually and subsequently 
extracted radiomics features; and ModelM, which com-
bined radiomics features with information on CA125 
and body mass index (BMI). The performance of the 
ModelADC was limited in the prediction of histologi-
cal grades. In the training cohort, the AUC of ModelM 
was higher than that of ModelR. However, the differ-
ence between ModelM and ModelR was not statistically 
significant in the test cohort. This may be attributed to 
the small sample size of the test cohort. In summary, 
the three evaluated models presented different levels of 
prediction. However, we concluded that ModelM, which 
includes both radiomic and clinical features, was the 
most effective model by far.

Others
A large multicenter study conducted by Yan et  al. [46] 
collected MRI data for 717 patients with EC. The ROI 
was manually drawn by a radiologist on each slice. After 
tumor segmentation, radiomics and clinical features were 
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combined to establish a radiomics nomogram model and 
to evaluate the performance of this model in predicting 
high-risk EC. The results indicated that the radiomics 
nomogram had the highest AUC when compared with 
the combined radiomic and clinical features model. This 
finding and similar findings in the relevant literature 
demonstrate that radiomics has good diagnostic value for 
predicting high-risk EC.

US
Women suspected of having EC must undergo two tests: 
transvaginal ultrasound and endometrial biopsy [51]. 
For the evaluation of endometrial thickness, transvagi-
nal ultrasound is generally considered easier to calculate 
than transabdominal ultrasound. A recent meta-analysis 
showed that predicting DMI via Van Hoslbeke’s sub-
jective model has acceptable sensitivity and specific-
ity (80.5%, 90.3%), similar to the subjective judgment of 
radiologists assisted by transvaginal ultrasound (79.5%, 
89.6%) [52]. Studies show that quantitative characteris-
tics derived by US are closely associated with gestational 
age and respiratory disease in newborns and can also 
be used for the detection of thyroid and breast tumors 
[53]. For example, Liu et  al. [54] extracted ultrasomics 
features from US images among 450 patients suffering 
from papillary thyroid carcinoma and used these fea-
tures to predict preoperative LNM, thus showing the 
potential of this methodology for improving medical 
management and reducing overtreatment. Jin et al. [55] 
similarly extracted relevant ultrasomics features from 
ROI delineated by radiologists and attempted to predict 
LNM in early-stage cervical cancer using a non-invasive 
method. The results showed that ultrasomics features 
performed well in identifying LNM. However, to date, 
there have been few repeatable and stable studies that 
have obtained quantitative features from US imaging. 
Lesions of the endometrial junctional zone and ambigu-
ous US findings, especially with respect to MI, can only 
be inferred from the irregular state of the endometrial 
junction [24]. In recent years, US has made great pro-
gress in the diagnosis of LNM and related diseases, 
showing its potential for the preoperative diagnosis of 
tumors and the effective prediction of risk factors. How-
ever, the feasibility and clinical applicability of ultrasom-
ics remains to be verified due to the lack of research on 
ultrasomics to date.

CT
Ytre-Hauge et al. [56] established model to predict DMI, 
CSI, and LNM by analyzing the tumor texture features 
from CT. The researchers identified 36 texture features in 
the statistical analyses. Entropy at filter level 6 (Entropy6) 
was the best predictor for DMI and CSI, and the AUC 

was 0.71 and 0.67, respectively. For prediction of LNM, 
Kurtosis5 was the top ranked feature with AUC of 0.69.

PET/CT
PET/CT is an imaging method employing tracers, and 
the most commonly used tracer is fluorodeoxyglucose 
(FDG). FDG is taken up by cells that use glucose effi-
ciently, such as tumor cells, and is subsequently detected 
by PET imaging. EC has a high associated rate of glu-
cose metabolism and glycolysis, making it suitable for 
18F-FDG PET/CT imaging. A prior retrospective study 
reported that volume density and irregular shape are the 
most strongly associated features for predicting LNM 
using PET/CT and that this method has high specific-
ity for detecting LNM in EC [57]. Elisabetta et  al. [58] 
extracted 75 radiomics features based on PET/CT imag-
ing to predict LNM. The zone percentage of the gray-
level size zone matrix (GLSZM ZP) was the feature with 
the lowest p value and highest AUC. The sensitivity and 
specificity in training cohort were 0.75 and 0.81, respec-
tively. In test cohort, the sensitivity and specificity were 
0.89 and 0.80, respectively.

Prospects
This review summarizes progress in terms of radiomics-
based fertility-sparing treatments in EC. In recent years, 
with the extension of research and multicenter clinical 
trials, the prediction performance of EC risk factors has 
become increasingly accurate. However, some issues and 
concerns still exist.

First, the existence of selection bias might have biased 
the results of this study. For example, when analyzing 
the performance of radiomics in predicting DMI, all 
enrolled patients underwent hysterectomy [32, 33]. To 
assess the accuracy of the forecast, it is necessary to accu-
rately understand the presence or absence of risk factors. 
However, in the absence of surgery, this information is 
unclear. Paradoxically, this selection method ignores the 
influence of non-operative patients on prediction accu-
racy. A similar problem also exists when evaluating LVSI, 
LNM, and CSI [33, 43–45, 48, 49]. To solve this problem, 
patients without lymph node biopsy results were defined 
as negative when predicting LNM [46]. Obviously, this 
method is not sufficiently accurate. How to avoid bias 
produced by the inclusion of these patients should be 
discussed in future. If this problem can be solved, predic-
tion accuracy will be improved concomitantly. Second, 
the delineation of target area is the most time-consuming 
step in radiomics workflow. The sample size, dimension 
of target area, and way of delineation will affect the time 
of undertaking radiomics. Manual segmentation is the 
gold standard, but it takes up too much time. A tool that 
can segment tumors effectively and automatically has 
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the potential to save time and overcome inevitable inter-
physician differences. This is a potential topic that mer-
its comprehensive study in clinical research. Third, the 
influence of MRI scan thickness on feature extraction is 
unclear when determining the volume of interest (VOI) 
of tumors in whole-volume tumor analysis. Differences 
between whole-tumor derived features and single-slice 
derived features need to be compared more comprehen-
sively in future research. Fourth, clinical features such 
as CA125 and BMI were added to the prediction model 
in some studies in order to improve prediction perfor-
mance. However, to date, no study has added known 
risk factors, such as DMI, LNM, and LVSI, to prediction 
models in order to observe whether these factors influ-
ence each other. Fifth, most of the studies published to 
date were retrospective and their sample sizes were not 
large enough so as to be sufficiently powered. In future, 
multicenter prospective studies with large sample sizes 
are needed to test the respective performance of each 
evaluated prediction model. Sixth, the steps of radiom-
ics analysis, including image segmentation and feature 
extraction, require external tools. Radiologists cannot 
conduct radiomics analyses directly on existing plat-
forms for the purpose of image analysis and reporting. 
If radiomics analysis software can be integrated into 
existing imaging platforms, the convenience of imple-
menting radiomics analyses will substantially improve. 
Seventh, ideally, a standardized image acquisition, imag-
ing segmentation, and feature extraction process should 
be defined well in radiomics workflow. But in current sit-
uation, this is very difficult to achieve. In different center, 
the type of equipment, the protocols of imaging, and the 
version of software are usually different, which may influ-
ent the repeatability of radiomics features and models. 
The normalization of the data is a topic worth discussing 
in future. Eighth, at present, the application of radiomics 
is still in exploratory stage. The normalization and qual-
ity control of radiomics process and the repeatability of 
radiomics models are needed to be improved before radi-
omics is applied to clinical practice. With the popular-
ity of interdiscipline, the cooperation of clinical doctors, 
radiologists, and computer technicians will promote the 
development of radiomics.

Conclusions
We summarized the performance of radiomics in the 
evaluation of risk factors related to fertility-sparing. Radi-
omics is a promising tool that may assist clinicians iden-
tify risk factors about fertility-sparing more accurately 
and comprehensively. However, more research should be 
done before deploying radiomics into radiologists’ daily 
practice.
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