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Abstract 

Background This study provides a quantitative meta‑analysis of pancreatic CT perfusion studies, investigating 
choice of study parameters, ability for quantitative discrimination of pancreatic diseases, and influence of acquisition 
and reconstruction parameters on reported results.

Methods Based on a PubMed search with key terms ‘pancreas’ or ‘pancreatic,’ ‘dynamic’ or ‘perfusion,’ and ‘computed 
tomography’ or ‘CT,’ 491 articles published between 1982 and 2020 were screened for inclusion in the study. Inclusion 
criteria were: reported original data, human subjects, five or more datasets, measurements of pancreas or pancreatic 
pathologies, and reported quantitative perfusion parameters. Study parameters and reported quantitative measure‑
ments were extracted, and heterogeneity of study parameters and trends over time are analyzed. Pooled data were 
tested with weighted ANOVA and ANCOVA models for differences in perfusion results between normal pancreas, 
pancreatitis, PDAC (pancreatic ductal adenocarcinoma), and non‑PDAC (e.g., neuroendocrine tumors, insulinomas) 
and based on study parameters.

Results Reported acquisition parameters were heterogeneous, except for contrast agent amount and injection 
rate. Tube potential and slice thickness decreased, whereas tube current time product and scan coverage increased 
over time. Blood flow and blood volume showed significant differences between pathologies (both p < 0.001), 
unlike permeability (p = 0.11). Study parameters showed a significant effect on reported quantitative measurements 
(p < 0.05).

Conclusions Significant differences in perfusion measurements between pathologies could be shown for pooled 
data despite observed heterogeneity in study parameters. Statistical analysis indicates most influential parameters 
for future optimization and standardization of acquisition protocols.

Critical relevance statement Quantitative CT perfusion enables differentiation of pancreatic pathologies 
despite the heterogeneity of study parameters in current clinical practice.
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Key points 

1. Quantitative meta‑analysis validates CT perfusion measurements for diagnosis of different pancreatic diseases.
2. The contrast administration protocol shows a significant effect on reported blood flow.
3. Study parameters are very heterogeneous between studies, showing a need for standardization
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Graphical abstract

Quantitative CT perfusion enables differentiation of pancreatic pathologies despite the heterogeneity 
of study parameters in current clinical practice.

Pancreatic CT perfusion: quantitative meta-analysis 
of disease discrimination, protocol development, and 

effect of CT parameters
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• Quantitative meta-analysis 
validates CT perfusion 
measurements for diagnosis of 
different pancreatic diseases.

• The contrast administration 
protocol shows a significant 
effect on reported blood flow.

• Study parameters are very 
heterogeneous between studies, 
showing a need for 
standardization.

Comparison of weighted means of the 
quantitative measurements of blood flow 
[ml/100ml/min] and blood volume [ml/100ml] 
between different pancreatic pathologies 

Comparison of the effect of saline flush on the 
quantitative measurement of blood flow within 
different pancreatic pathologies

Background
Dynamic CT perfusion is a functional imaging technique 
that enables measurement of physiological parameters 
of blood flow for the assessment of diseases that influ-
ence tissue perfusion. Early applications of CT perfu-
sion focused on the brain [1], but some early studies also 
performed dynamic contrast-enhanced CT acquisitions 
of the pancreas without calculating quantitative param-
eters [2, 3]. Since then, new mathematical models of CT 
perfusion have been developed [4, 5] and applied to the 
pancreas [6, 7]. Studies have shown that quantitative 
measurements of physiological perfusion parameters by 
means of CT perfusion can aid in the detection of pan-
creatic ductal adenocarcinoma (PDAC) [8], even in diffi-
cult cases that appear isodense to the surrounding tissue 
on conventional CT images [9–11], and allow therapy 

response assessment for treatment of PDAC [12]. Fur-
thermore, CT perfusion can be used to assess the severity 
of pancreatitis [13] as well as for the distinction of pan-
creatic diseases [14], i.e., to improve the difficult differ-
entiation between mass-forming pancreatitis and PDAC 
[10, 15].

In view of the current role of imaging modalities in 
the workup of these pancreatic diseases, the German S3 
guideline recommends preoperative liver magnetic reso-
nance imaging (MRI) with diffusion-weighted imaging 
(DWI) in every patient with potentially resectable PDAC 
[16] for the reason of MRI being superior for the detec-
tion and characterization of liver lesions that are unde-
tectable or indeterminate on CT [17, 18]. In 2017 in turn, 
a systematic review and meta-analysis rated transabdom-
inal ultrasound (US) equivalent to CT and MRI for the 
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diagnosis of PDAC [19]. Its diagnostic reliability, how-
ever, can be limited by overlying bowel gas and patient 
body habitus [19]. Furthermore, while the addition of 
positron emission tomography (PET)/CT is currently 
not routinely recommended in PDAC patients [18], it 
may be considered in patients who are at high risk for the 
presence of distant metastases [17]. PET/ CT with 68Ga-
labeled somatostatin analogs has a high sensitivity and 
specificity for tumor manifestations of non-insulinoma 
pancreatic neuroendocrine tumors (NETs) and is there-
fore recommended by the European Neuroendocrine 
Tumor Society (ENETS) Consensus Guidelines to fully 
stage the extent of disease in these patients [20].

While CT perfusion is not explicitly mentioned in the 
most widely used pancreatic tumor guidelines, both the 
National Comprehensive Cancer Network (NCCN) and 
American Society of Clinical Oncology (ASCO) Clinical 
Practice Guidelines consider contrast-enhanced CT as 
the preferred imaging modality for assessment of extent 
of disease in PDAC [17, 21]. According to the European 
Society for Medical Oncology (ESMO) Clinical Practice 
Guidelines, CT also is the basic radiological method for 
imaging of pancreatic NETs [22]. This allows for a con-
venient extension of the pancreatic CT protocol with CT 
perfusion imaging in difficult cases, e.g., tumors that are 
obscure on standard CT imaging.

A number of studies have been performed to find opti-
mum study parameters for CT perfusion measurements, 
but have also shown changes in the quantitative results of 
CT perfusion measurements based on CT examination 
parameters and evaluation procedures, e.g., depending 
on the temporal sampling rate [23, 24], the image noise 
[25], the motion correction [26, 27], the mathematical 
perfusion model [28] and even the employed version of 
the post-processing software [29]. That is, based on the 
acquisition parameters and evaluation settings, different 
quantitative results can be expected for the same meas-
urement, which limits the comparability of measure-
ments between studies and in clinical practice. Thus, a 
standardization of acquisition protocols and evaluation 
procedures is necessary to achieve reliable and clinically 
meaningful measurements. This need has also been rec-
ognized by the Experimental Cancer Medicine Centre 
Imaging Network Group which published their guide-
lines for the assessment of tumor vascular support with 
dynamic contrast-enhanced computed tomography in 
2012 [30].

This study aims to provide a comprehensive overview 
of the study parameters and evaluation procedures used 
in clinical CT perfusion studies of the pancreas by means 
of a quantitative meta-analysis. Furthermore, statisti-
cal analysis is performed to confirm the individual study 
results on the potential applications of perfusion CT as 

well as to identify the acquisition parameters with the 
strongest influence on quantitative results for further 
investigation and standardization.

Methods
Search strategy
We explored the PubMed library, searching the data-
base for published studies with the key terms ‘pancreas’ 
or ‘pancreatic,’ ‘dynamic’ or ‘perfusion,’ and ‘computed 
tomography’ or ‘CT’. All CT perfusion research studies 
published and indexed before July 3, 2020, were collected. 
A total of 491 research articles published from 1982 to 
2020 were obtained from the search. In a first step, these 
research articles were scanned manually based on their 
titles and abstracts for inclusion/exclusion. In a second 
step, all suitable studies were then read and assessed by 
two authors independently (N.V. and S.S.). Disagree-
ments regarding study inclusion/exclusion were resolved 
by consensus-based discussions in two cases.

Inclusion and exclusion criteria
We included studies that (1) reported original data, (2) 
included original human data, (3) included at least five 
or more datasets, (4) included measurements of the pan-
creas or pancreatic pathologies, and (5) reported quanti-
tative perfusion parameters from perfusion CT. All study 
designs (prospective and retrospective) were included. 
Studies that had a cohort overlapping with previously 
published studies were not considered original data and 
excluded. Articles reporting different perfusion measure-
ments for the same patient collective were counted as one 
study, since patient data were acquired only once [14, 31, 
32]. Reviews, animal studies, or case reports (less than 
five patients) were excluded. To distinguish perfusion CT 
from conventional contrast-enhanced CT studies, only 
studies that reported quantitative perfusion parameters 
were included.

Data extraction
Data were extracted from all the included research stud-
ies by two authors independently (N.V. and S.S.). Disa-
greements regarding data extraction were resolved by 
consensus-based discussions in five cases. Data extracted 
included study parameters and reported mean values 
of quantitative perfusion parameters (blood flow (BF), 
blood volume (BV), and permeability). Here, study 
parameters include (1) sample size, (2) CT examina-
tion parameters: acquisition parameters (tube potential, 
tube current–time product, anatomical coverage, total 
acquisition time, lowest temporal sampling, highest tem-
poral sampling, and use of variable temporal sampling), 
reconstruction parameters (slice thickness), contrast 
agent information (amount of contrast agent, iodine 
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concentration, total amount of iodine, injection rate, and 
use of saline flush), dose information (effective dose), and 
(3) post-processing information (perfusion model and 
type of post-processing software). Many studies used 
variable temporal sampling rates, e.g., a sampling rate 
of one acquisition per second for the first 30 s followed 
by one acquisition every 5 s for the next 60 s. Therefore, 
the lowest temporal sampling rate and highest tempo-
ral sampling rate used in each study were considered 
separately for analysis. All reported quantitative meas-
urements from the studies were then grouped into four 
categories based on the clinical entities reported by the 
study: (1) normal pancreas, (2) pancreatitis, (3) PDAC, 
and (4) non-PDAC. Here, the category “normal pancreas” 
includes both patients without pancreatic pathology and 
measurements in non-pathologic tissue. The non-PDAC 
group includes all pathologies other than pancreatitis and 
PDAC, i.e., insulinoma or endocrine tumors, etc., which 
were grouped despite their physiological differences 
because of the low number of studies.

Statistical analysis
Statistical analysis was performed using Microsoft Excel 
2016 and SAS software (version 9.2, SAS Institute, Cary, 
N.C., USA). For all study parameters, histogram distri-
bution plots were computed for qualitative analysis of 
parameter distributions, and medians and interquar-
tile ranges were calculated. Year-wise means of number 
of studies, sample size and CT examination parameters 
were calculated and linear regression plots were com-
puted using these mean values to analyze the trend of 
study parameters over the years. Mean values and stand-
ard deviations of reported perfusion values were calcu-
lated for each pathology. Weighted analysis of variances 
(W-ANOVA) followed by Student’s t test was performed 
for comparing reported perfusion values of different 
pancreatic pathologies to each other while weighting the 
measurements by the number of patients. Outliers have 
been removed from reported perfusion values based on 
a range of mean ± 1.96 * standard deviations of the param-
eter values, as some studies reported very high measure-
ment values. W-ANCOVA was performed to test the 
effect of the individual CT examination parameters on 
reported perfusion values, simultaneously considering 
the effect of the clinical entities.

Qualitative box-plot analysis was performed for those 
CT acquisition parameters which showed a statisti-
cally significant effect on the quantitative measurements 
with respect to the pancreatic pathologies. To this end, 
quantitative measurements were separated into two 
groups based upon CT acquisition parameters (i.e., for 
each acquisition parameter a low-value and a high-value 

group), where the threshold value between the two 
groups was determined using K-means clustering algo-
rithm, visualizing differences in quantitative measure-
ments based on acquisition settings.

Total acquisition time and effective dose were com-
pared between studies using single temporal sampling 
and studies using variable temporal sampling by Stu-
dent’s t test.

Results
In total, 491 published research articles were collected 
for the current study. After manual screening of the 
title and abstracts, 117 articles were selected for full-
text screening. Out of these, 39 articles reporting 37 
studies were finally included in the current study based 
on the inclusion criteria [6, 7, 9, 10, 12–14, 28, 31–60]. 
A flowchart illustrating the selection of the studies is 
shown in Fig. 1. A summary of the information on the 
number of studies reporting each quantitative perfu-
sion parameter (blood flow, blood volume, and per-
meability) for the respective clinical entity is shown in 
Table 1.

Figure  2a–l shows the histogram distribution of the 
study parameters in the included studies. For most of the 
parameters, a wide range of values have been reported 
over the years such as the number of patients with a 
median (interquartile range) of 36.0 (23.0–57.0), effec-
tive dose with a median of 8.8 (4.9–11.6) mSv, and CT 
acquisition parameters (anatomical coverage: 69.0 (29.4–
105.0) mm, tube potential: 95.0 (80.0–100.0)  kVp, tube 
current–time product: 100.0 (100.0–150.0) mAs and total 
acquisition time: 51.0 (40.0–79.5) s). By comparison, the 
contrast agent parameters show a considerable homoge-
neity and less variance around the median of 50.0 (40.0–
50.0) mL of contrast agent, 17.5 (15.2–18.5) g of iodine, 
and 5.0 (5.0–5.0) mL/s of injection rate. The median of 
the lowest and highest temporal sampling rate was 1.5 
(1.0–2.0) s and 2.0 (1.3–7.3) s, respectively, and median 
slice thickness was 5.0 (3.0–5.8) mm. Regarding the type 
of post-processing software, most of the research studies 
preferred to use vendor software as compared to third-
party or in-house software. The most commonly used 
perfusion model for quantification of pancreatic perfu-
sion parameters was the maximum slope model, followed 
by the deconvolution model.

Linear regression plots of the mean values of number 
of studies, sample size and CT examination parameters 
over the years are shown in Fig. 3, visualizing changes 
in parameters over time. The number of studies as well 
as the number of patients per study have been increas-
ing after 2010. The amount of contrast agent used and 
hence the amount of iodine also shows an increasing 
trend. There was no notable trend for injection rate. 
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Mean tube potential and tube current–time product 
have slightly decreasing and increasing trends, respec-
tively. The total time taken for the acquisition and the 
effective dose do not show any notable trend over the 
years, while the anatomical coverage shows an increas-
ing trend. The slice thickness also decreased over the 
years with mean minimum value reported as 2.5  mm. 
The lowest temporal sampling shows a notable decrease 
over the years, i.e., shorter intervals between individual 
acquisitions, whereas the highest temporal sampling 
rate only shows a slight decrease.

PubMed search using key-terms:
‘pancreas’ or ‘pancrea�c’, ‘dynamic’ or ‘perfusion’ and ‘computed tomography’ or ‘CT’

491 ar�cles

Manual screening of the abstracts
117 eligible ar�cles

Inclusion criteria
• Original data – normal or pa�ent data
• Original human study
• ≥ 5 datasets
• Pancreas
• Perfusion CT or dynamic CT
• Reported quan�ta�ve perfusion analysis

39 ar�cles repor�ng 37 studies included

Data extracted
• Sample size
• Contrast agent informa�on
• CT acquisi�on parameters
• Dose informa�on
• Quan�ta�ve perfusion measurements

Sorted by clinical en��es
• Normal pancreas
• Pancrea��s
• PDAC (pancrea�c ductal adenocarcinoma)
• Non-PDAC (insulinomas or endocrine tumors)

Sta�s�cal analysis

Fig. 1 Flowchart illustrating the study design and the inclusion process

Table 1 Number of studies (number of patients) reporting 
the quantitative parameters (blood flow, blood volume, and 
permeability) for the respective clinical entity

PDAC, pancreatic ductal adenocarcinoma

Clinical entities Perfusion parameters

Blood flow Blood volume Permeability

Number of studies (Number of patients)

Normal pancreas 30 (983) 18 (707) 13 (448)

Pancreatitis 10 (281) 9 (270) 5 (111)

PDAC 20 (591) 14 (458) 10 (306)

Non‑PDAC 4 (231) 5 (249) 3 (57)
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Mean ± SD (standard deviation) of the quantitative 
parameters (blood flow, blood volume, and perme-
ability) have been calculated for the respective clinical 
entities, and the results are shown in Table 2. The low-
est averaged values for all parameters were observed in 
the PDAC group as compared to pancreatitis, normal 
pancreas and non-PDAC. While mean blood flow was 
highest in non-PDAC, mean blood volume and perme-
ability were highest in normal pancreas. Figure  4 also 
shows similar results with the box-plot representations 
of the reported quantitative parameters (blood flow, 
blood volume, and permeability) within different pan-
creatic pathologies. The W-ANOVA Tukey groupings 
for comparing the means of quantitative measurements 
(blood flow and blood volume) between different pan-
creatic pathologies are shown in Fig. 5. The W-ANOVA 
results show that blood flow (p < 0.001) and blood vol-
ume (p < 0.001) differ significantly between pancreatic 
pathologies and normal pancreas but permeability does 
not (p = 0.11). Student’s t test following W-ANOVA 
shows significant differences between normal pancreas/
pancreatitis, normal pancreas/PDAC, and PDAC/non-
PDAC based on the perfusion parameters blood flow 

and blood volume, and between pancreatitis/PDAC, 
and pancreatitis/non-PDAC for blood flow only (all 
p < 0.05, respectively).

Table 3 shows how many of the studies reported sta-
tistically significant differences for the comparison of 
different pancreatic pathologies based on quantitative 
perfusion measurements compared to the total num-
ber of studies reporting results of statistical analysis 
for each parameter and for each comparison. Similar to 
the total number of studies shown in Table 1, most of 
the studies focused on PDAC, followed by pancreatitis, 
with only a limited number of results available for non-
PDAC. With two exceptions, all the studies reporting 
blood flow and blood volume showed significant dif-
ferences in their results. For studies analyzing perme-
ability, only 50% have reported significant differences 
between the investigated clinical entities.

The effects of the CT examination parameters and 
perfusion model on the quantitative measurements are 
summarized in Table 4. The amount of contrast agent, 
injection rate, and use of saline flush show a signifi-
cant effect on reported blood flow. Tube current–time 
product, highest temporal sampling, and use of variable 
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temporal sampling, have a significant effect on reported 
blood volume. None of the evaluated parameters show 
a significant effect on reported permeability.

Figure  6 shows examples of box plots comparing 
the effect of CT examination parameters (which were 

reported as significant, cf. Table  4) on the quantita-
tive measurements (blood flow and blood volume) 
within different pancreatic pathologies. These plots 
illustrate how the acquisition parameters influence 
the results, e.g., that higher values of blood flow were 
found in normal pancreas when no saline flush was 
used (mean blood flow 127.69 ± 37.21  mL/100  mL/
min vs. 90.35 ± 20.97  mL/100  mL/min). Similarly, 
higher values of blood volume were found when using 
variable temporal sampling rates (mean blood volume 
22.81 ± 5.68 mL/100 mL vs. 17.40 ± 4.37 mL/100 mL).

The difference in total acquisition time between stud-
ies with single temporal sampling rates and studies with 
variable temporal sampling rates was statistically sig-
nificant (p = 0.03). Longer acquisition times were found 
for studies with variable temporal sampling rates. How-
ever, the difference in effective dose between studies 
with single temporal sampling rates and studies with 
variable temporal sampling rates was not statistically 
significant (p = 0.19).
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Fig. 3 Linear regression plots of the means of (a) number of studies, (b) sample size (number of patients), and (c–l) all the CT examination 
parameters computed over the years. Please note that the plot for injection rate was omitted, as there was no observable trend of the mean 
injection rate

Table 2 Mean ± SD of the quantitative parameters (blood flow, 
blood volume, and permeability) for the respective clinical entity

PDAC, pancreatic ductal adenocarcinoma

Clinical entities Perfusion parameters

Blood flow 
(mL/100 mL/
min)

Blood volume 
(mL/100 mL)

Permeability 
(mL/100 mL/
min)

Normal pancreas 100.9 ± 30.9 20.0 ± 6.0 36.9 ± 13.4

Pancreatitis 64.0 ± 22.4 13.1 ± 5.0 33.7 ± 15.6

PDAC 29.3 ± 10.9 9.5 ± 8.9 23.7 ± 10.8

Non‑PDAC 109.6 ± 39.9 14.4 ± 7.7 30.2 ± 16.5
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Fig. 4 Boxplots for comparing the reported results of quantitative measurements of blood flow, blood volume, and permeability 
within the different pancreatic pathologies. PDAC = pancreatic ductal adenocarcinoma

Pathology                     Estimate

Non-PDAC                     109.61

Normal pancreas         100.95

Pancreatitis                     64.07 

PDAC                                29.28

Tukey grouping for means of blood flow 
by pathology (Alpha = 0.05)

Means covered by the same bar do not differ significantly

Pathology                     Estimate

Normal pancreas         20.01

Non-PDAC                     14.42

Pancreatitis                   13.07 

PDAC                                9.53

Tukey grouping for means of blood 
volume by pathology (Alpha = 0.05)

Means covered by the same bar do not differ significantly

Fig. 5 W‑ANOVA Tukey grouping for comparing the weighted means of quantitative measurements (blood flow [mL/100 mL/min] and blood 
volume [mL/100 mL]) between the different pancreatic pathologies. Please note that no groupings are shown for permeability, as the W‑ANOVA 
model was not significant for permeability (p = 0.11). PDAC = pancreatic ductal adenocarcinoma
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Discussion
The aim of this study was to perform a quantitative meta-
analysis of pancreatic CT perfusion studies with regard 
to study parameters, the possibility to discriminate pan-
creatic diseases quantitatively based on perfusion meas-
urements, and to investigate the connection between 
study parameters and quantitative measurements.

The results show significant differences of measured 
blood flow and blood volume between different pathol-
ogies as well as healthy tissue, validating the use of CT 
perfusion as a quantitative imaging biomarker despite the 
extremely heterogeneous nature of the dataset. This is in 
agreement with individual results of the evaluated stud-
ies, which reported significant differences in perfusion 

parameters when comparing different pathologies or 
pathologies to non-pathological tissue (cf. Table 3). How-
ever, further research is necessary regarding the value 
of measurements of permeability based on the results 
reported individually in the evaluated studies and this 
quantitative meta-analysis. Furthermore, significant 
differences between non-PDAC and normal pancreas 
reported in studies could not be reproduced by this 
quantitative meta-analysis [14, 39]. This can be explained 
by the heterogeneous definition of “non-PDAC” in this 
meta-analysis, which includes insulinomas and endo-
crine tumors, to compensate for the small number of 
available studies. Additionally, histopathological studies 
show an increased microvessel density (MVD) for PDAC 

Table 3 Overview of the studies reporting significant statistical results for comparing the pancreatic pathologies based on perfusion 
measurements versus the studies reporting the perfusion parameters

PDAC, pancreatic ductal adenocarcinoma

Overview of statistical analysis (19 studies total)

Studies reporting significant statistical results/Studies reporting perfusion values

Compared clinical entities Total studies combined Blood flow Blood volume Permeability

Normal pancreas versus Pancreatitis 8/8 8/8 7/8 2/4

Normal pancreas versus PDAC 14/16 14/14 10/10 3/7

Normal pancreas versus Non‑PDAC 3/3 2/3 2/3 0/2

Pancreatitis versus PDAC 3/4 3/3 3/3 2/3

Pancreatitis versus Non‑PDAC 0 0 0 0

PDAC versus Non‑PDAC 0 0 0 0

Table 4 Effects of the CT examination parameters and evaluation technique on the quantitative measurements with the obtained 
p‑values stated in parentheses

Bold values indicate a significant effect of the respective parameters on the quantitative measurement whereas non-bold values indicate a non-significant effect

Blood flow Blood volume Permeability

Effects on quantitative measurements

Amount of contrast agent ✔ (0.0422) ✘ (0.6681) ✘ (0.5636)

Amount of iodine ✘ (0.9605) ✘ (0.3591) ✘ (0.5063)

Total amount of iodine ✘ (0.0767) ✘ (0.7626) ✘ (0.5480)

Injection rate ✔ (0.0150) ✘ (0.4055) ✘ (0.3556)

Effective dose ✘ (0.7755) ✘ (0.1162) ✘ (0.3293)

Anatomical coverage ✘ (0.5885) ✘ (0.1600) ✘ (0.6122)

Tube potential ✘ (0.5329) ✘ (0.1386) ✘ (0.5088)

Tube current–time product ✘ (0.5742) ✔ (0.0152) ✘ (0.6112)

Lowest temporal sampling ✘ (0.2455) ✘ (0.1390) ✘ (0.9258)

Highest temporal sampling ✘ (0.0811) ✔ (0.0348) ✘ (0.6057)

Slice thickness ✘ (0.0960) ✘ (0.3996) ✘ (0.6851)

Total acquisition time ✘ (0.9281) ✘ (0.5947) ✘ (0.3858)

Use of variable temporal sampling ✘ (0.1041) ✔ (0.0078) ✘ (0.9196)

Use of saline flush ✔ (0.0067) ✘ (0.4341) ✘ (0.9693)

Perfusion model ✘ (0.1619) ✘ (0.2880) ✘ (0.3007)
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over normal pancreas [61], while CT perfusion shows 
a decreased blood flow (cf. Fig.  4). One theory is that 
the increased fluid pressure in the tumor stroma leads 
to reduced blood flow through the compressed vessels 
despite high MVD [62], but further research is necessary.

Being a meta-analysis, the evaluation in the current 
study focused on differences between pathologies, which 
limits clinical applicability of the results. For example, the 
results show significant differences in blood flow between 
PDAC and pancreatitis. However, we did not perform 
sub-group analysis on mass-forming chronic pancreati-
tis, which can be difficult to distinguish from PDAC. This 
kind of specific clinical application falls outside of the 
scope of this meta-analysis, but individual studies show 
promising results for CT perfusion in this regard [50].

Study parameters in evaluated studies were very het-
erogeneous and changed over time, which highlights the 
need for standardization, if comparability between CT 

perfusion measurements performed at different institu-
tions is to be achieved. This need for standardization is 
further highlighted by the statistical analysis showing a 
significant effect of multiple acquisition parameters on 
reported quantitative results. Furthermore, this analysis 
indicates which parameters might be most important 
for standardization, while the box-plot analysis pro-
vides a qualitative investigation of effect sizes. However, 
when interpreting these results, different sample sizes 
for parameters and pathologies have to be considered 
(cf. Table 1). Many studies did not fully comply with the 
reporting guidelines proposed by the Experimental Can-
cer Medicine Centre Imaging Network Group in 2012 
[30], reporting only some acquisition parameters, further 
limiting sample sizes. In consequence, results regarding 
blood flow and normal pancreas should be considered 
most reliable when interpreting Table 3 and Fig. 6. While 
the current dataset does not allow to recommend specific 

With saline flush Without saline flush

With fixed TS interval With variable TS interval

Normal pancreas

PDAC

Pancrea��s

Non-PDAC

Below 5.2s Above 5.2s

a

b c

Fig. 6 Boxplots comparing the effect of acquisition parameters on the quantitative measurements (blood flow and blood volume) within different 
pancreatic pathologies: a, b show the binary effect of saline flush and temporal sampling on the blood flow and blood volume, respectively; 
c shows the effect of highest temporal sampling on blood volume. Please note the differences in sample sizes between the groups (cf. Tab. 1). 
PDAC = pancreatic ductal adenocarcinoma
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acquisition settings, results are generally in line with pre-
vious studies, which agree on the importance of these 
acquisition parameters, e.g., temporal sampling rate [23], 
contrast agent injection protocols [36], and image noise 
[25]. The results also underline the value of variable tem-
poral sampling, which can be used to reduce the sampling 
rate after the first-pass of the contrast agent, allowing for 
longer acquisition times without increasing radiation 
exposure. However, previous results on the influence of 
the perfusion model on quantitative measurements could 
not be reproduced [28]. This might be explained by the 
fact that many studies did not report the perfusion model 
and the wide range of models used (cf. Fig. 2).

The main limitation of this meta-analysis is the lim-
ited number of included studies, which is based on the 
number of available studies on the topic of pancreatic 
CT perfusion. Considering that not all of the evaluated 
parameters are reported in every study, the sample size 
is even more limited for some of the evaluations in the 
current study. The sample size was also even more lim-
ited for some of the investigated pathologies, which 
resulted in the pooling of all tumor entities that are not 
adenocarcinoma in a heterogeneous “non-PDAC” group. 
Similarly, some studies reported measurements for nor-
mal pancreatic tissue and pathological tissue from the 
same patients, but an effect of the investigated diseases 
on the normal tissue cannot be precluded, so a further 
distinction between patients with and without pancre-
atic disease might be necessary [61]. Based on the small 
sample size, multivariate statistical analysis was not pos-
sible, and only the detection and distinction of tumors/
PDAC and pancreatitis was statistically validated in this 
study. Evaluating studies performed for a different organ, 
e.g., the brain, where a larger number of studies is avail-
able might yield further insights, but physiological dif-
ferences between the organs and body regions have to 
be considered when interpreting and comparing results. 
In turn, results from this study cannot be directly trans-
ferred to perfusion studies of other organs and body 
regions. Furthermore, studies from a time frame of more 
than 25 years were included in this study. While CT tech-
nology advanced considerably during this time, reported 
perfusion values remain compatible with each other, and 
the statistical analysis reported no significant effect for 
many parameters indicative of technological progress, 
like anatomical coverage. Similarly, all study parameters 
from individual studies were included in the analysis as 
reported to avoid any bias toward certain sets of param-
eters. Finally, while this study highlights the study param-
eters with a significant influence on reported quantitative 
results, prospective studies are needed to determine opti-
mum settings for those parameters.

In view of use in clinical practice, CT perfusion as 
well as MRI can be helpful for tumor detection when a 
suspected pancreatic tumor is not visible on routine 
pancreatic CT imaging [17]. Two small studies directly 
compared CT perfusion and diffusion-weighted (DW) 
MRI in PDAC patients and reported CT perfusion and 
(DW)-MRI parameters to be comparably applicable for 
differentiation of PDAC lesions and non-neoplastic pan-
creatic tissue [54, 63]. In addition, the performance of 
both PET/CT and CT perfusion was reported to exceed 
the performance of standard CT for insulinoma detec-
tion [64, 65]. However, studies which directly compare 
these imaging modalities are lacking.

Furthermore, a major limitation of standard pancreatic 
CT is its inability to reliably assess the response of PDAC 
lesions to (radio-)chemotherapy (RCT) since it cannot 
differentiate post-treatment fibroinflammatory changes 
from residual viable tumor tissue [66]. Here, DW-MRI 
and perfusion CT have both shown potential for predic-
tion of histopathological response after RCT [60, 66], 
although no study compared these imaging modalities in 
this regard.

Conclusions
In conclusion, this study shows the value of pancre-
atic CT perfusion in the differentiation of pancre-
atic diseases, as results from individual studies could 
be reproduced in the pooled dataset despite the het-
erogeneity in CT protocols between studies. Further-
more, the need for standardization of CT perfusion 
protocols is highlighted, as a significant influence of 
study parameters on reported quantitative results was 
observed.
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