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Abstract 

Purpose  To investigate the effectiveness of an automatic analysis framework based on 3D-CT multi-scale features 
in predicting Ki67 expression levels in substantial renal cell carcinoma (RCC).

Methods  This retrospective study was conducted using multi-center cohorts consisting of 588 participants 
with pathologically confirmed RCC. The participants were divided into an internal training set (n = 485) and an exter-
nal testing set (n = 103) from four and one local hospitals, respectively. The proposed automatic analytic framework 
comprised a 3D kidney and tumor segmentation model constructed by 3D UNet, a 3D-CT multi-scale features 
extractor based on the renal–tumor feature, and a low or high Ki67 prediction classifier using XGBoost. The framework 
was validated using a fivefold cross-validation strategy. The Shapley additive explanation (SHAP) method was used 
to determine the contribution of each feature.

Results  In the prediction of low or high Ki67, the combination of renal and tumor features achieved better perfor-
mance than any single features. Internal validation using a fivefold cross-validation strategy yielded AUROC values 
of 0.75 ± 0.1, 0.75 ± 0.1, 0.83 ± 0.1, 0.77 ± 0.1, and 0.87 ± 0.1, respectively. The optimal model achieved an AUROC 
of 0.87 ± 0.1 and 0.82 ± 0.1 for low vs. high Ki67 prediction in the internal validation and external testing sets, respec-
tively. Notably, the tumor first-order-10P was identified as the most influential feature in the model decision.

Conclusions  Our study suggests that the proposed automatic analysis framework based on 3D-CT multi-scale fea-
tures has great potential for accurately predicting Ki67 expression levels in substantial RCC.

Critical relevance statement  Automatic analysis framework based on 3D-CT multi-scale features provides reliable 
predictions for Ki67 expression levels in substantial RCC, indicating the potential usage of clinical applications.
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Key points 

•	 The multi-scale 3D-CT features can provide robust prediction of Ki67 in RCC. 
•	 The proposed analysis framework can be easily transferred to new datasets.
•	 The contribution of extracted features was evaluated using SHAP to explore model interpretation.
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Graphical abstract

Automatic analysis framework based on 3D-CT multi-scale features provides reliable predictions for 
Ki67 expression levels in substantial RCC, indicating the potential usage of clinical applications.
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• The multi-scale-3D-CT features can provide 
robust prediction of Ki67 in substantial RCC.

• The proposed analysis framework can be easily 
transferred to new datasets.

• The contribution of extracted features was 
evaluated using SHAP to explore model
interpretation.

Introduction
Renal cell carcinoma (RCC) is the most common renal 
tumor in adults and the second most common urinary 
tract tumor, accounting for 3% of all cancers [1]. Over the 
last twenty years, there has been a consistent annual rise 
of 2% in the incidence of RCC worldwide [2]. At initial 
diagnosis, a large percentage (approximately 20–30%) 
of RCC patients have distant metastases, and a substan-
tial number (approximately 20–30%) of patients with 
localized RCC develop metastases even after curative 
nephrectomy, with 10–15% of cases ultimately resulting 
in fatality [3]. As a result, it is crucial to accurately iden-
tify RCC patients with poor prognoses at an early stage, 
which holds significant clinical significance.

Ki-67 is a nuclear antigen that reflects cell proliferation 
status, expressed throughout the cell cycle of proliferating 

cells except for G0 phase, and is closely associated with 
tumor proliferation and invasion. Many studies have sug-
gested that Ki-67 is a useful prognostic marker in RCC, 
with high expression levels being associated with poor 
prognosis and advanced clinicopathological features [4–
6]. Detection of Ki67 requires a pathological puncture, 
which is an invasive procedure that carries risks such as 
tumor needle tract metastasis or infection. Furthermore, 
due to the possibility of RCC patients experiencing recur-
rence or multiple repeated surgeries, the development 
of a noninvasive and dynamic predictive model for Ki67 
holds significant clinical value.

CT is the predominant imaging modality for preopera-
tive assessment and postoperative surveillance of RCC 
patients, and it represents a critical component of stand-
ard patient care [7]. In recent years, machine learning 
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algorithms have shown promise in the field of medical 
image analysis and have demonstrated their ability to 
accurately predict Ki67 at many cancers [8–11]. Despite 
their promising predictive performance, many of these 
models are limited in terms of their practical applicability 
in clinical settings. Two specific limitations include the 
reliance on manual annotation by radiologists for target 
regions learned by the models, which is impractical for 
clinical practice. Additionally, most of the models only 
offer classification results without providing insight into 
the decision-making logic behind those results, leading 
to distrust and hesitation among clinicians in implement-
ing them [12].

To the best of our knowledge, there was currently no 
literature available that reports the predictive value of 
machine learning-based CT features for Ki67 in substan-
tial RCC. Given the complexity and diversity of analy-
sis, it is crucial to extract more comprehensive image 
features to enable accurate prediction. In this study, we 
propose an automatic analysis framework that includes 
three key modules: a 3D kidney and tumor segmentation 
model constructed using 3D UNet, a 3D-CT multi-scale 
features extractor based on the renal–tumor and a low or 
high Ki67 prediction classifier using XGBoost. To ensure 
a robust framework, we employed a fivefold cross-valida-
tion strategy. Additionally, we used a quantitative model 
interpretation method called SHAP to explore the contri-
bution of each feature.

Materials and methods
Study population
This study is a retrospective analysis of multi-center 
datasets, encompassing 588 participants who underwent 
nephrectomy for substantial renal cell carcinoma from 
2017 to 2022 in five medical centers. The dataset was 
divided into an internal group of 485 participants and an 
external testing group of 103 participants, with the inter-
nal group further divided into a training group of 388 
participants (80%) and an internal validation group of 97 
participants (20%). The protocols for collecting the data 
were approved by the local institutional review board 
(KY2022-036-01) and informed consent was waived, as 
the study relied on anonymous clinical data and images.

In adherence to the inclusion criteria and processing 
protocols outlined in Fig. 1a, we disregarded cases with 
inadequate clinical and pathological information and 
limited our analysis to corticomedullary phase images. 
Inclusion Criteria: 1. Underwent partial or radical 
nephrectomy and were pathologically confirmed to have 
substantial renal cell carcinoma; 2. Consecutive adults; 
and 3. Without chemotherapy or radiotherapy before 
surgery. Exclusion Criteria: 1. Incomplete semantic 

segmentation of kidney and tumor region; 2. Patients 
with cystic renal carcinoma; 3. Not-corticomedullary 
phase images; 4. Incomplete clinicopathological diagnos-
tic report; and 5. Patients with low-quality images (low 
resolution, disordered, and blurred images).

Images preparation and segmentation
Following a thorough selection process, the images were 
meticulously annotated and divided into kidneys and kid-
ney cancer segments by a team of two experienced radi-
ologists and two adept medical students. Based on the 3D 
UNet network [13], we constructed an automated kid-
neys and kidney cancer segmentation model. The princi-
ple behind this was to identify a function "g" consisting 
of a set of heuristics that adjusts normalization and resa-
mpling techniques. Hyperparameters, including pooling 
operations, batch size, and patch size, were chosen based 
on the characteristics of the dataset. To guarantee preci-
sion, the segmentation results were reviewed and revised 
by a specialist with over 20 years of experience and multi-
ple observers. This process was repeated to ensure accu-
racy in the delineation and prepare for further model 
training.

Multi‑scale features extractor
The 3D-CT multi-scale features extractor comprised a 
radiomics feature extractor, a PCA (principal component 
analysis) matrix dimensionality reduction feature extrac-
tor and an SVD (singular value decomposition) matrix 
decomposition feature extractor. The PyPi pyradiomics 
[14] module was utilized to extract the texture, morpho-
logical and statistical features of the CT images, yielding 
100 features for each of the ROI. Subsequently, a dimen-
sional reduction was performed on the segmented voxels 
of the CT images, with adjustments made to image reso-
lution, normalization using mean and standard deviation 
values, cropping to include only the kidneys or tumor 
regions, and filling of empty regions with minimal pix-
els (see the supplementary file for details and Additional 
file  1: Fig. S1). Three hundred and twenty features by 
dimensionality reduction, which represents the original 
voxel information, was performed by PCA (256 features 
for each of the ROI) and SVD (64 features for each of the 
ROI).

Model construction and explaining
Gradient boosting decision trees (XGBoost, v1.3.3) [15] 
were utilized to predict the Ki67 expression levels. A 
combination of Ki67 levels greater than or equal to 5% 
was classified as high risk and Ki67 levels less than 5% as 
low risk. To evaluate the performance of single renal fea-
tures, single tumor features, and combined renal–tumor 
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Fig. 1  Analysis framework based on 3D-CT multi-scale features for accurate prediction of Ki67 expression levels in substantial renal cell carcinoma. 
a Flowchart of the procedures for the study. b Automatic analysis framework: A 3D UNet model is utilized to segment lesions and extracted features 
from multi-scale are used for prediction
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features, three classifiers were constructed for Ki67 (high 
risk vs. low risk).

The process of decision-making was explored with the 
aid of SHapley Additive exPlanations (SHAP) [16] by 
decomposing the model’s decision into individual fea-
ture influences. A high SHAP value indicates a signifi-
cant impact on the model’s decision. The accuracy and 
area under the receiver operating characteristic curve 
(AUROC) were quantified with a 95% confidence inter-
val and were deemed statistically significant if the p-value 
was less than 0.05. The statistical analysis was performed 
in Python (v3.8) and R (v3.6.3).

Results
Participant information
A cohort of 588 individuals diagnosed with substantial 
RCC, comprising 298 (236, 62) males and 290 (149, 41) 
females, participated in the study. A summary of their 
basic and clinical information is presented in Table  1. 
The internal set of 485 participants was randomly divided 
into a training set, consisting of 388 cases (80%), and a 
validation set, comprised of 97 cases (20%). The remain-
ing 103 participants were assigned to an external testing 

set (Fig.  1a). The automatic analysis framework is illus-
trated in Fig. 1b.

Multi‑scale features framework provides robust analysis 
capability
The 3D region of the kidney and tumor were expertly 
segmented from CT images through a structure-based 
3D UNet. In Fig.  2, the segmentation model demon-
strates outstanding performance in test cases, with the 
red ROI symbolizing the kidney and the green ROI rep-
resenting the tumor.

The AUROC from single renal features, single tumor 
features, and renal–tumor features, as shown in Fig. 3a, 
b, was 0.79 ± 0.1, 0.84 ± 0.1, and 0.87 ± 0.1 for the classifi-
cation of Ki67, with an accuracy of 0.71, 0.78 and 0.81 at a 
95% confidence level, respectively. For the internal valida-
tion, the AUROC of the low vs. high Ki67 prediction was 
0.75 ± 0.1, 0.75 ± 0.1, 0.83 ± 0.1, 0.77 ± 0.1 and 0.87 ± 0.1, 
with an accuracy of 0.67, 0.70, 0.71, 0.70 and 0.82 by 
the fivefold cross-validation, respectively (Fig.  3c, d). 
The AUROC from the optimal model was 0.87 ± 0.1 and 
0.82 ± 0.1 for low vs. high Ki67 prediction at the internal 
validation set (Fig.  3e) and external testing set (Fig.  3f ), 
respectively.

Feature contribution evaluation by SHAP values
The contribution of the imaging features to the model’s 
prediction was assessed by computing the SHAP val-
ues, which decomposed the decision of the model into 
the influence of individual features for each sample. The 
top-20 driver features were visualized in bee-swarm-
plots (Fig. 4a) and bar-plots (Fig. 4b) for low vs. high Ki67 
prediction. The bee-swarm plot depicts the SHAP values 
and feature values across the original dataset, with redder 
dots indicating larger eigenvalues and bluer dots indicat-
ing lower eigenvalues, and positive SHAP values signify-
ing a higher likelihood for the corresponding prediction.

In Fig.  4a, b, the tumor first-order 10P and pca 130 
were found to be critical in low vs. high Ki67 prediction. 
To test the noise reduction capability of our model, we 
conducted a feature elimination experiment by removing 
features with SHAP values equal to zero and re-training 
the original model. The results indicated that the mod-
el’s performance remained comparable, and the AUROC 
achieved 0.87 at a 95% confidence interval.

Discussion
Despite significant advancements in the diagnosis and 
treatment of RCC, the overall prognosis still remains 
dismal [3, 17]. Excessive cell proliferation is a hallmark 
of cancer. Ki-67, a nuclear protein, serves as a critical 
marker for assessing tumor proliferation status, and its 
expression level has significant implications for tumor 

Table 1  Basic, clinical and pathologic characteristics of patients 
involved in this research

Characteristic Internal dataset External dataset

Participants (588) 485 103

Age (year) 51.60 ± 14.99 53.30 ± 13.11

Sex

 Female 249 41

 Male 236 62

Histologic subtype

 Clear cell renal cell carcinoma 284 86

 Chromophobe renal cell 
carcinoma

91 7

 Papillary renal cell carcinoma 69 6

 Other types 41 4

Pathologic tumor stage

 Low stage (T1/T2) 363 65

 High stage (T3/T4) 92 38

 Not available 30 0

Pathologic tumor grade

 Low grade (G1/G2) 257 52

 High grade (G3/G4) 96 40

 Not available 132 11

Immunohistochemistry (Ki67)

 Low Ki67 (< 5%) 297 56

 High Ki67 (> = 5%) 188 47

 Not available 0 0
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biology, treatment response, and patient prognosis. At 
present, pathology is the gold standard for determining 
tumor Ki-67 expression [4–6]. However, biopsy proce-
dures are invasive and pose risks for dissemination, and 
are generally not recommended. In clinical practice, 

noninvasive diagnostic criteria for RCC include imaging 
signs of corticomedullary phase enhancement and con-
touring in the nephrographic phase on CT or MRI scans. 
If Ki-67 expression in RCC can be assessed using imag-
ing modalities, it would offer valuable information to 

Fig. 2  CT images after automatic segmentation by 3D UNET in external dataset. a–d Male, 77, clean cell renal cell carcinoma, underwent radical 
nephrectomy, high Ki67 (10%). e–i Male, 60, chromophobe renal cell carcinoma, underwent radical nephrectomy, low Ki67 (3%)
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clinicians for making individualized treatment decisions, 
which is paramount for patient prognosis.

Medical imaging is commonly acknowledged as a prod-
uct of genetic and molecular-level processes [18, 19]. 
Consequently, the implementation of artificial intelli-
gence techniques to extract feature from medical images 
can shed light on the molecular and genotypic foundation 
of tissues to some degree [20–22]. Many researchers have 
endeavored to investigate the relationship between CT 

features and Ki-67 expression level in cancers. The stud-
ies of Wu et al. showed that CT texture analysis based on 
machine learning might be a credible quantitative strat-
egy to predict the Ki67 expression level in hepatocellular 
carcinoma [9]. Gu et al. found that a CT-based radiom-
ics model could predict a high Ki67 expression level of 
non-small cell lung cancer [11]. In gliomas, CT features 
have been found to exhibit a significant correlation with 
the Ki-67 index [8]. However, the value of features of CT 
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Fig. 3  Analysis and results of multi-scale features extraction and performance of proposed framework. a, b The AUROC and accuracy of different 
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cross-validation. e, f The AUROC of Ki67 expression levels prediction model in internal dataset and external dataset



Page 8 of 10Yang et al. Insights into Imaging          (2023) 14:130 

r_shape_Sphericity
r_glszm_LALGLE

r_shape_Maximum2DDS
t_svd_52

t_glszm_ZonePercentage
r_pca_196
t_svd_53

r_pca_147
r_firstorder_Energy

r_pca_58
t_pca_147
t_pca_120

t_glrlm_RunLengthNonU
t_pca_36
t_pca_77

r_glszm_GrayLevelNonU
t_shape_MeshVolume

r_gldm_GLNU
t_pca_130

t_firstorder_10P

r_shape_Sphericity
r_glszm_LALGLE

r_shape_Maximum2DDS
t_svd_52

t_glszm_ZonePercentage
r_pca_196

t_svd_53
r_pca_147

r_firstorder_Energy
r_pca_58

t_pca_147
t_pca_120

t_glrlm_RunLengthNonU
t_pca_36
t_pca_77

r_glszm_GrayLevelNonU
t_shape_MeshVolume

r_gldm_GLNU
t_pca_130

t_firstorder_10P

0.00 0.25 0.50 0.75
Model Mean(|SHAP value|)

a

b

Fig. 4  Ranking of SHAP values for the explanation of Ki67 expression levels prediction model. a, b Barplot and bee-swarm plot display the SHapley 
Additive exPlanations (SHAP) values for the training set of Ki67 expression levels prediction model



Page 9 of 10Yang et al. Insights into Imaging          (2023) 14:130 	

images based on machine learning for predicting the 
Ki67 expression level of RCC remains uncertain.

In this study, we built a comprehensive machine 
learning-based approach that includes image pro-
cessing, semantic segmentation, multi-scale features 
extraction, and Ki-67 expression level prediction to 
provide a fully automated analysis framework. Further-
more, to enhance the decision-making ability of the vis-
ualization model, we had quantified the impact of each 
multi-scale features on the model decision using SHAP 
values.

As known, an excessive number of features may result 
in overfitting in machine learning. We found that only 
some features made a decisive impact on the decision-
making process of the XGBoost model. As shown in 
Fig.  4a, b, the tumor first-order 10P were found to be 
critical in low vs. high Ki67 prediction of RCC, likely 
reflecting significant differences in growth and physical 
properties between them. As best as our knowledge, the 
XGBoost algorithm will assign different weights to each 
feature and perform the feature selection automatically. 
However, we are still concerned that the absence of fea-
ture selection may lead to overfitting problems. To ver-
ify that we conducted a feature elimination experiment 
by removing features with SHAP values equal to zero 
and re-training the original model. From this result that 
the AUROC still achieved 0.87, number of features has 
a small effect on overfitting when using the XGBoost 
algorithm for model training.

Indeed, a reliable model must not only be able to 
adapt to any given dataset in real-world scenarios, 
but also produce consistent and stable results [23]. 
In our study, we utilized an automatic segmentation-
based approach to delineate the kidney and tumor 
region. This not only significantly reduces the time 
and cost involved, but also ensures reproducibility 
for research result while possessing a certain level of 
generalizability.

Furthermore, our multi-scale features extraction strat-
egy can be seamlessly applied to novel datasets for diverse 
tasks. Moreover, we employed a fivefold cross-validation 
approach and a heterogeneous dataset for model valida-
tion. Despite the potential risk of overfitting, our model’s 
external test AUROC still achieved an impressive value of 
0.84.

Although this study has demonstrated promising 
results in predicting Ki67 expression levels in substan-
tial  RCC patients, there are several limitations that 
should be addressed in future studies. Firstly, the retro-
spective and multi-center nature of this study may lead 
to data heterogeneity and overfitting, which can affect 
the model’s performance. Secondly, while the model can 
predict low and high Ki67 expression levels, the impact 

of this prediction on patient outcomes remains unknown. 
Long-term follow-up studies and prospective studies are 
necessary to evaluate the clinical significance of Ki67 
expression levels predicted by the model. Finally, further 
research is needed to optimize and improve the accuracy 
of the model, potentially through the incorporation of 
additional imaging features or the use of deep learning 
algorithms.

In conclusion, our study suggests that the proposed 
automatic analysis framework is capable of predicting the 
Ki67 expression levels in substantial RCC patients auto-
matically, noninvasively, and dynamically. This prediction 
can serve as a valuable reference for clinical treatment 
decisions.
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