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Abstract 

Background Accurate preoperative assessment of the efficacy of high-intensity focused ultrasound (HIFU) abla-
tion for uterine fibroids is essential for good treatment results. The aim of this study was to develop robust radiomics 
models for predicting the prognosis of HIFU-treated uterine fibroids and to explain the internal predictive process 
of the model using Shapley additive explanations (SHAP).

Methods This retrospective study included 300 patients with uterine fibroids who received HIFU and were clas-
sified as having a favorable or unfavorable prognosis based on the postoperative nonperfusion volume ratio. 
Patients were divided into a training set (N = 240) and a test set (N = 60). The 1295 radiomics features were extracted 
from T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) scans. After data pre-
processing and feature filtering, radiomics models were constructed by extreme gradient boosting and light gradi-
ent boosting machine (LightGBM), and the optimal performance was obtained by Bayesian optimization. Finally, 
the SHAP approach was used to explain the internal prediction process.

Results The models constructed using LightGBM had the best performance, and the AUCs of the T2WI and CE-T1WI 
models were 87.2 (95% CI = 87.1–87.5) and 84.8 (95% CI = 84.6–85.7), respectively. The use of SHAP technology can 
help physicians understand the impact of radiomic features on the predicted outcomes of the model from a global 
and individual perspective.

Conclusion Multiparametric radiomic models have shown their robustness in predicting HIFU prognosis. Radiomic 
features can be a potential source of biomarkers to support preoperative assessment of HIFU treatment and improve 
the understanding of uterine fibroid heterogeneity.

Clinical relevance statement An interpretable radiomics model can help clinicians to effectively predict the prog-
nosis of HIFU treatment for uterine fibroids. The heterogeneity of fibroids can be characterized by various radiomics 
features and the application of SHAP can be used to visually explain the prediction process of radiomics models.

Key points 

• Radiomics models can be used to effectively predict the prognosis of fibroids treated with HIFU.
• The heterogeneity of fibroids can be characterized by various radiomics features.
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• The application of SHAP can be used to visually explain the prediction process of radiomics models.

Keywords Machine learning, Radiomics, HIFU, Uterine fibroid, Magnetic resonance imaging

Graphical Abstract

An interpretable radiomics model can help clinicians to effectively predict the prognosis of HIFU treatment for 
uterine fibroids. The heterogeneity of fibroids can be characterized by various radiomics features and the application 

of SHAP can be used to visually explain the prediction process of radiomics models.
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Background
Uterine fibroids are the most common benign uter-
ine tumors in women of reproductive age [1, 2], but 
some patients experience abnormal uterine bleeding, 
pelvic pressure and infertility, which seriously affect 
their quality of life [3, 4]. High-intensity focused ultra-
sound (HIFU), a minimally invasive therapy for uterine 
fibroids, can effectively and safely relieve the patient’s 
clinical symptoms [5–7]. The non-perfused volume 
ratio (NPVR) after HIFU ablation is an evaluation crite-
rion for the success of HIFU ablation of uterine fibroids 
[8]. After long-term follow-up, patients with a larger 
NPVR had more obvious symptom relief and a lower 
probability of recurrence and reintervention [9]. How-
ever, not all fibroids are suitable for HIFU ablation, and 
accurate preoperative assessment is important for the 
efficacy of HIFU treatment.

Magnetic resonance imaging (MRI) is an important 
tool for the preoperative evaluation and efficacy pre-
diction of HIFU ablation for uterine fibroids [10, 11]. 

There is an evident link between the variability of uter-
ine fibroid imaging appearance and the heterogeneity of 
histological presentation [12]. Uterine fibroids are com-
posed of bundles of smooth muscle fibers surrounded by 
collagenous fibrous connective tissue containing blood 
vessels. For different types of fibroids, the density of these 
tissues varies. Due to these differences, uterine fibroids 
respond differently to HIFU ablation, and fibroids with 
high signal intensity on T2-weighted imaging (T2WI) 
and contrast-enhanced T1-weighted imaging (CE-T1WI) 
scans are considered difficult to ablate successfully [13–
17]. However, some researchers have demonstrated posi-
tive outcomes using HIFU for fibroids with high signal 
intensity on MRI [18]. The reason for this is that physi-
cians relying only on subjective evaluation of the signal 
intensity of fibroids on MRI cannot accurately assess the 
proportion of tissue components within the fibroids, and 
that different fibroid separation and targeted fibroid vol-
umes can lead to different ablation results for fibroids 
of the same signal type. Inaccuracy in MRI assessment 
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undermines the potential benefits of HIFU treatment for 
uterine fibroid patients. Therefore, additional identifica-
tion methods and further exploratory studies on the biol-
ogy of uterine fibroids on MRI are needed.

Radiomics can achieve this goal by extracting and ana-
lyzing high-throughput information from conventional 
grayscale images, transforming the images into quan-
titative image descriptors related to shape and texture 
information of the region of interest (ROI) that reflect the 
characteristics and heterogeneity of fibroids and capture 
subtle differences that are imperceptible to human vision, 
and providing physicians with a reference for decision-
making [19–21]. Our team has used radiomics to predict 
the prognosis of HIFU ablation for uterine fibroids [22], 
but the “black box” nature of machine learning makes it 
difficult to explain why certain predictions are made for 
patients. The interpretation of machine learning is inher-
ently a multifaceted concept, for example, what is being 
interpreted? Who needs interpretability? Why is inter-
pretability needed? To better interpret medical AI sys-
tems, the impact of internal features on outcomes needs 
to be explained for physicians to understand the entire 
decision-making process so that they can trust the deci-
sions made by the models. However, the medical data 
used for modeling are often complex, ambiguous and 
heterogeneous, which makes interpretation extremely 
challenging [23, 24]. To overcome the “black box” prob-
lem, Lundberg and Lee proposed the Shapley additive 
explanations (SHAP) method to improve the interpret-
ability of a model [25]. A positive or negative value indi-
cates the direction of influence, and the magnitude of the 
value describes the “weight” or “importance” of the fea-
ture. It can help us understand the role of each feature for 
the overall samples and for individual samples in the pre-
diction process. The combination of SHAP and radiom-
ics illustrates the model in an interpretable way, thereby 
increasing the credibility of the radiomics model for phy-
sicians and patients.

In this study, we aimed to construct MRI-based radi-
omics models to predict the prognosis of HIFU ablation 
of uterine fibroids. At the same time, we combined SHAP 
technology to intuitively explain the decision-making 
process, understand the relationship between radiom-
ics features and the prognosis of HIFU treatment, i.e., to 
improve the reliability of the model for physicians and 
patients.

Methods
Study population
This was a single-center retrospective study that was 
approved by the Ethics Review Committee, and patient 
consent was abandoned. We enrolled 1055 patients with 

uterine fibroids who received HIFU treatment from Janu-
ary 2013 to December 2017 and underwent pelvic MRI 
before and after HIFU treatment. The inclusion criteria 
were the following: (1) age > 18  years; (2) premenopau-
sal or perimenopausal women; (3) no previous history 
of relevant surgical or pharmacological treatment; (5) 
women who were not menstruating; (6) women with 
an anteverted uterus; (7) fibroid diameter: 3–8  cm; (8) 
subcutaneous fat thickness: 1–3  cm; and (9) for multi-
ple fibroids, the largest size was included. The exclusion 
criteria were the following: (1) history of other gyneco-
logical conditions, such as endometriosis or pelvic 
inflammatory disease; (2) pregnancy and lactation; and 
(3) abdominal scarring.

Previous studies have shown that patients with an 
NPVR of 80% have obvious symptom relief and a low 
recurrence rate [26]. Therefore, we defined an NPVR 
greater than 80% as a favorable prognosis and an NPVR 
less than 80% as an unfavorable prognosis, and then 
divided the patients into two groups. Patients were ran-
domly divided into a training set and a test set at a ratio 
of 8:2.

MRI data acquisition
In this study, each patient underwent MRI with a 3.0 T 
system (GE Signa HDxt) before and after HIFU abla-
tion, respectively. The postoperative MRI examination 
was performed within 7  days after treatment. T2WI 
was performed using the following parameters: repeti-
tion time (TR)/echo time (TE), 270/2.1 ms; field of view 
(FOV), 98.1 × 38  cm; slice thickness/gap, 6  mm/8  mm; 
and matrix, 512 × 512; CE-T1WI was performed using 
the following parameters: repetition time (TR)/echo time 
(TE), 3.84/1.81  ms; field of view (FOV), 68.4 × 26.5  cm; 
slice thickness/gap, 4 mm/2 mm; matrix, 512 × 512. The 
protocol for conventional three-phase-enhanced MRI 
was to scan arterial phase images at 20  s after injection 
of GA-DTPA (0.1  mmol/kg, 2.0  mL/s), then scanning 
the venous phase image 30 s later, and then scanning the 
delayed phase image 60  s later. MR axial images were 
exported from PACS and stored in DICOM format for 
further radiomics feature extraction.

Tumor masking and radiomics feature extraction
Figure 1 shows the radiomics pipeline of the study. Two 
radiologists manually outlined the whole fibroids on 
T2WI and venous phase images of CE-T1WI using ITK-
SNAP software, creating an ROI of uterine fibroids. 
The radiomics package for Python (version 3.7.6) was 
used to extract radiomics features based on ROI shape 
and texture for T2WI and CE-T1WI, respectively. We 
extracted a total of 1295 high-dimensional features and 
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low-dimensional features at this stage. The low-dimen-
sional features included shape features, first-order his-
togram features, and the high-dimensional features 
included texture features: gray level co-occurrence matrix 
(GLCM) features, gray level run length matrix (GLRLM) 
features, gray level region size matrix (GLSZM) features, 
neighborhood gray tone difference matrix (NGTDM) 
features, gray level dependence matrix (GLDM) features, 
features obtained from the texture matrix in the Gauss-
ian Laplace filtered domain (2.0–5.0  mm kernel), and 
features from the texture matrix in the wavelet filtered 
domain.

Radiomics features reproducibility evaluation
Intraclass correlation coefficients (ICCs) were used to 
evaluate the consistency and robustness of extracted fea-
tures from the different ROIs in the same images between 
two observers. Features with ICC values greater than 0.75 
suggested excellent consistency, and features with ICC 
values less than 0.75 were removed.

SMOTE balanced data
Data category imbalance may cause the results of the 
model to be skewed toward the category with more 

data and reduce the reliability of the model. To address 
this problem, we used the synthetic minority oversam-
pling technique (SMOTE), which increases the sample of 
minority categories [27, 28].

Radiomics feature selection and dimension
Normalization is used to preprocess the data before fill-
ing missing values and balancing outliers. The two-sam-
ple test (T test) was performed initially to exclude and 
thereby reduce poor correlation and duplicate features. 
The final feature selection approach was the least abso-
lute shrinkage and selection operator (LASSO), which 
was performed to reduce highly correlated features in 
the selection process and avoid collinearity. The selected 
features were min–max normalized to accelerate model 
training and optimize model performance.

Machine learning models
The radiomics models were constructed by extreme gra-
dient boosting (XGBoost) and light gradient boosting 
machine (LightGBM) [29, 30]. Bayesian optimization 
was applied to tune hyperparameters for better model 
performance [31]. The classification performance was 
evaluated in the training set and validated in the test set. 

Fig. 1 Flowchart of patient enrollment and exclusion
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The predictive performance was quantified by calculat-
ing the area under the curve (AUC), accuracy, sensitivity, 
and specificity. We compared the performance between 
the four models and selected the model with the highest 
AUC for further study.

Model interpretability with SHAP
The SHAP technique was applied to interpret and under-
stand the radiomic features used in the radiomics mod-
els. It can be used to visualize the importance of each 
feature in the overall complex machine learning model 
and explain how each feature in the model increases or 
decreases the probability of a single output.

Statistical analysis
Radiological characteristics of patients with uterine 
fibroids in the training set and test set were tested for 
normality using the Kolmogorov‒Smirnov method, and 
x ± s was used for data conforming to a normal distribu-
tion; M(Q25, Q75) was used for data not conforming to 
a normal distribution. The independent samples T test or 
Wilcoxon rank sum test was used for quantitative data, 
and the chi-square test or Fisher’s exact test was used 
to compare qualitative data. The DeLong test was per-
formed between the models that were constructed using 
the same sequence features. A p value of < 0.05 was used 
as the level of statistical significance in all statistical tests.

Results
Demographic and clinical data
Screening was performed according to the inclusion and 
exclusion criteria, and 354 patients were eligible, includ-
ing 54 patients with incomplete images and artifacts. 
Finally, 300 eligible patients were enrolled, namely, 170 
patients with solitary uterine fibroids and 130 patients 
with multiple uterine fibroids. Of these, 128 patients 
had unfavorable prognoses and 172 patients had favora-
ble prognoses. Additionally, the patients were randomly 
divided into a training set (N = 240) and a test set (N = 60) 
for model construction and validation. Figure 2 shows the 
flowchart of patient enrollment and exclusion. The clini-
cal and radiological characteristics of the patients and the 
results of the statistical analysis of the training and test 
sets are shown in Table 1.

Pre‑modeling data preparation
A total of 1295 features were extracted from T2WI and 
CE-T1WI scans, including the features of 7 radiomics 
clusters. After ICC consistency analysis, the ICC value of 
1 feature in T2WI was less than 0.75, and the ICC value 
of four features in CE-T1WI was less than 0.75, and they 
were eliminated. To exclude the impact of data imbal-
ance on the final model performance and interpretabil-
ity, SMOTE was applied for data balancing, and 44 new 
patients with NPVR of less than 80% were generated and 

Fig. 2 Workflow of the radiomics analysis in this study
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then added for the follow-up study. Finally, data down-
scaling was performed using the t test, with 163 fea-
tures retained in T2WI and eight features retained in 
CE-T1WI. LASSO was then performed to remove fea-
tures with little impact on the classification task, and 14 
and 5 features were retained in T2WI and CE-T1WI, 
respectively.

Performance of the radiomics models
The selected features of T2WI and CE-T1WI were used 
for model construction by LightGBM and XGBoost, and 
four models with better performance were generated by 
Bayesian optimization. The LightGBM algorithm gener-
ated the best performance for the T2WI and CE-T1WI 
models with AUCs of 87.2 (95% CI = 87.1–87.5) and 
84.8 (95% CI = 84.6–85.7), respectively, while the XGB 
algorithm obtained models with AUCs of 83.8 (95% 
CI = 82.9–84.2) and 84.3 (95% CI = 84.1–84.9). Figure  3 
shows a comparison of the AUCs of the four models. The 
rest of the model performance comparisons are summa-
rized in Table 2.

Model interpretability with SHAP
The SHAP values were calculated for all selected radi-
omic features included in the best-performing models. 
Figure 4 shows the SHAP feature importance plot listing 
the most important features in descending order. The top 
features contributed more to the model and had higher 
predictive power than the bottom features. First-order 
entropy and GLRLM run length nonuniformity nor-
malization were the features of the T2WI and CE-T1WI 
models that had the strongest impact on the prediction 
outcomes. As shown in Fig. 5, the SHAP summary plot 
shows feature impacts on the radiomics model decisions 
and interactions between features in the model. A posi-
tive value of SHAP indicates an increased risk of an unfa-
vorable prognosis for each prediction and vice versa for 
negative values. The higher the value is, the higher the 
risk of unfavorable prognosis. In terms of individual sam-
ple prediction, we randomly selected four patients from 
T2WI and CE-T1WI models to make the SHAP waterfall 
plot (Fig. 6), which depicted the SHAP value of each fea-
ture as having a positive or negative contribution to the 
outcome, and then the final prediction result was obtai
ned.

Table 1 Comparison of clinical and radiological characteristics of the training and test sets

a p values were obtained by using Wilcoxon rank sum test; bp values were obtained by using independent sample t test; cp values were obtained by using the Chi-
squared test

Characteristics Training set (n = 240) p value Test set (n = 60) p value

NPVR ≥ 80% (n = 136) NPVR < 80% (n = 104) NPVR ≥ 80% (n = 36) NPVR < 80% (n = 24)

Age (years) 40 (35, 44) 40 (35, 44) 0.804a 41.0 ± 6.5 38.4 ± 7.3 0.226b

Abdominal fat (mm) 14.6 (12.0, 18.6) 16.1 (12.5, 19.9) 0.052a 16.7 ± 6.4 16.4 ± 6.5 0.844b

Size (mm) 47.7 (40.5, 56.9) 51.6 (46.7, 61.3) 0.001a 52.5 ± 10.7 51.1 ± 9.5 0.606b

Volume  (cm3) 55.93 (33.60, 95.71) 71.65 (52.84, 118.59) 0.001a 68.99 (46.19, 114.30) 71.71 (43.54, 102.96) 0.928a

Type  < 0.001c 0.001c 0.027c

Submucosal 3 3 0 0

Intramural 116 59 32 16

Subserosal 17 42 4 9

T2 signal intensity  < 0.001c 0.067c

Low intensity 74 55 15 10

Intermediate intensity 27 17 4 8

High intensity 35 32 17 6

T2 signal homogeneity  < 0.001c 0.457c

Homogeneous 99 57 19 15

Inhomogeneous 37 47 17 9

CE signal homogeneity 0.001c 0.357c

Less than myometrium 67 55 21 15

Equivalent to myometrium 51 20 11 4

Greater than myometrium 18 29 4 5

CE signal homogeneity 0.870c 0.285c

Homogeneous 47 37 13 12

Inhomogeneous 89 67 23 12
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Fig. 3 Comparing the AUC of different models. a T2WI and (b) CE-T1WI models constructed by LightGBM. c T2WI and (d) CE-T1WI models 
constructed by XGBoost

Table 2 Performance comparison of LightGBM models and XGBoost models

p values were obtained by performing DeLong test between LightGBM and XGBoost models constructed using the same features

Comparison Predictive models AUC [95% CI] Accuracy Precision Sensitivity Specificity p value

LGB T2WI Training set 0.974 [0.973–0.974] 0.897 0.903 0.890 0.891

Test set 0.872 [0.871–0.875] 0.806 0.75 0.917 0.893 0.023

CE-T1WI Training set 0.899 [0.894–0.899] 0.831 0.821 0.846 0.841

Test set 0.848 [0.846–0.857] 0.750 0.821 0.639 0.705 0.030

XGB T2WI Training set 0.951 [0.947–0.955] 0.886 0.852 0.934 0.927

Test set 0.838 [0.829–0.842] 0.750 0.701 0.861 0.82 0.023

CE-T1WI Training set 0.872 [0.864–0.873] 0.783 0.789 0.772 0.777

Test set 0.843 [0.841–0.849] 0.750 0.846 0.610 0.700 0.030
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Discussion
We have demonstrated the robustness of radiomics 
models constructed by LightGBM and XGBoost, which 
were constructed from 14 and 5 significant radiomic 
features extracted from T2WI and CE-T1WI scans of 
uterine fibroids, respectively, for predicting the progno-
sis of uterine fibroids treated with HIFU. These radiom-
ics models, with SMOTE and Bayesian optimization, 
constructed by LightGBM, showed better performance, 
with AUCs of 87.2 (95% CI = 87.1–87.5) and 84.8 (95% 
CI = 84.6–85.7) in the independent test set for the T2WI 
and CE-T1WI models, respectively, compared to 82.2 for 
the previously studied model [22]. The model interpreta-
tion by the SHAP technique suggested that the radiomics 
features extracted from the two sequences, which mainly 
reflected signal intensity, were closely associated with the 
prognosis of HIFU treatment.

Because multiparametric MRI can show the histo-
logical characteristics of uterine fibroids, it is used as an 

important tool for assessing the efficacy of HIFU for uter-
ine fibroids [32], of which T2WI and CE-T1WI are the 
most commonly used sequences. The signal intensity on 
T2WI is attributed to features such as cellularity, vascu-
larity, perfusion, necrosis, edema, and calcification. Con-
ventionally, Funaki types 1 and 2 fibroids are considered 
good candidates, whereas type 3 fibroids are usually con-
sidered poor HIFU responders, although some debulking 
can be achieved [11, 33]. The signal intensity of CE-T1WI 
reflects the blood supply of the fibroid, and high signal 
fibroids are usually difficult to ablate completely [16, 34]. 
However, the subjective nature of T2WI and CE-T1WI 
interpretation and the difficulty in distinguishing minor 
signal intensity changes in tissues are shortcomings of 
conventional MRI. T2WI and CE-T1WI contain biologi-
cal information about the cytoarchitectural organization 
and integrity of fibroids, from which radiomics calculates 
a large number of quantitative features reflecting micro-
structural characteristics. We filtered the important 

Fig. 4 The SHAP feature importance plots of a T2WI and (b) CE-T1WI models. The plot illustrated the importance of each feature for the global 
prediction result in descending order
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features from them to construct efficient supervised 
learning models. Our results suggested that by using 
objective and reliable imaging biomarkers, the developed 
radiomics model has great potential to support evidence-
based prediction of the prognosis of HIFU treatment 
for uterine fibroids in clinical practice. Furthermore, the 
application of the SHAP technique provides global and 
local interpretability of radiomics models.

We found that the features retained in the T2WI model 
were first-order range and first-order maximum, and 
CE-T1WI model was GLSZM-small area low gray level 
emphasis, GLRLM-high gray level run emphasis and so 
on. These features mainly quantify the magnitude of the 
signal intensity values in the image voxels. The SHAP 
results demonstrated that larger magnitudes of T2WI 
and CE-T1WI signal intensities were associated with an 
increased risk of worse prognosis after HIFU ablation, 

suggesting that prognosis may be associated with the 
microscopic tissue and microcirculation that cause 
hyperintensity in those regions. The main pathological 
components of uterine fibroids are collagen fibers and 
smooth muscle cells. The MRI signal of uterine fibroids 
depends on the ratio of smooth muscle cells and fibrous 
connective tissue. This means that a higher content of 
smooth muscle cells and more effective microcirculation 
of tumor tissue is correlated with worse heat transfer and 
ablation effects. In contrast, fibrous tissue is more suit-
able for ultrasound energy deposition, resulting in coagu-
lative necrosis of the target tissue, and leading to better 
ablation effects. This is consistent with previous studies 
[35, 36]. In addition, we found that first-order entropy 
and glrlm run length nonuniformity normalized were 
the most important features in the two models. These 
features obtained from the voxel-to-voxel relationship 

Fig. 5 The SHAP summary plot depicted features of global prediction impact on the decision and interaction between features. The importance 
of features was listed top-down. Each point represents the SHAP value of a patient feature. Dots to the left of the Y-axis increase the chances 
of having a favorable prognosis, while dots to the right decrease the chances
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reflect the spatially organized heterogeneity of the 
fibroids, indicating that the homogeneity of the MRI sig-
nal also has a significant impact on the prognosis. High 
signal fibroids have heterogeneous signals, suggesting a 
heterogeneous distribution of smooth muscle cells and 

fibrous tissue in some regions or degeneration such as 
necrosis and calcification, and ultrasound energy is more 
easily deposited in this region. Therefore, better ablation 
results can be achieved with fibroids with heterogene-
ously high signal intensities [17, 37].

Fig. 6 The SHAP waterfall plots showed the individual interpretability of T2WI and CE-T1WI models. Red bar indicates increased predictive 
value and blue bar indicates decreased predictive value. Under the influence of all features, a final predictive value is obtained, and if this 
value is less than the base value, the prognosis is predicted to be favorable. Patients (a) and (b) were randomly selected from the T2WI model 
as having an unfavorable and a favorable prognosis, respectively. Patients (c) and (d) were randomly selected from the CE-T1WI model as having 
an unfavorable and a favorable prognosis, respectively
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SHAP can be used to provide physicians to explain 
how the radiomics features of uterine fibroids affect the 
global prediction results. If the individual prediction 
process needs to be explained, the SHAP waterfall plot 
can be used and is considerably faster than the complex 
scoring system of the difficult nomogram method [38]. 
It is also clear that the importance of the same features 
varied between the two groups of cases, and for differ-
ent patients, features of higher importance may have less 
impact in some cases. Therefore, SHAP also has good 
specificity in terms of individual predictions.

There are some limitations in our study. First, this was 
a retrospective single-center study, and the performance 
of the models needs to be verified with more multicenter 
datasets and prospective data. Second, we only selected 
venous phase images from conventional three-phase 
scanning CE-T1WI and did not use dynamic-enhanced 
images, which possibly yielded different results in radi-
omics analysis and should be investigated in the future. 
Finally, we did not use diffusion weighted imaging (DWI) 
for radiomics analysis and interpretation because in pre-
vious studies by our group, DWI model performance was 
worse than T2WI [22], which may be due to its lower 
image resolution. However, DWI also includes much 
information about water diffusion and microperfusion 
in fibroids and needs to be studied using more advanced 
methods.

Conclusion
In conclusion, the developed radiomics predictive 
model, using selected features from T2WI and CE-T1WI 
sequences, could offer a novel approach to aid clinical 
assessment of the prognosis of HIFU ablation for uterine 
fibroids. The SHAP technique can be used to help physi-
cians and patients understand the internal prediction pro-
cess and increase the credibility of the radiomic models.
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