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Abstract 

Background  Kinetic estimation provides fitted parameters related to blood flow perfusion and fluorine-18-fluoro-
deoxyglucose (18F-FDG) transport and intracellular metabolism to characterize hepatocellular carcinoma (HCC) but 
usually requires 60 min or more for dynamic PET, which is time-consuming and impractical in a busy clinical setting 
and has poor patient tolerance.

Methods  This study preliminarily evaluated the equivalence of liver kinetic estimation between short-term (5-min 
dynamic data supplemented with 1-min static data at 60 min postinjection) and fully 60-min dynamic protocols 
and whether short-term 18F-FDG PET-derived kinetic parameters using a three-compartment model can be used 
to discriminate HCC from the background liver tissue. Then, we proposed a combined model, a combination of the 
maximum-slope method and a three-compartment model, to improve kinetic estimation.

Results  There is a strong correlation between the kinetic parameters K1 ~ k3, HPI and Vb in the short-term and fully 
dynamic protocols. With the three-compartment model, HCCs were found to have higher k2, HPI and k3 values than 
background liver tissues, while K1, k4 and Vb values were not significantly different between HCCs and background 
liver tissues. With the combined model, HCCs were found to have higher HPI, K1 and k2, k3 and Vb values than back-
ground liver tissues; however, the k4 value was not significantly different between HCCs and the background liver 
tissues.

Conclusions  Short-term PET is closely equivalent to fully dynamic PET for liver kinetic estimation. Short-term PET-
derived kinetic parameters can be used to distinguish HCC from background liver tissue, and the combined model 
improves the kinetic estimation.

Clinical relevance statement  Short-term PET could be used for hepatic kinetic parameter estimation. The com-
bined model could improve the estimation of liver kinetic parameters.
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Key points 

•	 Short-term PET could be used for hepatic kinetic parameter estimation.
•	 Short-term PET was very similar to full dynamic PET in the estimation of liver kinetic parameters.
•	 The combined models could improve the estimation of liver kinetic parameters.

Keywords  Hepatocellular carcinomas, Positron-emission tomography, Compartmental model

Graphical Abstract

Short-term PET could be used for hepatic kinetic parameter estimation. 
The combined model could improve the estimation of liver kinetic parameters.

Short-term PET-derived kinetic estimation for the diagnosis 
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input three-compartment model

Insights Imaging (2023) Wang T, Li B et al. DOI: 10.1186/s13244-023-01442-5

Short-term PET
5-min dynamic data supplemented with 
1-min static data at 60 min postinjection

Combined model
a combination of the maximum-slope 

method and a three-compartment 
model

Maximum 

slope

method

FA

FV

HPI
18F-FDG in

Tissue cell : 

CE(t)

Metabolized
18F-FDG-6p : 

CM(t)

18F-FDG in

Plasma : CB(t) 
k4

k3

k2

K1

Three-compartment  model

Background
Hepatocellular carcinoma (HCC) is the fourth most com-
mon cause of cancer-related death worldwide. Medical 
imaging plays an important role in the diagnosis of HCC, 
increasing the chance of potentially curative treatment, 
overall survival, or quality of life [1].

Conventional computed tomography (CT) and mag-
netic resonance imaging (MR) are the primary methods 
used for the diagnosis of HCC, with detection rates of 
60–72% and 82–95%, respectively [2, 3], but they do not 
provide metabolic and molecular information [4]. Since 
positron emission tomography (PET) or PET/computed 
tomography (CT), unlike other imaging modalities, visu-
alizes tissue metabolic information, it has played a com-
prehensive role in detecting, distinguishing, staging, and 
evaluating local, residual, and recurrent HCCs [5].

However, static fluorine-18-fluorodeoxyglucose (18F-
FDG) PET/CT has a low detection rate (between 36 and 
70%) in the diagnosis of HCC [6, 7], and it only measures 
a single parameter, the standard uptake value (SUV), in 
a routine clinical setting. Kinetic estimation provides 
a few fitted parameters related to blood flow 18F-FDG 
transport and intracellular metabolism to characterize 
hepatocellular carcinoma (HCC) and is promising for 
accurate differentiation, therapeutic response prediction 
and assessment [8]. In addition, the reason for the advan-
tage of kinetic analysis versus conventional SUV may be 
that kinetic data can provide an early assessment of small 
metabolic changes, which cannot be detected by SUV [9]. 
However, it usually requires 60 min or more for dynamic 
PET, which is time-consuming, impractical in a busy clin-
ical setting and has poor patient tolerance.
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Short-term dynamic 18F-FDG PET is performed syn-
chronously with 18F-FDG bolus injection, scans for sev-
eral minutes, and has a combination of blood flow and 
metabolic information [6]. Winterdahl et  al. [10] dem-
onstrated that the blood-to-cell clearance of 18F-FDG 
can be estimated by 3-min dynamic 18F-FDG PET/CT 
in healthy pigs. Samimi et  al. [11] also confirmed that 
the use of 5-min dynamic PET data, complemented by 
3-min static PET data at 60 min postinjection, allows for 
an accurate and robust estimation of two-compartment 
model parameters. Thus, this preliminary study aimed 
to evaluate the relevance of liver kinetic parameters 
between short-term (5-min dynamic data supplemented 
with 1-min static data at 60  min postinjection) and full 
60-min dynamic protocols and whether short-term 18F-
FDG PET-derived kinetic parameters using a three-com-
partment model can be used to discriminate HCC from 
background liver tissue.

The liver has a blood supply from both the hepatic 
artery and portal vein, and the weighted hepatic artery 

and portal vein flow forms the input function for the 
kinetic model. The hepatic perfusion index (HPI), as this 
weighted value, is crucial for kinetic estimation and sig-
nificantly affects the calculation results of parameters 
[12, 13]. Although HPI from both the hepatic artery and 
portal vein can be estimated by the fitting calculation [8], 
the main limitation is that if one parameter is not ideally 
fitted, the error introduced may affect the fitting of other 
parameters [14]. The maximum-slope method has a rela-
tively simple principle and is widely used in the field of 
hepatic blood flow estimation as well as in characteriz-
ing HCC blood flow with short-term dynamic 18F-FDG 
PET [15]. We assumed that the HPI, estimated by the 
maximum-slope method, calculated the input function 
of the dual-input three-compartment model to enhance 
the efficiency and accuracy of the fit calculation. Thus, we 
proposed a combined model, a combination of the max-
imum-slope method and a three-compartment model, to 
reduce model complexity and enhance the estimation of 
liver kinetic parameters.

Fig. 1  Delineating regions of interest (ROIs) in dynamic PET/CT. a CT image, (b) PET/CT image, (c) PET image, and (d) maximum density projection 
image. ROIs are manually drawn, and HCC is shown in black, background liver tissues in green, aorta in red, portal vein in yellow and spleen in blue
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Methods
Patients
From June 2022 to July 2022, a total of 27 healthy volunteers 
(12 males and 15 females) aged 54.4 ± 12.4 (38–80) years 
who received fully 60-min dynamic PET/CT scanning 18F-
FDG PET/CT at the First People’s Hospital of Yunnan were 
used to validate our proposed short-term protocol, and all 
healthy volunteers had no history of tumor disease, chronic 
liver disease including hepatitis, cirrhosis or fatty liver, and 
normal hepatic and renal function.

From May 2020 to January 2022, a total of 21 patients 
(19 males and 2 females) aged 57.4 ± 17.0 (33–77) years 
who received 5-min dynamic 18F-FDG PET/CT and 
60-min static 18F-FDG PET/CT before treatment at the 
First People’s Hospital of Yunnan were prospectively 
enrolled. Sixteen patients had cirrhosis, 19 patients had 
a single HCC lesion, and three patients had two HCCs; 
a total of 24 HCCs pathologically diagnosed by surgery 
(n = 17) or biopsy (n = 7) were analyzed in this study, and 
the long axis of these tumors was 1.9–15.0 cm (average 
6.4 ± 3.7).

Short‑term and fully dynamic PET/CT
18F-FDG was produced in a Sumitomo HM-10HC cyclo-
tron with a Sumitomo F300e 18F-FDG chemical synthesis 
module (Tokyo, Japan), and 18F-FDG had a radiochemi-
cal purity of > 95%. Scans were performed on a Philips 
Ingenuity TF PET/CT scanner (Cleveland, OH, USA).

Dynamic PET/CT scans are performed prior to con-
ventional PET/CT. A bolus injection was performed 
with 18F-FDG (5.5  MBq/kg) in 2  mL of 0.9% saline and 
then flushed with 20 mL of 0.9% saline at a flow rate of 
2 mL/s. A liver CT scan (120 kV, 100 effective mA) was 
performed in a single bed, and the liver was in the center 
of the scanner’s field of view. A list mode of dynamic 
PET of the liver scan was performed concurrently with 
the administration of the 18F-FDG bolus. All healthy vol-
unteers were scanned for 60  min in full dynamic PET, 
reconstructed as 37 consecutive time frames (12 × 5  s, 

9 × 60  s, 10 × 120  s, 6 × 300  s). All HCC patients were 
scanned for 5 min of dynamic PET, reconstructed as 16 
consecutive time frames (12 × 5 s, 4 × 60 s).

Routine static scans were performed approximately 
60 min after the 18F-FDG bolus, including from the ver-
tex of the skull to the proximal thigh, with 1 min of scan-
ning in each bed.

The SUVmax was measured from PET images by delin-
eating 2D circular regions of interest (ROIs) (Fig. 1), and 
the ROIs were drawn by Dr. Shaobo Wang and Dr. Shiyu 
Wang, two nuclear radiologists. In those lesions with 
imperceptible FDG uptake, ROIs were drawn relative 
to the conventional imaging findings. ROIs of the aorta 
and portal vein were placed at approximately two-thirds 
of the vascular cross section. To compare HCC tumors 
to the background tumor-free liver tissue, the respective 
ROIs were drawn in tumor-free liver tissue, and all ROIs 
avoided blood vessels. Eighty-one ROIs of liver tissue 
from 27 healthy volunteers (three ROIs in each healthy 
volunteer) and 24 pathologically diagnosed HCCs and 21 
healthy liver regions were delineated from 21 patients.

Three‑compartment model
In the three-compartment hemodynamic model, the 
glucose passing rate constant K1 (mL/min/mL) and the 
opposite direction passing rate constant k2 (1/min) repre-
sent glucose transport from the blood to the liver tissues. 
The process by which hexokinase further phosphoryl-
ates 18F-FDG to 18F-FDG-6-phosphate is represented 
by another rate constant, k3 (1/min), and the dephos-
phorylation rate constant k4 (1/min). Since liver tissues 
and tumors have different intake and metabolic rates for 
18F-FDG, the corresponding kinetic parameters can be 
obtained only when the model is calculated [16]. These 
processes are the basis of the hypothetical model, and the 
curve is equivalent to the background liver tissue or HCC 
time-activity curve (TAC) measured in the PET image 
[17]. In Fig. 2, the left compartment represents the blood 
space, the middle compartment represents 18F-FDG in 

Fig. 2  Reversible three-compartment model for 18F-FDG kinetics
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the tissue, the right compartment represents the product 
18F-FDG-6-p after 18F-FDG is phosphorylated in the tis-
sue, CB(t), CE(t), and CM(t) represent the concentrations 
of 18F-FDG or 18F-FDG 6-p in these three compartments, 
respectively, and the kinetic parameters K1–k4 represent 
the rate coefficients of the material exchange between the 
compartments.

This article uses a dual blood supply model, and the 
total input blood volume is expressed by CB(t), which 

is the input function of the model, as shown in For-
mula 1:

where A(t) represents the 18F-FDG concentration in the 
hepatic artery, V(t) represents the 18F-FDG concentration 
in the portal vein, and HPI represents the hepatic artery 
perfusion index (the ratio of arterial blood volume to 
total blood volume) [18].

(1)CB(t) = HPI× A(t)+ (1−HPI)× V (t)

CT(t) is equivalent to the curve of the tracer concentra-
tion in the tissue observed from the PET image over time, 
and Vb (unitless) represents the fraction of the measured 
volume occupied by blood [18]. Through the calculation of 
the three-compartment model, Formula 4 can be obtained 
[18, 19]:

where ⨂ represents the convolution operation. Formulas 
5–6 are shown below:

(2)CT(t) = (1− Vb)× CI(t)+ Vb × CB(t)

(3)CI = CE(t)+ CM(t)

(4)CT(t) = (1− Vb)× K1
T2−T1

× (k3 + k4 − T1)e
−T1t + (T2 − k3 − k4)e

−T2t ⊗ CB(t)+ Vb × CB(t)

(5)T1 = k2+k3+k4−
√

(k2+k3+k4)
2−4k2×k4

2

(6)T2 = k2+k3+k4+
√

(k2+k3+k4)
2−4k2×k4

2

Fig. 3  HCC time-activity curves (TACs) at 5 min. a Original TACs, b TACs after gamma correction

Fig. 4  The combined model of 18F-FDG kinetics. The arterial blood flow and venous blood flow were first calculated by the maximum-slope 
method and then entered into the three-compartment model for fitting calculation
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Maximum‑slope method model
The maximum-slope method presented by Mullani et  al. 
[20, 21] was used to calculate the required blood flow 
parameters [22]. The model assumes that when the tracer 
first passes through the tissue, the venous exit of the tracer 
is delayed for a period of time, which is a function of the 
volume of distribution of the tracer in the target tissue and 
the blood vessel density [23]. During this time delay, for 
highly extracted tracers, most of the tracers remain in the 
tissue because the vein outlet is very small [24]. The liver 
has a dual blood supply of arteries and portal veins. The 
unit for calculated hepatic blood flow is mL/mL/s, which 
should be converted to mL/100 mL/min.

The blood flow parameters included hepatic artery per-
fusion (HAP), hepatic vein perfusion (HVP), total liver per-
fusion (TLP) and HPI.

The basic formulas (7–10) of the above parameters are as 
follows:

In these formulas, SART​ represents the maximum slope 
of the TAC of background liver tissues (or tumor tissues) 
before the peak of splenic parenchymal enhancement, SPV 
is the maximum slope of the TAC of background liver 
tissues (or tumor tissues) after the peak of splenic paren-
chymal intensity, AART represents the peak of abdominal 
aortic intensity, and APV represents the peak of portal vein 
intensity [25].

(7)HAP = SART
AART

× 6000

(8)HVP = SPV
APV

× 6000

(9)TLP = HAP+HVP

(10)HPI = HAP
HAP+HVP

Due to arterial recirculation, secondary blood supply will 
produce secondary peaks, which will interfere with the cal-
culations [15]. Therefore, the gamma variable is added, and 
gamma variable fitting is used to correct arterial recircula-
tion and determine the peak tissue activity of noisy samples 
[26]. The basic gamma variable function is defined as For-
mula 11.

where A = ymaxt
−α
max exp (α) , and β = tmax

α
 [15]. This 

expression can also be expressed as Formula 12:

where ymax is the maximum value and tmax is the time to 
the maximum value. The TACs before and after the cor-
rection are shown in Fig. 3. The time to peak (TTP) can 
identify background liver tissue from HCC because HCC 
tumors are primarily nourished by arterial blood flow, 
and the arterial blood flow peaks earlier than the portal 
blood flow at the first pass [15]:

where tmax is the time for the ROI to peak and ta is the 
time for the aorta to peak.

Combined model
A combined model based on the three-compartment 
model, replacing the original HPI (a parameter to be fit-
ted) with the HPI calculated using the maximum-slope 
model, is proposed in this study (Fig. 4). We expect that 
replacing the important parameter HPI with more accu-
rate calculated values and then calculating the three-
compartment model can improve the accuracy of other 
parameters. The dual blood supply in the three-compart-
ment model will be calculated with Formula 14:

(11)Y (t) = Atα exp
(
− t

β

)
, t > 0

(12)
Y (t) = ymax

(
t

tmax

)α
exp

[
α

(
1− t

tmax

)]
, t > 0

(13)TTP = tmax − ta

(14)CB(t) =
SART
AART

SART
AART

+ SPV
APV

× 100%× A(t)+
(
1−

SART
AART

SART
AART

+ SPV
APV

× 100%

)
× V (t)

Table 1  Correlation and regression analysis between kinetic parameters for short-term and fully dynamic protocols

Parameters Pearson Passing–Bablok

r (95% CI) p Intercept (95% CI) Residual SD (95% CI)

K1 0.984 (0.975 to 0.990)  < 0.001 0.182 (0.059 to 0.314) 0.166 (− 0.326 to 0.326)

k2 0.919 (0.877 to 0.947)  < 0.001 0.074 (− 0.021 to 0.152) 0.133 (− 0.260 to 0.260)

k3 0.748 (0.631 to 0.830)  < 0.001 0.012 (0.006 to 0.015) 0.014 (− 0.026 to 0.026)

k4 0.258 (0.182 to 0.445) 0.020 0.039 (0.027 to 0.056) 0.028 (− 0.054 to 0.054)

HPI 0.965 (0.947 to 0.978)  < 0.001  − 0.001 (− 0.003 to 0.001) 0.028 (− 0.055 to 0.055)

Vb 0.977 (0.965 to 0.985)  < 0.001  − 0.001 (− 0.001 to 0.001) 0.007 (− 0.013 to 0.013)
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Parameter estimation
Combined model and three-compartment model fitting 
were performed according to the nonlinear least square 
method, and the unknown model parameters were esti-
mated by iteratively fitting the model output function 
CT(t) and c of the PET measurements and implemented 
using MATLAB, R2019a (MathWorks, Natick, MA, 
USA). The unknown model parameter set of the com-
bined model is θ = [K1, k2, k3, k4,Vb] , and the three-com-
partment model is θ = [K1, k2, k3, k4, HPI,Vb]:

where WRSS(θ) represents the weighted residual sum of 
squares of the curve fit, and wi represents the weighting 
factor of time frame N.

Statistical analysis
Statistical analysis was performed using MedCalc ver-
sion 13.0.0.0 (MedCalc Software, Ostend, Belgium). 
Pearson (r) was used to assess the correlation between 

(15)θ̂ = argmin
θ

WRSS(θ)

(16)WRSS(θ) =
N∑
i=1

wi[ci − CT (ti; θ)]

the kinetic parameters calculated by the short-term 
and fully dynamic protocols in healthy volunteers, and 
Passing‒Bablok regressions were used to test for dif-
ferences between the kinetic parameters calculated 
by the two acquisition protocols [27]. Using receiver 
operating characteristic curve analysis, the kinetic 
parameters between HCCs and background liver tis-
sues were compared in HCC patients, and kinetic 
parameters in the liver tissue were compared between 
HCC patients and healthy volunteers. p < 0.05 indi-
cated significant differences. The median, mean and 
standard deviation of kinetic parameters in the three-
compartment model and combined model are shown 
by box plots.

The TAC fit quality between the three-compartment 
model and the combined model was compared using the 
goodness of fit (R) for nonlinear regression [28, 29]:

where y represents the original data and ŷ represents the 
fitted data.

Results
Kinetic estimation between short‑term and fully dynamic 
protocols
The results of the correlation and Passing–Bablok analy-
ses between kinetic parameters calculated using fully 
dynamic and short-term PET/CT data from 27 healthy 
volunteers are shown in Table 1.

The kinetic parameters K1–k3, HPI and Vb were 
strongly correlated (r ≥ 0.748, p < 0.05), and Passing–
Bablok regression analysis showed no significant bias. 
However, k4 was weakly correlated (r = 0.258, p = 0.020).

Three‑compartment model parameters
The 18F-FDG PET-derived kinetic parameters obtained 
using the three-compartment model for 21 HCC patients 

(17)R = 1−
√∑

(y−ŷ)
2

∑
y2

Table 2  18F-FDG PET-derived kinetic parameters for HCCs and 
the background liver tissues by using the three-compartment 
model

Parameters HCCs
n = 24

Liver tissue
n = 21

AUC​ p

HPI (%) 71.14 ± 24.56 16.78 ± 20.29 0.944  < 0.001

K1 (mL/min/mL) 1.67 ± 0.52 1.65 ± 0.73 0.511 0.927

k2 (1/mL) 2.01 ± 0.43 1.66 ± 0.73 0.633 0.048

k3 (1/mL) 0.051 ± 0.050 0.013 ± 0.021 0.784 0.003

k4 (1/mL) 0.019 ± 0.027 0.023 ± 0.036 0.524 0.706

Vb  (unitless) 0.081 ± 0.138 0.027 ± 0.056 0.649 0.098

SUVmax 5.320 ± 2.971 2.505 ± 0.629 0.859  < 0.001

Table 3  18F-FDG PET-derived kinetic parameters of HCCs and 
background liver tissues by using the combined model

Parameters HCC
n = 24

Liver tissues
n = 21

AUC​ p

HPI (%) 76.43 ± 12.09 42.76 ± 17.08 0.937  < 0.001

K1 (mL/min/mL) 1.52 ± 0.61 1.00 ± 0.63 0.750 0.007

k2 (1/mL) 1.84 ± 0.56 1.01 ± 0.59 0.843  < 0.001

k3 (1/mL) 0.046 ± 0.047 0.005 ± 0.007 0.866  < 0.001

k4 (1/mL) 0.021 ± 0.027 0.023 ± 0.034 0.530 0.896

Vb (unitless) 0.052 ± 0.053 0.003 ± 0.007 0.810  < 0.001

Table 4  18F-FDG PET-derived kinetic parameters obtained using 
the combined model of liver tissues between HCC patients and 
healthy volunteers

Parameters Cirrhosis
n = 21

Normal liver tissue
n = 81

AUC​ p

HPI (%) 42.76 ± 17.08 18.02 ± 11.52 0.958  < 0.001

K1 (mL/min/
mL)

1.00 ± 0.63 1.36 ± 0.40 0.716 0.020

k2 (1/mL) 1.01 ± 0.59 1.37 ± 0.44 0.685 0.026

k3 (1/mL) 0.005 ± 0.007 0.030 ± 0.036 0.815 0.002

k4 (1/mL) 0.023 ± 0.034 0.036 ± 0.037 0.591 0.154

Vb (unitless) 0.003 ± 0.007 0.025 ± 0.065 0.961  < 0.001
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are shown in Table 2. HCCs showed higher k2 (p = 0.048), 
k3 (p = 0.030) and HPI (p < 0.001) than the background 
liver tissues.

Compared with the background liver tissues, the K1 
and Vb values of HCCs were increased, but these differ-
ences were not statistically significant (p = 0.927 and 
p = 0.098). Moreover, the value of k4 was not significantly 

Fig. 5  Box plots of kinetic parameters in the three-compartment model and the combined model. The diamond indicates the outliers. a Box plot of 
K1, b Box plot of k2, c Box plot of k3, d Box plot of k4, e Box plot of HPI, f Box plot of Vb, 

Table 5  The goodness of fit of the two models

Model HCCs Liver tissues
n = 24 n = 21

Three-compartment model 81.58 ± 22.58 87.68 ± 11.07

Combined model 84.49 ± 23.18 91.43 ± 7.15

p 0.231 0.005
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different between HCCs and the background liver tissues 
(p = 0.098).

The SUVmax was higher in HCCs than in the back-
ground liver tissues (p < 0.001).

Maximum‑slope model parameters
The 18F-FDG PET-derived parameters obtained using the 
maximum-slope model for 21 HCC patients are shown 
in Additional file 1: Table S1. HCCs showed higher HAP 
(p < 0.001) and TLP (p < 0.001) than the background liver 
tissues. The HVP was not significantly different between 
HCCs and the background liver tissues (p = 0.462), and 
the TTP of HCCs was lower than that of the background 
liver tissues (p = 0.002).

Combined model parameters
The HPI was calculated from the maximum-slope method, 
and the 18F-FDG PET-derived parameters obtained using 
the combined model for 21 HCC patients are shown 
in Table  3. HCCs showed higher HPI (p < 0.001), K1 
(p = 0.007), k2 (p < 0.001), k3 (p < 0.001), and Vb (p < 0.001) 
values than the background liver tissues.

However, k4 was not significantly different between 
HCCs and the background liver tissues (p = 0.896).

Kinetic parameters between HCC patients and healthy 
volunteers
The 18F-FDG PET-derived kinetic parameters obtained 
using the combined model of liver tissues from 21 HCC 
patients and 27 healthy volunteers are shown in Table  4. 
The liver tissues of HCC patients showed a higher HPI 
(p < 0.001) than those of healthy volunteers. Healthy volun-
teers had higher K1 (p = 0.020), k2 (p = 0.026), k3 (p = 0.002) 
and Vb (p < 0.001) in liver tissues than HCC patients.

However, k4 was not significantly different between 
the liver tissues of HCC patients and healthy volunteers 
(p = 0.154).

Changes in kinetic parameters
Figure 5 shows the box plot of kinetic parameters for the 
three-compartment model and combined model. In both 
HCCs and background liver tissues, K1, k3, HPI and Vb in 
the combined model showed a more compact data distri-
bution, smaller standard deviation, and stronger consist-
ency between the mean and median.

TAC fit quality
The goodness of fit of the two models (three-compart-
ment model and combined model) is shown in Table  5. 
The quality of fit of the combined model was better than 
that of the three-compartment model in the background 
liver tissues (p = 0.005). For HCCs, the quality of fit of the 
two models was comparable (p = 0.231).

Discussion
To address the problem that 60-min or more dynamic 
PET is not suitable for busy clinical settings and has 
poor patient tolerance, some researchers have begun 
to explore short-term dynamic PET to assess hemody-
namics. Winterdahl et  al. [10] demonstrated that 3-min 
dynamic PET data can be used to estimate liver blood 
flow in pigs. By using the maximum-slope method, 
Bernstine et al. [15] demonstrated that 1.5-min dynamic 
PET-derived blood flow parameters can be used to help 
distinguish and characterize HCCs. They found that 
HPI showed better performance in distinguishing HCCs 
from background liver tissues than SUVmax using con-
ventional PET. Samimi et  al. [11] also found that 5-min 
dynamic with static PET/CT data after 60  min can be 
analyzed using the dual-compartment model and showed 
a strong correlation between all kinetic parameters from 
60-min full scanning in myocardium, normal lung and 
lung tumor. However, the liver kinetics were not evalu-
ated with a short-term dynamic PET protocol, and/or 
the kinetic model was relatively simple. This study pre-
liminarily evaluated the feasibility of a 5-min dynamic 
combined with 1-min static at 60 min postinjection PET 
in liver kinetics with a dual-input three-compartment 
model. Compared with static PET/CT SUVmax, kinetic 
parameters derived by three-compartment models ena-
ble better distinction between HCC and background 
liver tissue, and this paper proposes a combination of 
the maximum-slope method and the three-compartment 
model that was preliminarily introduced to enhance the 
fitting calculation.

Based on the findings of previous studies and our clini-
cal practice [6], short-term PET data (5-min dynamic 
data complemented by 1-min static data at 60  min 
postinjection) were used in this study. Although the ideal 
sampling for the fitting calculation is to divide the scan-
ning time to be as short as possible, the signal-to-noise 
ratio (SNR) decreases significantly. This paper selects 
SUVmax to form the TAC for dynamics modeling. 
According to our clinical practice and prior literature, 
SUVmax has better repeatability than SUVmean because 
it does not depend heavily on the delineation of the ROI 
[30–32]. Additionally, SUVmax changed greatly in the 
first 1  min and then fluctuated slightly and became flat 
(Fig. 3a); thus, 5-s data for each frame in the first 1 min 
and 60-s data for each frame in the following 4 min were 
reconstructed in this study, and static images were taken 
60  min after injection. To validate our proposed short-
term acquisition protocol, 30 healthy volunteers were 
recruited for a 60-min fully dynamic scan. The results 
showed that there were strong correlations between the 
kinetic parameters K1–k3, HPI and Vb by the short-term 
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and fully dynamic scanning protocols. Unfortunately, k4 
was weakly correlated, which may be related to its value 
being too small and having a high bias to be reliably esti-
mated [33]. In total, short-term PET is closely equivalent 
to fully dynamic PET for liver kinetic estimation.

Different models have their own advantages and dis-
advantages. The compartmental model simulates the 
cavity and constructs a differential model of blood 
flow conversion and metabolism for parameter fitting. 
Compartmental models can generally obtain more 
parameters, reflecting the direction and rate of tracer 
conversion, and the metabolic process is considered 
complete. Accurate kinetic modeling of dynamic liver 
PET data requires consideration of the effect of dual 
blood supplies in the liver [18]. Moreover, when the fit-
ting calculation introduces some errors, it may affect 
the fitting of other parameters [34].

The assumption of the maximum-slope method 
model is based on the blood flow changes before and 
after the blood flow reaches the peak. The model is 
simple and convenient for direct calculation with small 
errors but has fewer parameters [35]. The maximum 
slope method assumes that there is no tracer outflow 
in the vein, which is affected by the tracer injection rate 
[36]. CT perfusion requires a very high injection rate 
to ensure the accuracy of calculation, but it is not clini-
cally operable [37]. 18F-FDG volume is small and the 
injection is done with a short time, followed by saline 
for washout, which can enter the cardiopulmonary cir-
culation in a short time, reducing the error generated 
by calculations. In addition, the compartment model is 
less affected by the rate of injection [37, 38].

By comparing different three-compartment models, 
including a single-input model with an input function 
from the hepatic artery (Model A), a dual-input model 
with two input functions from the hepatic artery and 
portal vein (Model B), a single-input model with an 
input function from the portal vein (Model C), and a 
dual-input three-compartment model proposed by 
Wang et  al. [18] (Model Wang), Geist et  al. [8] sug-
gested that Model Wang has the preferred fitting per-
formance and can be used as a representative of the 
highest number of fit parameters in the fitted model. 
Thus, Model Wang was used in this study.

The present study showed that it is feasible to use 
short-term PET data (5-min dynamic data comple-
mented by 1-min static data at 60  min postinjection) 
in the liver, analyzed by using a dual-input three-
compartment model, for the evaluation of liver kinetic 
parameters. Three parameters (k2, k3 and HPI) were sig-
nificantly different between HCCs and the background 
liver tissues (both P < 0.05). It is worth noting that an 

important parameter used to distinguish HCCs from 
background liver tissues, K1, was not significantly dif-
ferent (p = 0.927). This paper proposes a combined 
model in which five parameters (K1, k2, k3, HPI, and 
Vb ) were significantly different between HCCs and 
background liver tissues (all p < 0.05). However, k4 did 
not show a significant difference (p = 0.896), possibly 
because the fitted model is still a mathematical calcula-
tion. Least squares fitting is used to seek the parameter 
value when the error of the whole model is minimized, 
but it is difficult to fit every parameter to the best result 
because the deviations of some parameters could cause 
deviations in other parameters.

The hepatic perfusion index (HPI) is an important 
parameter in assessing liver kinetics. Clinical stud-
ies have shown that background liver tissue is supplied 
with blood primarily from the portal vein, and HCC is 
mainly supplied by the hepatic artery in vascular pro-
liferation tumors. The HPI of HCC is higher than that 
of background liver tissue, and the results of both the 
three-compartment compartment model and the com-
bined model are consistent with this clinical reality. 
In HCC, the combined model was closer to 80% of the 
theoretical value than the three-compartment model 
(76.43% ± 12.09% vs. 71.14% ± 24.56%). Most patients had 
cirrhosis, which caused increased HPI in background 
liver tissue. Chandarana et al. [26] reported that the HPI, 
estimated with a dual-input two-compartment model, 
was 52.0% ± 23.4% and 12.4% ± 7.1% in cirrhotic and 
healthy livers, respectively. This paper shows that the HPI 
of background liver tissue in the combined model is more 
realistic. (42.76% ± 17.08% vs. 16.78% ± 20.29%).

It is worth noting that most of the kinetic parameters 
obtained in this study using a short-term protocol with 
a combined model were consistent with the results esti-
mated with 60-min dynamic PET and different compart-
ment models. According to the study of Geist et  al. [8], 
HCCs had a higher K1 value in Model Wang (1.95 ± 1.86 
vs. 1.90 ± 1.87), a higher k3 value in Models A–C 
(0.03 ± 0.02 vs. 0.002 ± 0.006, 0.04 ± 0.03 vs. 0.001 ± 0.001, 
and 0.03 ± 0.03 vs. 0.001 ± 0.001, respectively) and a 
lower k2 value in Models A–C and Wang (0.43 ± 0.16 
vs. 0.47 ± 0.13, 1.04 ± 0.41 vs. 1.20 ± 1.06, 1.35 ± 0.76 vs. 
1.75 ± 1.33, and 0.82 ± 0.73 vs. 1.62 ± 0.90, respectively) 
than those of background liver tissues. In particular, the 
k4 value is small and too low to be compared (equal aver-
age and lower standard deviation in Model A, lower value 
in Model Wang).

18F-FDG enters tissue cells through glucose transporter 
proteins on the cell membrane, and it is then phospho-
rylated by hexokinase in the cell, converted to 18F-FDG-
6-p, and ultimately retained by the cell; at the same time, 
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these processes are reversible [39]. The expression of glu-
cose transporter proteins is significantly higher in cancer 
cells than in normal cells. As an important parameter of 
the compartment model, K1 reflects the transport rate of 
blood to tissues and has attracted increased attention from 
researchers [40]. Wang et al. [18] demonstrated that there 
is a significant correlation between K1 and liver inflamma-
tion in a study on nonalcoholic fatty liver. They also used 
K1 as the main distinguishing criterion in subsequent stud-
ies to compare the changes in the three models. Sarkar 
et al. [41] also concluded that quantitative K1 is expected 
to contribute to the noninvasive evaluation of liver inflam-
mation. In the combined model proposed in this study, the 
K1 (1.52 ± 0.61 vs. 1.00 ± 0.63) values of HCCs were higher 
than those of the background liver tissues, which is con-
sistent with previous studies, where glucose transporter 
protein was higher in HCC than in background liver tissue.

Furthermore, this study showed that K1 showed a large 
difference among different patients when using the three-
compartment model, while it was relatively consistent 
when using the combined model (Fig. 5a). One possible 
reason might be that the dual blood supply to the liver 
leads to the need for a more accurate dual-input function 
for the estimation of K1 [13, 42]. The calculation of HPI in 
the three-compartment model requires more iterations, 
which increases the complexity of the model. However, 
with the combined model, the HPI can be obtained by 
the maximum slope method and is not involved in the fit-
ting process and considerably improves the appreciation 
of the other kinetic parameters.

Meanwhile, 18F-FDG in the tissues can be cleared 
into the blood, with k2 as the clearance rate. Our results 
show that the k2 of HCC was higher than that of the 
background liver tissue in both the dual-input three-
compartment model (2.01 ± 0.43 vs. 1.66 ± 0.73) and the 
combined model (1.84 ± 0.56 vs. 1.01 ± 0.59).k3 is the rate 
of phosphorylation, and the expression of hexokinase and 
its affinity or functional activity for glucose phosphoryla-
tion was higher in HCC than in the background liver tis-
sue. Geist et al. [8] found that k3 was higher in HCC than 
in background liver tissue in all four different liver kinetic 
models. Our results are consistent with those of previ-
ous studies, and the diagnostic efficacy of k3 in the com-
bined model (0.046 ± 0.047 vs. 0.005 ± 0.007) was better 
than that in the dual-input three-compartment model 
(0.051 ± 0.050 vs. 0.013 ± 0.021).

Hepatocytes contain glucose-6-phosphatase, which is 
capable of dephosphorylating 18F-FDG-6-p to 18F-FDG. 
The results of the experiments in this study showed that 
k4, as the rate of dephosphorylation, was higher in back-
ground liver tissue than in HCC, indicating that glucose-
6-phosphatase activity was higher in background liver 

tissue than in HCC. However, it was not significantly dif-
ferent in both the dual-input three-compartment model 
and the combined model, which may be related to the 
possibility that k4 values are too small to be accurately 
estimated.

Compared to the three-compartment model, the com-
bined model allows for many valuable parameters. Our 
results show that the HAP, TLP and TTP of the com-
bined model could well distinguish between HCCs and 
background liver tissues, and HAP (91.29 ± 30.70 vs. 
32.28 ± 16.71) and TLP (132.46 ± 53.14 vs. 71.18 ± 42.15) 
values were higher for HCCs than for background liver 
tissues. Bernstein et  al. [15] showed that the TTP of 
HCCs was lower than that of background liver tissue 
(17.00 ± 11.60 vs. 47.30 ± 12.80). Hepatocellular carci-
noma is mainly nourished by arterial blood flow, and 
arterial blood flow peaks before portal venous blood flow. 
This is consistent with our study, where TTP was lower 
in HCC than in background liver tissue (19.85 ± 12.39 vs. 
60.41 ± 59.95).

This study shows that some parameters derived by 
dynamic PET/CT with pharmacokinetics are better than 
SUVmax with conventional 18F-FDG PET/CT in distin-
guishing HCC from background liver tissue. Compared 
to SUVmax, the combined model proposed in this paper 
provides more perfusion and metabolic information, and 
it obtains better diagnostic performance for k3 and HPI 
than SUVmax and is second only to SUVmax for K1, k2, 
and VB.

In addition, this study assessed the kinetic parameters 
of liver tissues in HCC patients versus healthy volunteers. 
The HPI of liver tissues is higher in HCC than in healthy 
volunteers, which is a result of cirrhosis in HCC patients. 
Research shows that cirrhosis leads to a decrease in the 
activity of enzymes in the cells [43, 44], and our results 
found that K1, k2, k3 and Vb were significantly higher in 
healthy volunteers than in HCC patients.

The goodness of fit (R) for nonlinear regression was 
used to evaluate the TAC fit quality of the different mod-
els, with large values indicating a better model [45]. Our 
results showed that both the three-compartment model 
and the combined model were applicable for both HCCs 
and background liver tissues, and the combined model 
showed a better fit than the three-compartment model, 
which guaranteed the reliability of the fitting calculation 
in this study.

This study has some limitations. First, the sample size of 
the dataset was small. Second, an analysis of the relation-
ship between kinetic parameters and tumor biological 
characteristics was lacking. Vascular density, hexokinase, 
glucose transporter and other immunohistochemistry 
markers were not available in these recruited patients, 
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and the correlation between these immunohistochem-
istry markers and kinetic parameters should be investi-
gated in future studies. Third, tumor heterogeneity may 
affect the results, with larger tumor lesions that tend to 
cause necrosis and hemorrhage in the background tissue, 
and functional assessment derived from a single region 
may not reflect perfusion in the liver as a whole. Future 
studies will further evaluate the whole liver using a pixel-
by-pixel method to avoid the impact from ROI delinea-
tion. In addition, the reconstruction algorithm may affect 
the SUV values, but this requires further research into 
the reconstruction algorithm to improve the image qual-
ity of dynamic PET. Finally, further studies are needed to 
improve the fitting algorithm to satisfy physiological sig-
nificance and reduce calculation errors.

Conclusions
This study demonstrated that a short-term protocol 
(5-min dynamic data complemented by 1-min static data 
at 60 min postinjection) with a dual-input three-compart-
ment model can be used for estimating liver kinetics and 
distinguishing HCC from background liver tissue. Com-
pared with conventional 18F-FDG PET-derived SUVmax, 
the kinetic parameters can better distinguish HCC from 
background liver tissue. Furthermore, this study pro-
posed a combination of the maximum-slope method, and 
the three-compartment model was preliminarily intro-
duced to enhance the fitting calculation.
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