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Abstract 

Objective To evaluate the effectiveness of a self-adapting deep network, trained on large-scale bi-parametric MRI 
data, in detecting clinically significant prostate cancer (csPCa) in external multi-center data from men of diverse 
demographics; to investigate the advantages of transfer learning.

Methods We used two samples: (i) Publicly available multi-center and multi-vendor Prostate Imaging: Cancer AI (PI-
CAI) training data, consisting of 1500 bi-parametric MRI scans, along with its unseen validation and testing samples; 
(ii) In-house multi-center testing and transfer learning data, comprising 1036 and 200 bi-parametric MRI scans. We 
trained a self-adapting 3D nnU-Net model using probabilistic prostate masks on the PI-CAI data and evaluated its 
performance on the hidden validation and testing samples and the in-house data with and without transfer learning. 
We used the area under the receiver operating characteristic (AUROC) curve to evaluate patient-level performance in 
detecting csPCa.

Results The PI-CAI training data had 425 scans with csPCa, while the in-house testing and fine-tuning data had 288 
and 50 scans with csPCa, respectively. The nnU-Net model achieved an AUROC of 0.888 and 0.889 on the hidden 
validation and testing data. The model performed with an AUROC of 0.886 on the in-house testing data, with a slight 
decrease in performance to 0.870 using transfer learning.

Conclusions The state-of-the-art deep learning method using prostate masks trained on large-scale bi-parametric 
MRI data provides high performance in detecting csPCa in internal and external testing data with different character-
istics, demonstrating the robustness and generalizability of deep learning within and across datasets.

Clinical relevance statement A self-adapting deep network, utilizing prostate masks and trained on large-scale 
bi-parametric MRI data, is effective in accurately detecting clinically significant prostate cancer across diverse datasets, 
highlighting the potential of deep learning methods for improving prostate cancer detection in clinical practice.
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Key points 

1. We trained a self-adapting deep network on large-scale bi-parametric prostate MRI scans.
2. The model provided a high performance at detecting csPCa on in-distribution tests.
3. The performance did not drop on the external multi-center & multi-vendor data.
4. Transfer learning did not improve the performance in the external test.

Keywords Deep learning, Magnetic resonance imaging, Prostate cancer
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Introduction
Magnetic resonance imaging (MRI) plays an impera-
tive role in prostate cancer (PCa) diagnostics, and the 
number of prostate MRI scans is expected to increase 
significantly as the recent evidence suggests performing 
pre-biopsy prostate MRI in men with suspicion of PCa 
[1]. The main objective of prostate MRI is to identify clin-
ically significant PCa (csPCa) (i.e., Gleason Score ≥ 3 + 4) 
while sparring men with benign lesions or indolent PCa 
from unnecessary interventions or treatment.

The prostate imaging-reporting and data system 
(PI-RADS) was introduced in 2012 and most recently 
updated in 2019 as PI-RADS Version 2.1 to standardize 

prostate MRI acquisition and interpretation [2]. Though 
the benefits of the PI-RADS have been well recognized 
over the years, prostate MRI still suffers from intra-
reader and inter-reader differences and non-negligible 
amounts of false-positive and false-negative results [3–5].

Deep learning (DL) has shown remarkable perfor-
mance on a broad spectrum of medical imaging tasks in 
recent years, with prostate cancer diagnostics no excep-
tion. However, earlier studies have been hindered by 
several issues: (i) training, validating, and testing the DL 
models on the same data obtained [6–16]; (ii) having a 
small sample size [6–16]; (iii) insufficient details regard-
ing the DL models and/or lack of open-source code 
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sharing [6–12, 15]; (iv) lack of benchmarking DL models 
on publicly available datasets or challenges [6–13]; using 
the PI-RADS scores as the reference for performance 
estimation [16–18].

ProstateX challenge partially addressed the afore-
mentioned problems, yet it did not have the adequate 
data size to train and test DL models effectively [19]. PI-
CAI (Prostate Imaging: Cancer AI) is a new grand chal-
lenge encompassing over 10,000 prostate MRI scans [20]. 
The challenge allows researchers to design, train and test 
publicly available DL models on large-scale for identify-
ing csPCa on bi-parametric prostate MRI.

We hypothesized that a state-of-the-art self-adapting 
deep network trained on large-scale bi-parametric MRI 
data using best practices could provide robust and gener-
alizable performance in detecting csPCa when applied to 
large-scale multi-center and multi-vendor external data-
sets. To test our hypothesis, we first trained a self-adapt-
ing DL model, nnU-Net, using probabilistic prostate 
masks on the PI-CAI dataset and tested its performance 
on the hidden validation and testing set of the challenge. 
Then, we assessed the performance of the model on a 
private in-house multi-center dataset comprising men 
of different demographics. Further, we investigated the 
benefits of transfer learning on the performance using a 
small partition of the in-house dataset.

Methods
Study sample
We used two datasets in the present work: Publicly avail-
able PI-CAI training data and in-house data. The PI-CAI 
consists of over 10,000 bi-parametric prostate MRIs, yet 
only 1500 scans are publicly available. Researchers are 
also allowed to test their models on the hidden validation 
set, consisting of 100 scans, and the hidden testing set, 
consisting of 1000 scans. However, the hidden testing set 
was only available during a pre-defined period.

Acibadem Mehmet Ali Aydinlar University’s review 
board approved this retrospective study and waived the 
need for informed consent for the retrospective analysis 
of medical data. We reviewed consecutive patients who 
underwent a bi-parametric or multi-parametric prostate 
MRI scan due to suspicion of PCa (i.e., increased pros-
tate-specific antigen or suspicious digital rectal exami-
nation) or active surveillance between January 2015 and 
December 2021 to create the in-house dataset.

All men in the in-house dataset had undergone whole-
mount pathology or biopsy after the MRI scan or were 
MRI-negative (i.e., PI-RADS score of 1 or 2) with a mini-
mum follow-up of 24 months without any clinical, labo-
ratory, or imaging evidence of PCa. In addition, men who 
underwent a prostate MRI scan with an endorectal coil 

were excluded from the study, as were men with a history 
of any treatment for PCa or prostate operation.

MRI protocols
The scans in the in-house dataset were obtained at nine 
institutions with 1.5  T (Avanto, Avanto-fit, and Aera, 
Siemens Healthcare, Erlangen/Germany; Signa HDxt 
Signa, General Electric Healthcare, Chicago/USA) or 
3 T scanners (Prisma, Skyra, and Vida, Siemens Health-
care, Erlangen/Germany; Signa Premier, GE Healthcare, 
Chicago/USA).

All mpMRI or bi-parametric MRI protocols followed 
PI-RADS version 2 or 2.1. At a minimum, the bi-para-
metric prostate MRI protocol encompassed tri-planar 
T2-weighted and diffusion-weighted imaging. The diffu-
sion-weighted imaging was performed with echo-planar 
imaging in axial planes with at least three b-values. Some 
patients had an acquired DWI with a b-value ≥ 1400  s/
mm2, while others had calculated DWI with a b-value 
of 1400  s/mm2 following the PI-RADS. The ADC maps 
were calculated using a linear least-square fitting with 
all acquired b-value. We did not use dynamic contrast-
enhanced images since the challenge organizers did not 
provide them. Further details of the MRI protocols were 
omitted for the sake of brevity.

Ground‑truth labels
The organizers provided the ground-truth labels for the 
PI-CAI dataset. For scans harboring csPCa, the organ-
izers provided pixel-level annotations (i.e., lesion masks). 
For the remaining patients (i.e., those with indolent PCa 
or benign findings), the organizers only provided scan-
level results. All csPCa lesions were annotated by trained 
investigators under the supervision of three expert 
radiologists.

The ground-truth labels of the in-house dataset were 
created following a similar method. First, all available 
pathology, radiology, and clinical reports of the patients 
were curated. Then, a radiologist (D.A.), one of the PI-
CAI readers with three years of prostate MRI (≤ 150 
prostate scans a year) and five years of DL experience, 
segmented the csPCa on bi-parametric prostate MRI 
scans. All the segmentations were carried out on a dedi-
cated browser-based platform (https:// matrix. md. ai). All 
segmentations were supervised by a senior radiologist 
(E.K.) with over 20 years of experience in prostate imag-
ing (≥ 300 scans a year).

In patients with available whole-mount pathology, 
the radiologist determined the csPCa lesions (i.e., Glea-
son Score ≥ 3 + 4) using the digitized histopathological 
images as the reference to ensure a radio-pathological 

https://matrix.md.ai
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Fig. 1 The datasets used in the study. The ProstateX data and Prostate Imaging: Cancer AI [PI-CAI] training data were used for the model training in 
the study. The PI-CAI data was used to train an ensemble of 3D nnU-Net models to detect clinically significant PCa

Fig. 2 Creating the probabilistic zone masks. The ProstateX data was used to train a 3D nnU-Net for creating probabilistic prostate zone masks 
on the PI-CAI training data. Afterward, the probabilistic masks were used to augment the ensemble model’s clinically significant prostate cancer 
detection performance
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match [21]. In patients with biopsy results, the radiolo-
gist carefully read the pathology results regarding the 
location of the lesion. In the in-house sample, all biopsy 
procedures involved a combination of 3–4-core MRI/
ultrasound fusion-guided biopsy followed by an extended 
transrectal systematic biopsy (Artemis, Eigen) [16]. Men 
with a benign pathology result or MRI-negative patients 
(i.e., those with PI-RADS 1 or 2 scans) without any clini-
cal, laboratory, or imaging evidence of PCa were accepted 
as negative for csPCa. Figure  1 shows the study sample 
selection.

DL models
First, we trained a prostate zone segmentation model on 
patients from the publicly available ProstateX dataset 
[22]. We used a 3D nnU-Net, a self-adapting DL frame-
work, fed the model with T2W images and used the 
peripheral and central gland masks as the ground truth 
[23]. Then, we used this network on challenge data to 
obtain probabilistic central and peripheral gland masks. 
Figure  2 shows an overview of the gland segmentation 
network.

We developed 3D nnU-Net for csPCa detection on 
the challenge data. We fed the model with T2W, ADC, 
high-b-value DWI, and probabilistic prostate segmen-
tation masks using the csPCa masks as the ground 
truth.

The nnU-Net model is based on a standard U-Net 
architecture. This U-Net consists of two sequential 
encoder-decoder components interconnected via skip 
connections and a bottleneck layer at the bottom of 
the model. The encoder layers reduce the spatial reso-
lution of the input and compute representative feature 
maps for the task at hand, while the decoder increases 
the spatial resolution, preserving the representative 

information for precise segmentation. Skip connections 
between these two layers facilitate information flow and 
enhance the learning process. During the training pro-
cess, the U-Net parameters are continuously updated, 
allowing the model to implicitly learn the essential geo-
metrical and textural features required for successful 
segmentation of the target masks.

A standardized data preparation and augmentation 
pipeline of the nnU-Net was used in this work. Addi-
tionally, we applied extreme data augmentation and 
used an ensemble of networks using fivefold cross-vali-
dation. The models were trained for a thousand epochs 
using the loss using a combination of focal and cross-
entropy loss. Figure  3 shows the csPCa segmentation 
models. Further details regarding the model can be 
found in [24].

We split the in-house data into testing and transfer 
learning samples by ~ 90%/10%. First, the model trained 
on the challenge data was used on the in-house testing 
set without training. Then, we fine-tuned (i.e., transfer 
learning) the model with a learning rate of  10–5 for 100 
epochs and tested its performance on the testing set of 
the in-house data.

Performance evaluation and statistical analyses
The statistical analyses were performed using the SciPy 
library of the Python programming language. The con-
tinuous variables are presented using median and inter-
quartile ranges, and the categorical and ordinal variables 
are presented with frequencies and percentages. We 
used the area under the receiver operating characteristic 
(AUROC) curve to estimate patient-level performance in 
detecting csPCa.

The lesion-level detection performance was evaluated 
using the Average precision (AP) metric. True-positive 

Fig. 3 The 3D nnU-Net model for detecting clinically significant prostate cancer. a The 3D nnU-Net was fed with T2W imaging, diffusion-weighted 
imaging, and apparent diffusion coefficient maps along with probabilistic prostate masks via five different channels. The model was trained on the 
publicly available Prostate Imaging: Cancer AI training data using the significant cancer masks provided by the organizers as the ground truth. b The 
3D nnU-Net model was trained using a fivefold cross-validation approach. Then, the ensemble of five nnU-Net models was used to make the final 
predictions
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lesions were the predictions that shared a minimum 
overlap of 0.10 in 3D space with the ground-truth anno-
tation following the challenge and earlier studies [20, 25]. 
False-positive lesions were the predictions without a suf-
ficient overlap. We also calculated the free-receiver oper-
ating curves (FROC).

We used the permutation test [26] to assess the perfor-
mance difference of the DL model on the in-house testing 
data with and without transfer learning. The permuta-
tion test briefly shuffles performance metrics across the 
model with and without fine-tuning and their instances, 
accounting for potential differences stemming from the 
training method. A p value less than 0.05 was accepted as 
showing a significant result.

Results
A total of 1202 men were enrolled in the in-house data-
set with a median age of 67 years (IQR, 59–73). The in-
house dataset was split into two parts: (i) testing data 
consisting of 1036 scans; (ii) fine-tuning data consist-
ing of 200 scans. In all, 288 scans in the in-house testing 
data had csPCa, while the remaining scans had indolent 
cancer or benign findings. Among 288 scans with csPCa 
in the in-house testing data, 275 (95.48%) had available 
whole-mount pathology, while the diagnosis of csPCa 
was made by a combination of 3–4-core MRI/ultrasound 
fusion-guided biopsy followed by an extended transrec-
tal systematic biopsy in remaining 13 scans (4.52%). Of 

the 1,500 mpMRI scans from the PI-CAI public training 
data, 425 had csPCa. Further details regarding the data-
sets are shown in Table 1.

The nnU-Net model achieved an AUROC of 0.888 and 
AP of 0.732 on the hidden validation data of the PI-CAI 
challenge, being the 1st on the leaderboard at the time 
of submission. The same model had an AUROC of 0.889 
and an AP of 0.614 on the hidden testing data and ranked 
3rd on the leaderboard. Since the validation and testing 
datasets were hidden, we could not draw ROC, FROC, 
and RP curves for the challenge data.

The same nnU-Net model provided an AUROC of 
0.886 and AP of 0.50 on the testing part of the in-house 
data without fine-tuning. The AUROC of the model was 
similar to the challenge evaluations, yet AP showed a 
drop in the in-house data. After fine-tuning the model 
with transfer learning, the AP slightly increased to 0.539, 
and AUROC slightly decreased to 0.870, yet the changes 
were not statistically significant on average (p = 0.30). 
Figure 4 shows the AUROC, FROC, and RP curves of the 
nnU-Net with and without transfer learning on the in-
house testing data. Figure 5 exemplifies the prediction of 
the model on the in-house testing data.

Discussion
In this study, we trained a state-of-the-art self-adapting 
nnU-Net model using extensive data augmentations and 
probabilistic prostate masks on the large-scale PI-CAI 

Table 1 The demographics, clinical, and imaging characteristics of the PI-CAI training and in-house data set

All continuous variables are presented with median and interquartile ranges

csPCa clinically significant prostate cancer, PI-CAI prostate imaging: cancer AI, PI-RADS Prostate Imaging-Reporting and Data System

*The PI-CAI training data were obtained from Radboud University Medical Center, Ziekenhuisgroep Twente, University Medical Center Groningen, Norwegian 
University of Science and Technology. In-house data were obtained from Acibadem Mehmet Ali Aydinlar University’s Maslak Hospital, Altunizade Hospital, Atakent 
Hospital, Adana Hospital, Taksim Hospital, Kozyatagi Hospital, Kocaeli Hospital, Bodrum Hospital, Eskisehir Hospital

Variables PI‑CAI training data PI‑CAI validation data PI‑CAI testing data In‑House testing data In‑house fine‑tuning 
data

# of Patients 1476 100 1000 1002 200

# of Scans 1500 100 1000 1036 200

Age (years) 66 (61–70) NA NA 68 (59–73) 67 (58–70)

Prostate Specific Antigen 
(ng/mL)

8.5 (6–13) NA NA 9.2 (5–12) 8.2 (6–10)

# of different MRI scanners 5 Siemens, 2 Philips 6 Siemens, 3 Philips 6 Siemens, 3 Philips 6 Siemens, 2 GE 6 Siemens, 2 GE

# of Centers 3 3 3 9 9

PI-RADS Category of Posi-
tive MRI lesions
3
4
5

246
438
403

NA NA 308
188
240

63
40
46

# of Scans with Benign or 
Indolent PCa

1075 NA NA NA 150

# of Scans csPCa the 425 NA NA 288 50

# of csPCa Lesions 465 NA NA 342 52
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data and reported its performance on the hidden vali-
dation and testing sets of the challenge. The model was 
externally validated on our large-scale multi-center & 
multi-vendor in-house data, which provided a similar 
performance in detecting csPCa at the scan level, show-
ing its robustness and generalizability. Notably, transfer 

learning did not further increase the performance of the 
model, substantiating its generalizability and robustness 
against the data shift. Notably, the performance of our 
model was much higher than the reported median AUC 
of 0.79 in identifying csPCa in earlier studies [27].

Fig. 4 The AUROC, FROC, and PR curves of the nnU-Net in detecting clinically significant prostate cancer with and without transfer learning. The 
area under the receiver operating characteristic (AUROC), Free-Response Receiver Operating Characteristic (FROC), and Precision–Recall (PR) curves 
of the ensemble of five nnU-Net models in detecting clinically significant prostate cancer in the in-house dataset with and without transfer learning. 
The AUROC and FROC slightly decreased, and average precision slightly increased using transfer learning, not reaching a statistical significance

Fig. 5 A patient with clinically significant prostate cancer in the right peripheral zone from the in-house data. The T2W (a), diffusion-weighted 
image with a b-value of 1400 s/mm2 (b), apparent diffusion coefficient map (c), and the predictions of the deep learning model overlaid on the T2W 
image (d). The model correctly predicted the lesion and drew its borders
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Using testing data from the same data source with the 
training data, even in the presence of hold-out test sets 
with temporal split, is a known pitfall in DL applications 
to medical imaging [28]. Naturally, the performance of 
DL models evaluated on the same distribution can dra-
matically degrade when applied to external data due to 
many factors, including differences in the scanner, acqui-
sition protocols, or patient demographics. Regardless 
of the cause, appropriate external testing is of utmost 
importance for performance estimation since clinical 
translation naturally requires similar diagnostic perfor-
mance on unseen external data.

Apart from the present work, few other studies have 
investigated, at least partially, the performance of their 
DL model on unseen external test data. For example, 
Castillo et al. [29] trained their in-house model on a sin-
gle-center data of 271 patients and tested its performance 
on 371 patients from three external datasets. The authors 
documented a significant drop in the performance dur-
ing the external testing of the model. The DL model used 
in their work was a standard U-net segmentation model, 
while we implemented a state-of-the-art nnU-Net. Fur-
ther, their training data was relatively small and derived 
from a single center. So, during the training, the model 
might not reach adequate robustness and generalizabil-
ity. Additionally, in this work, we implemented extensive 
data augmentations along with probabilistic prostate 
masks to enhance the generalizability and robustness of 
the DL models.

Hosseinzadeh et  al. [30] designed their DL models 
on data consisting of 2734 consecutive biopsy-naïve 
men derived from two centers. Similar to the present 
work, they used prostate masks to guide the neural nets. 
They trained their model on the data of the first center 
and tested its performance on the data of both centers. 
Hence, their test was not entirely external. Regardless, the 
DL model achieved an AUC of 0.85 in identifying csPCa 
in the external test. In contrast to the present work, the 
authors did not benchmark their models’ performance or 
publish their codes.

Mehta et  al. [31] proposed to design a neural net-
work that takes the entire prostate gland with scan-level 
ground-truth labels. The authors externally tested the 
performance of their DL model on two different data-
sets, yielding an AUC of 0.73 and 0.77, which were much 
lower than the performance of our model. Their follow-
up [32] study included lesion-level annotations and zonal 
prostate masks. Despite lesion-level annotations, their 
model yielded an AUC of 0.70 on the external testing 
set, a significant drop from their internal model AUC of 
0.85, suggesting the lack of generalizability and robust-
ness across different data distributions. We suggest that 

a small training sample size, as also suggested by the 
authors, and the use of standard 2D U-net without exten-
sive data augmentations might lead to low performance 
in identifying csPCa on the external data.

Netzer et al. [33] trained a nnU-Net on large-scale sin-
gle-center in-house data. The authors split their in-house 
data temporally and achieved an AUC of 0.85 on a scan 
level. The authors also found that the performance of the 
model decreased from an AUC of 0.85 to 0.81 with the 
reduced training data size. Further, they benchmarked 
their models on the ProstateX challenge and achieved 
an AUC of 0.89. The main drawback of their study was 
that the study sample and ProstateX were obtained with 
scanners of the same manufacturer, presumably degrad-
ing the generalizability of the results. Indeed, the authors 
expressed their concerns about the small sample size and 
the abundance of potentially easier examples in the Pros-
tateX data.

Saha et al. [34] designed an end-to-end csPCa detec-
tion network at a large scale. Following best practices, 
the authors derived training and testing samples from 
different centers. The authors implemented a 3D U-net 
leveraging ensemble method, focal loss, and probabil-
istic prostate zone masks, achieving an AUC of 0.86 on 
the external independent testing sample. Notably, the 
authors observed that the use of the ensemble method 
and probabilistic masks significantly boosted the gener-
alizability of the model. The main drawback of the Saha 
et  al. [34] was that the testing data set was obtained 
with the same manufacturer’s scanners as the training 
set.

Several limitations to the present work must be 
acknowledged. First, similar to the PI-CAI challenge, 
all patients without csPCa did not have a histopathol-
ogy result in the present work. Likewise, some patients 
with csPCa had only a biopsy result, which is subject 
to errors compared with the reference whole-mount 
pathology. Nevertheless, all biopsies were MRI/ultra-
sound fusion-guided biopsies followed by an extended 
transrectal systematic biopsy, reducing the chances of 
potential sampling errors [16]. Further, we aimed to 
cover the scans encountered during clinical practice 
where a DL model needs to interpret many MRI-neg-
ative scans, which will not routinely undergo a biopsy.

Second, only MRI-visible csPCa were used for the 
training and model evaluation. Hence, readers must 
exercise caution that the DL models used in this work 
might miss MRI invisible lesions. This limitation might 
be mitigated by the registration of whole-mount pathol-
ogy and MRI [35], yet it would significantly reduce the 
sample size and lead to selection bias by enrolling only 
patients with whole-mount pathology.
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Third, we omitted contrast-enhanced sequences like 
the PI-CAI challenge. Despite mpMRI being the stand-
ard protocol for prostate imaging, evidence has recently 
emerged showing that the bi-parametric MRI is on par 
with the multi-parametric one, averting contrast usage 
and saving time [36, 37]. In a similar vein, we did not 
include clinical and laboratory findings in our DL mod-
els. Thus, creating a DL-based nomogram using pros-
tate MRI along with clinical and laboratory for csPCa 
might be sought after in the future [38].

Fourth, we did not compare the performance of 
our DL model with that of radiologists or investigate 
its benefits to radiologists in reading prostate MRI. 
Regardless, the PI-CAI challenge organizers plan to 
compare the performance of the top-ranked models, 
including the model used in this study, with many radi-
ologists with different experience levels worldwide. 
Likewise, we also plan to build a browser-based pipe-
line and invite radiologists with different levels of expe-
rience nationwide to read cases of our in-house dataset 
with and without the DL models. This will allow us to 
compare our model performance with radiologists in 
detecting csPCa and show whether it adds value to the 
readings of radiologists in terms of confidence, accu-
racy, and effectiveness.

Conclusions
The state-of-the-art DL model trained using extensive 
data augmentations and probabilistic prostate masks 
trained on the large-scale PI-CAI data provided high 
performance in detecting csPCa on the hidden valida-
tion and testing sets of the challenge and large-scale 
multi-center and multi-vendor in-house data consist-
ing of men with different demographics, showing its 
robustness and generalizability within and across data-
sets. Notably, implementing transfer learning using a 
small sample from the in-house data did not further 
improve the performance, supporting its generalizabil-
ity and robustness against data shift.
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