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Abstract 

Objectives  This study aims to develop and validate a virtual biopsy model to predict microsatellite instability (MSI) 
status in preoperative gastric cancer (GC) patients based on clinical information and the radiomics of deep learning 
algorithms.

Methods  A total of 223 GC patients with MSI status detected by postoperative immunohistochemical staining (IHC) 
were retrospectively recruited and randomly assigned to the training (n = 167) and testing (n = 56) sets in a 3:1 ratio. 
In the training set, 982 high-throughput radiomic features were extracted from preoperative abdominal dynamic 
contrast-enhanced CT (CECT) and screened. According to the deep learning multilayer perceptron (MLP), 15 optimal 
features were optimized to establish the radiomic feature score (Rad-score), and LASSO regression was used to screen 
out clinically independent predictors. Based on logistic regression, the Rad-score and clinically independent predic-
tors were integrated to build the clinical radiomics model and visualized as a nomogram and independently verified 
in the testing set. The performance and clinical applicability of hybrid model in identifying MSI status were evaluated 
by the area under the receiver operating characteristic (AUC) curve, calibration curve, and decision curve (DCA).

Results  The AUCs of the clinical image model in training set and testing set were 0.883 [95% CI: 0.822–0.945] and 
0.802 [95% CI: 0.666–0.937], respectively. This hybrid model showed good consistency in the calibration curve and 
clinical applicability in the DCA curve, respectively.

Conclusions  Using preoperative imaging and clinical information, we developed a deep-learning-based radiomics 
model for the non-invasive evaluation of MSI in GC patients. This model maybe can potentially support clinical treat-
ment decision making for GC patients.

Key points 

•	 MSI is an important biomarker for immunotherapy in gastric cancer.
•	 Quantitative radiomics features were closely related to MSI in gastric cancer.
•	 Combining clinical and radiomics features with deep learning could evaluate MSI noninvasively.
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Graphical abstract

Based on the extraction of radiomic features of tumor regions from pre-treatment CECT, optimized 
by deep learning algorithms, and combined with clinical baseline data to achieve non-invasive 

evaluation of GC MSI which provide support for GC personalized immunotherapy.

A virtual biopsy study of microsatellite 
instability in gastric cancer based on deep 

learning radiomics
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Introduction
Gastric cancer (GC) is a highly heterogeneous malig-
nancy caused by multiple factors and is a global public 
health problem. The incidence of GC varies according 
to geographical location and is particularly high in Asia 
(age-standardized [global] incidence: 32.5 per 100,000 
men; 13.2 per 100,000 women) [1, 2]. MSI-positive GC 
is one of the major molecular subtypes of GC as defined 
by the Cancer Genome Atlas Group and accounts for 
10–22% of all GC patients [3]. The deletion of any of the 
mismatch gene repair proteins (MLH1, PMS2, MSH2, 
and MSH6) leads to microsatellite instability (MSI/
MSI-H) [4, 5]. In recent years, immune checkpoint 
inhibitors have shown great potential in the treatment 
of progressive GC [6]. MSI is an important predic-
tive biomarker for evaluating the effect of anti-pro-
grammed cell death-1 (PD-1) immunotherapy in GC 
patients. Several clinical trials have confirmed that the 
objective response rate and survival were significantly 

better in the MSI group than in the microsatellite stabi-
lization (MSS) group in anti-PD-1 immunotherapy for 
advanced GC [7–9]. However, there is a large individ-
ual variation in the efficacy of anti-PD-1 therapy [10], 
so it is important to select patients who are most likely 
to benefit. Currently, immunohistochemical stain-
ing (IHC) and PCR molecular testing are mainly used 
to detect MSI expression levels [5, 11, 12]. Given the 
spatial heterogeneity of MSI expression, a small piece 
of tissue obtained by invasive biopsy may not be suffi-
ciently representative of the entire tumor region [13], 
thus affecting the assessment of MMR protein expres-
sion. Although universal testing for MSI has been 
recommended in the NCCN guidelines for patients 
with GC [14], many patients are not tested due to the 
invasive, time-consuming and expensive nature of tis-
sue biopsy. Therefore, there is an increasing need to 
develop a non-invasive method for the holistic assess-
ment of MSI expression in GC.
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With the development of computer-aided medicine, 
accurate assessment of tumor’s pathological features has 
been achieved by combining radiomics and deep learning 
to extract and analyze quantitative radiological features, 
known as ’virtual biopsies,’ which provide a reference 
standard for conventional biopsies [15–17]. Several stud-
ies have demonstrated the potential role of deep-learn-
ing-based radiomics in predicting lymph node metastasis 
[18] or response to neoadjuvant chemotherapy [19, 20] in 
GC, so this study explored the non-invasive assessment 
of GC biomarkers based on such methods using preop-
erative computed enhanced tomography (CECT) images 
and clinical data. It was also visualized as a nomogram to 
evaluate the potential application as a virtual biopsy tool 
in clinical auxiliary diagnosis.

Methods
Patient selection and clinical variables collection
This study was approved by the ethics committee of our 
medical center, and the requirement for informed con-
sent was waived due to the retrospective nature of this 
study. A total of 223 patients were enrolled in this study 
with MSI confirmed by postoperative IHC of GC by 
searching the medical database of our hospital from Janu-
ary 2020 to March 2022, including 182 MSS patients and 

41 MSI patients. All samples were divided into a training 
set (n = 167) and testing set (n = 56) according to the 3:1 
random allocation principle. The inclusion criteria were 
as follows: 1) aged 18–80 years; 2) first gastric cancer sur-
gery; 3) histological type adenocarcinoma; 4) dynamic 
contrast-enhanced CT of the upper abdomen within 
2 weeks before surgery; 5) tumor morphology identified 
in medical images; and 6) no neoadjuvant chemoradio-
therapy performed before surgery. The details of cohort 
inclusion are shown in Fig. 1.

In this study, we collected baseline clinicopathologi-
cal data and laboratory parameters measured by venous 
blood collection within 1 week before surgery, as detailed 
in Additional file  1: Table  1. According to the clinical 
application standards of our hospital, the tumor location 
was reported by professional radiologists after reading 
the preoperative CECT. According to the eighth edition 
of the AJCC staging report, the clinical T stage of the 
tumor was determined.

MSI status definition and revaluation
In this study, the MSI status was obtained by immuno-
histochemistry (IHC), and the immunohistochemi-
cal sections were formalin-fixed paraffin embedding 
with a thickness of 2–3  µm, passed through a standard 

Fig. 1  Flowchart of participants recruitment for this study
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streptavidin–biotin–peroxidase procedure, and stained 
by an automatic immunohistochemical staining machine 
(Leica Bond-Max, Leica Biosystems). Two pathol-
ogy experts in the field of gastrointestinal tumors (with 
8  years and 10  years of work experience, respectively) 
reanalyzed the expression of four MMR proteins, MLH1, 
PMS2, MSH2, and MSH6, in IHC sections to characterize 
MSI. They were unaware of the clinical and pathological 
information of the samples in advance, and if the results 
were different, they reached an agreement through con-
sultation. Loss of expression of any MMR protein was 
defined as defects of mismatch repair and divided into 
the MSI/MSI-H group; expression of all MMR proteins 
was defined as professional MMR and divided into the 
MSS/MSI-L group.

Protocol of CECT image acquisition
All patients underwent CECT with a 64-slice multislice 
CT scanner, which covered the entire upper abdomen. 
The specific parameters of the scanner are detailed in 
Additional file  1: Table  2. To ensure an empty stomach, 
all patients fasted for 8  h. Before the examination, they 
drank more than 800  mL of purified water to fill the 
stomach cavity. During the examination, the patients 
were placed in a supine position and asked to hold their 
breath. A nonionic contrast agent (Iohexol-350 Injection; 
Starry Pharmaceutical) was pumped into the antecubital 
vein through an automated high-pressure pump injec-
tion system (Medrad Vistron Plus, Bayer Healthcare) at 
a dose of 1.5 mL/kg, the injection speed was 3 mL/s, and 
the portal venous phase CECT image was acquired 60 s 
after the contrast agent was injected. All CT images were 
reconstructed with an axial thickness of 5 mm. Then, the 
DICOM format image files were retrieved and exported 
from the image archiving and communication system 
and medical imaging workstation and stored for further 
image segmentation and analysis.

Tumor segmentation
All CT images were independently reviewed by two radi-
ologists with 5 years (reader 1) and 8 years (reader 2) of 
experience in gastrointestinal oncology radiology who 
were blinded to the IHC results. If they disagree on the 
diagnosis, the final result will be decided by a chief radi-
ologist with more than 20  years of experience in diag-
nosing abdominal tumors. Using the 3D Slicer software 
(4.11, www.​slicer.​org) in reading the CECT image, set 
to the abdomen window (width: 350 HU; horizontal: 40 
HU). Afterward, Reader 1 and Reader 2 utilized the Seg-
mentation Wizard plugin in 3D Slicer to achieve semi-
automatic segmentation of tumor boundaries in all axial 
portal CECT to obtain the region of interest (ROI). After 
full-slice annotation, a three-dimensional (3D) image was 

generated to directly reflect the ROI shape, as shown in 
Fig.  2. During the labeling process, intragastric air, sur-
rounding adipose tissue, areas of tumor necrosis, and 
perigastric lymph nodes were carefully excluded. Before 
feature extraction, all images are z-scores normalized 
separately and resampled at a pixel spacing of 1*1*1 mm.

Radiomic feature extraction
PyRadiomics (http://​www.​radio​mics.​io/) was used 
to extract radiomics features from all segmented CT 
images [21]. The extracted feature types included: 1) 
shape-based (SB); 2) first-order statistics (FOS); 3) gray-
level co-occurrence matrix (GLCM); 4) gray-level run-
length matrix (GLRLM); 5) gray-level size zone matrix 
(GLSZM); and 6) gray-level correlation matrix (GLDM), 
which is consistent with previous studies [22, 23]. To 
reduce the effect of overfitting of radiomic features on 
the performance of prediction models, we applied intra-
class correlation coefficients (ICCs) to ensure the robust-
ness of radiomic features, and 30 randomly selected CT 
images from the original reader 1 and reader 2 annotated 
CT images were used to assess interobserver ICC. After 
a 4-week interval, reader 1 redrew the ROI of the drawn 
random sample, extracted the radiomic features with the 
same process, and calculated the radiomic features of 
the two repeats of reader 1 to evaluate the intraobserver 
ICC. Usually, ICC > 0.75 is defined as good consistency, 
so we discard the features of intragroup and intergroup 
ICC < 0.75 to ensure robustness.

To remove redundant features, we employ variance 
and correlation filters. The specific steps are as follows: 
If the normalized standard deviation of a feature is less 
than 0.1, the feature will be discarded because it is inva-
lid; at the same time, the Pearson correlation coefficient 
of each pair of features is calculated. If the Pearson cor-
relation coefficient between two features is greater than 
0.9, the two features are highly similar, excluding one of 
the two features. All the features were standardized with 
min–max normalization in both cohorts using the min 
and max deviation of the training cohort feature data. To 
make the screened features more predictive, we used a 
deep learning algorithm, multilayer perceptron (MLP), to 
quantify the optimal radiomic features and established a 
radiomic feature score (Rad-score) for each patient (see 
Fig. 3).

Development of prediction models and nomogram
To explore whether there is an additional gain in clini-
cal information for predicting MSI status, we performed 
a univariate logistic regression analysis on clinical data. 
Then, clinical risk predictors were screened based on 
LASSO regression, and three independent MSI pre-
diction models (clinical model, radiomics model, and 

http://www.slicer.org
http://www.radiomics.io/
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clinical imaging model) were developed using the Rad-
score and clinical risk predictors in training set and inde-
pendently verified in the testing set. Model prediction 
performance was assessed by the area under the receiver 
operating characteristic (ROC) curve (AUC), specificity, 
and sensitivity. Moreover, we visualized the hybrid model 
as a nomogram using logistic regression to increase the 
clinical application value. Nomogram performance was 
evaluated using a calibration curve, and the clinical util-
ity of the nomogram was evaluated by decision curve 
analysis (DCA) to calculate the maximization of net gain 
within range thresholds.

Statistical analysis
IBM SPSS Statistics (26.0; IBM Corp.) was used to con-
duct a univariate logistic regression analysis, the Chi-
square test was used to analyze categorical variables, 
and the two-sided independent samples t test was used 
for continuous variables subject to normal distribution. 
Continuous variables that did not have a normal distri-
bution were analyzed using the Mann‒Whitney U test. 
A two-sided p value of < 0.05 was considered statistically 
significant. MLP model development, prediction models, 
nomogram construction, and performance evaluation 
were all developed through the R (version 3.6.1; http://​
www.R-​proje​ct.​org) software package.

Results
Clinical and pathological characteristics
Univariate logistic regression analysis was performed 
on clinical and pathological characteristics, and details 
of the relationship between patient characteristics and 
MSI status are shown in Table 1. The results showed that 
there were significant differences between MSI and clini-
cal T stage (p value < 0.05) and degree of differentiation 
(p value < 0.05) in the two sets. In the training set, there 
were significant differences in MSI status in patients 
of different ages (p value = 0.016) and of either sex (p 
value = 0.015). However, tumor location and carcinoem-
bryonic antigen (CEA) level did not show a significant 
correlation with MSI status in either cohort.

Radiomics feature selection
A total of 982 radiomic features were extracted from each 
ROI, and 365 features with ICC ≤ 0.75 were excluded 
after the consistency detection of the features. After 
that, variance and correlation filters were used to elimi-
nate redundant features, and 197 radiomic features were 
retained. Finally, using LASSO regression with tenfold 
cross-validation, 15 optimal radiomic features were 
screened (Fig. 4A, B), including two original features, one 
3D skewness feature, four first-order wavelet features, 

two GLDM features, three GLSZM features, two GLCM 
features and one GLRM feature (Table 2).

Construction of the radiomics signature
In the MLP model developed based on a deep learning 
algorithm, the Rad-score represents quantified radiomic 
features. We then investigated the distribution of each 
Rad-score in the two sets. The average Rad-score in the 
MSI group was significantly higher than that in the MSS 
group (Fig. 4C, D), which was demonstrated in the test-
ing set. The AUC of the radiomics model based on the 
independent Rad-score was 0.856 [95% confidence inter-
val (CI): 0.792–0.919] in the training set and 0.753 [95% 
CI: 0.606–0.901] in the testing set (Fig. 5A, B).

Evaluation of the models and nomogram
In univariate analysis, age, sex, clinical T stage, and 
degree of differentiation were found to be closely related 
to MSI status, and subsequent LASSO regression analy-
sis identified age, sex, clinical T stage, and Rad-score as 
independent predictors of MSI (Fig.  5C, D). Ultimately, 
we constructed three prediction models (clinical model, 
radiomics model, and clinical image model) based on the 
above independent predictors and visualized the clinical 
imaging model as a nomogram (Fig. 6).

To evaluate the predictive performance of the three 
models, we plotted the ROC curves and calculated the 
AUC for comparison (Fig. 7A, B). The AUCs of the clini-
cal models in the training and testing sets were 0.725 
[95% CI: 0.611–0.840] and 0.738 [95% CI: 0.586–0.889], 
respectively. As shown in Fig.  7C, the calibration curve 
for the nomogram shows good agreement between the 
observed and predicted results. To assess the clinical 
applicability of the nomogram, we performed a clinical 
decision curve analysis on the nomogram (Fig. 7D). At a 
threshold probability of 20%–70%, the nomogram model 
showed a greater net benefit than treating all patients 
or no treatment compared to the stand-alone radiomics 
model and at the 0%–20% and 70%–100% ranges with 
similar net gains.

Compared with separate clinical and radiomics models, 
the clinical image model combining preoperative clinical 
features and Rad-score showed better predictive perfor-
mance in classifying MSI and MSS status; AUCs of 0.883 
[95% CI: 0.822–0.945] in training set and 0.802 [95% CI: 
0.666–0.937] in testing set were achieved. The prediction 
performance details of the three prediction models are 
shown in Table 3.

Discussion
We used clinical information and pretreatment CECT 
images of 223 GC patients from our medical center 
to develop a virtual biopsy model supported by deep 

http://www.R-project.org
http://www.R-project.org
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learning algorithms. To the best of our knowledge, we 
are the first to apply deep learning algorithms to the opti-
mization of radiomics feature building in the GC MSI 
radiomics. Clinical imaging models supported by MLP 
effectively improve the ability to identify MSI/MSI-H in 
GC patients (AUC: training set 0.883, testing set 0.802). 
Accurate MSI identification is critical for individualized 

systemic treatment of GC patients, which can ben-
efit patients receiving anti-PD-1 immunotherapy and 
improve GC patient survival [9, 24, 25].

All valid samples in a unit period were covered in this 
study, avoiding selection bias as much as possible. The 
incidence of MSI in GC patients in the study was 18.4%, 
which is consistent with the current Global epidemiology 

Table 1  Univariate logistic regression analysis of training and testing sets characteristics

All p values <0.05 are bolded in Table, which were considered statistically significant in the corresponding correlation analysis

Data for continuous variables are expressed as median (interquartile range) or mean ± standard deviation, and categorical variables are expressed as sample size 
(%). AFP Alpha fetal protein; ALB Albumin; CEA Carcinoembryonic antigen; CA19-9 Carbohydrate antigen 19–9; Lym Lymphocyte count; NE Neutrophil count; NLR 
Neutrophil lymphocyte ratio

Training set (n = 167) Testing set (n = 56)

Clinical characteristics MSS/MSI-L (N = 142) MSI/MSI-H (N = 25) p value MSS/MSI-L (N = 40) MSI/MSI-H (N = 16) p value

Gender: 0.015 0.129

 Female 33 (23.2) 12 (48.0) 11 (27.5) 8 (50.0)

 Male 109 (76.8) 13 (52.0) 29 (72.5) 8 (50.0)

Age (years): 63.29 ± 9.59 68.12 ± 5.95 0.016 61.03 ± 10.40 64.25 ± 8.58 0.277

Clinical T stage: 0.025 0.009
 I 2 (1.4) 6 (24.0) 0 (0) 4 (25.0)

 II 21 (14.8) 2 (8.0) 5 (12.5) 1 (6.2)

 III 87 (51.5) 16 (64.0) 21 (52.5) 9 (56.3)

 IV 32 (32.3) 1 (4.0,) 14 (35.0) 2 (12.5)

Differentiated degree 0.013 0.001
 Well-differentiated 2 (1.4) 1 (4.0) 0 (0) 0 (0)

 Moderately differentiated 42 (29.6) 14 (56.0) 13 (32.5) 13 (81.3)

 Poorly differentiated 98 (69.0) 10 (40.0) 27 (67.5) 3 (18.7)

Tumor location: 0.765 0.189

 Upper-third 22 (15.5) 2 (8.0) 6 (15.0) 0 (0)

 Middle-third 33 (23.2) 6 (24.0) 10 (25.0) 2 (12.5)

 Lower-third 83 (58.5) 16 (64.0) 23 (57.5) 13 (81.3)

 Multiple 4 (2.8) 1 (4.0) 1 (2.5) 1 (6.2)

Bowman type 0.460 0.365

 I 5 (3.8) 2 (8.3) 0 (0) 1 (6.7)

 II 11 (8.3) 1 (4.2) 5 (12.5) 3 (20.0)

 III 114 (85.7) 20 (83.3) 33 (82.5) 11 (73.3)

 IV 3 (2.2) 1 (4.2) 2 (5.0) 0 (0)

CEA level (ng/mL) 0.658 0.763

 Normal 86 (61.4) 16 (66.7) 25 (62.5) 11 (68.8)

 Abnormal 54 (38.6) 8 (33.3) 15 (37.5) 5 (31.3)

AFP level (ng/mL) 1.000 0.550

 Normal 131 (93.6) 23 (95.8) 37 (92.5) 16 (100.0)

 Abnormal 9 (6.4) 1 (4.2) 3 (7.5) 0 (0)

CA19-9 level (u/mL) 1.000 0.416

 Normal 123 (88.5) 21 (91.3) 33 (89.2) 15 (93.8)

 Abnormal 16 (11.5) 3 (8.7) 4 (10.8) 1 (6.2)

 ALB (g/L) 40.10 ± 5.04 40.53 ± 4.82 0.698 40.21 ± 4.70 39.21 ± 5.57 0.501

 NE (10^9/L) 3.44 (2.71–4.52) 4.72 (2.68–5.51) 0.061 3.46 (2.52–4.65) 3.67 (2.72–5.10) 0.737

 Lym (10^9/L) 1.67 (1.37–2.00) 1.88 (1.07–2.47) 0.474 1.66 (1.37–2.07) 1.50 (1.00–2.50) 0.544

 NLR 1.96 (1.54–2.91) 2.33 (1.99–3.19) 0.230 2.07 (1.91–2.83) 1.77 (1.02–3.23) 0.154
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Table 2  Selected optimal features in radiomics

Features Mean SD

F1 original_shape_MajorAxisLength 0.344 0.186

F2 original_firstorder_90Percentile 0.337 0.165

F3 log.sigma.3.0.mm.3D_firstorder_Skewness 0.546 0.187

F4 wavelet.LLH_firstorder_Median 0.851 0.115

F5 wavelet.LLH_gldm_LowGrayLevelEmphasis 0.076 0.130

F6 wavelet.LHL_firstorder_Median 0.962 0.078

F7 wavelet.LHL_glszm_LargeAreaLowGrayLevelEmphasis 0.051 0.112

F8 wavelet.LHH_glcm_Imc2 0.299 0.145

F9 wavelet.LHH_glrlm_RunEntropy 0.526 0.130

F10 wavelet.HLL_firstorder_Range 0.198 0.133

F11 wavelet.HLL_glcm_ClusterProminence 0.047 0.116

F12 wavelet.HLL_glszm_SizeZoneNonUniformity 0.187 0.145

F13 wavelet.HLL_glszm_SmallAreaEmphasis 0.527 0.149

F14 wavelet.HHL_firstorder_Kurtosis 0.099 0.151

F15 wavelet.HHL_gldm_DependenceNonUniformityNormalized 0.197 0.152

Fig. 2  An example of ROI segmentation of CECT images. A The portal venous phase scan reveals heterogeneous enhancement of the tumor 
region (shown by arrow). B Semi-automatic segmentation of tumor area (green regions). C The full-thickness tumor region was segmented and 
reconstructed to generate a three-dimensional model of ROI. CECT computer-enhanced tomography; ROI regions of interest
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on GC-related MSI (10–22%) [3, 5, 26]. LASSO regres-
sion analysis of clinical baseline data found that age, sex, 
and clinical T stage were independent clinical risk factors 
closely related to MSI expression in GC patients. Consid-
ering the relationship between advanced age [27–30] and 
female sex [28, 30], GC patients and MSI are consistent 
with previous related studies. Current evidence suggests 
that the MSI-H phenotype in patients with sporadic GC 
is closely associated with hypermethylation of the pro-
moter CpG island causing silencing of the hMLH1 gene, 
which leads to progressive loss of MLH1 protein expres-
sion [31–33]. Similar findings were found in our recruited 
patients, with more than 83% (n = 35) of MSI-expressing 
patients having a deletion in the expression of the mis-
match repair protein MLH1. Interestingly, researchers 
such as Nakajima et al. [34] and Kim et al. [35] found that 
the methylation of the mismatch repair gene hMLH1 
was age dependent, and its incidence was positively cor-
related with age. hMLH1 methylation is more common 
in elderly gastric cancer patients, which seems to explain 
why MSI/MSI-H was more common in older GC patients 

in our study. Compared with MSS/MSI-L, GC with the 
MSI/MSI-H phenotype is less aggressive, representing a 
better prognosis in the early stage of GC [27, 36]. At the 
molecular level, recent studies have found that changes 
in the genetic and epigenetic characteristics of the GC 
genome often occur in the early stages of the tumor [37, 
38], which supports that hMLH1 promoter methylation-
induced MSI-H is more likely to be seen in the early stage 
(TNM stages I–II) presumed in GC patients, thus defin-
ing MSI as an early molecular event of GC. This is also 
confirmed in the reports of Polom et  al. [30] and Jahng 
et  al. [39]. However, we did not observe the previously 
demonstrated significant relationship between tumor 
location [29, 30, 36] and MSI, which may be related to dif-
ferences in the patient population or regional prevalence 
of our recruitment. Taken together, these potentially 
characteristic clinical factors reflect higher histological 
heterogeneity in MSI tumors.

The development of radiomics technology makes it 
possible to capture the heterogeneity of tumor mol-
ecules in clinical images, which can provide objective 

Fig. 3  Core radiomics features are quantified using the DL-MLP model to establish a radiomic feature score. DL-MLP deep learning multilayer 
perceptron
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and quantitative support for cancer molecular biologi-
cal detection and personalized treatment [40]. We finally 
selected 15 radiomics features (including 1 first-order fea-
ture, 1 shape-based feature, and 13 filtered features) from 
the filtered and unfiltered images to build the model. 
The first-order feature describes the distribution of voxel 
intensities in CT images, and the shape-based feature is 
a description of the two-dimensional tumor regions’ size 
and shape. The filtered features are first-order statistical 
features and texture features extracted from the filtered 
images and reconstructed by transforming the Lapla-
cian of the Gaussian spatial bandpass filter or wavelet 
filter, where the texture features include the gray-level 
co-occurrence matrix (GLCM), gray-level run-length 

matrix (GLRLM), gray-level size zone matrix (GLSZM), 
and gray-level dependence matrix (GLDM). With these 
two different filtering strategies, the specific structure 
of the original image is enhanced. These features reflect 
the differences in spatial morphology, pixel intensity, and 
texture of tumor regions and may represent spatial and 
temporal heterogeneity in tumor tissue and characteristic 
biological phenotypes [23, 41]. This may explain the abil-
ity of the Rad-score established in this study to exhibit 
differentiated GC MSI in both cohorts. Additionally, 
accurate and efficient tumor region segmentation meth-
ods are important to ensure the quality of quantitative 
image features. It has been confirmed that 3D Slicer has 
better segmentation algorithms and higher segmentation 

Fig. 4  Optimal radiomics features selection and the distribution of Rad-score. A The least absolute shrinkage and selection operator (LASSO) binary 
logistic regression was used to select 15 nonzero features with the highest coefficient. B The 15 nonzero coefficients radiomics features subset 
distribution. The boxplots of Rad-score distribution for the MSI group and MSS group in the training (C) and testing (D) sets
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accuracy than other image segmentation software while 
being more accessible as free open-source software [42]. 
Moreover, the radiomics features extracted after image 
segmentation using 3D Slicer have higher robustness and 
are, therefore, recommended for use in high-throughput 
data mining efforts for medical oncology imaging [43].

The exploration of radiomics in the field of GC bio-
markers has started. Li et  al. [44] used radiomics to 
construct a predictive model for detecting GC HER-2 
expression, with an AUC of 0.799 [95% CI: 0.704 − 0.894]. 

Based on the information of 189 patients, Liang et  al. 
[45] first constructed a predictive model based on logis-
tic regression analysis to explore the feasibility of pre-
dicting GC-related MSI status, and the AUC was 0.8228 
[95% CI: 0.7355–0.9101]. However, traditional radi-
omic method brings challenges in image segmentation, 
standardization, acquisition, and reconstruction. As an 
emerging means of quantitative image analysis, deep 
learning can optimize such limitations and improve the 
accuracy and reliability of prediction models [16, 46, 47]. 

Fig. 5  ROC curve of independent Rad-score model and model predictors screening. Independent radiomics model ROC curves of the training 
set (AUC: 0.856, 95%CI: 0.792–0.919) (A) and testing set (AUC: 0.753, 95% CI: 0.606–0.901) (B). By the LASSO regression to independent predictors 
selection. C Tuning parameter (lambda, λ) of the LASSO model was selected and optimized by the tenfold cross-validation, and the optimal λ value 
was obtained by drawing vertical dotted lines. D Substituting the optimal λ values into the eigencoefficients, four nonzero coefficient features are 
obtained. ROC operating characteristic curve; AUC​ area under the curve; 95% CI 95% confidence interval
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The combination of deep learning and radiomics has 
shown promising results [18–20, 48]. In this study, we 
first attempted to apply deep learning algorithms to the 
calculation and reconstruction of GC-related MSI radi-
omic features. Compared with previous [45] research, 
our results were encouraging and obtained a higher AUC 
(0.883 and 0.802). This may be attributed in the optimi-
zation of radiomic features by deep learning algorithm, 
the increase in sample size, and the level of image seg-
mentation in our study. Additionally, we tried to add 
pathological features to the combined model, but the 
final result did not significantly improve the model’s pre-
dictive performance, reflecting the independent value of 

pretreatment radiomics in predicting MSI status in GC 
patients. To increase clinical practicability, we visual-
ized the clinical image model into a nomogram based on 
logistic regression to generate the prediction probability 
of MSI so that it could be used as a virtual biopsy tool to 
support clinical medical decision making.

It should be noted that our study also has limitations. 
First, this is a single-center retrospective study, and inevi-
tably, there is a patient selection bias. Although we tried 
to include a relatively more number of cases (n = 223), the 
study sample is still small, considering the high incidence 
of gastric cancer in Asia, which may affect the general-
izability of the model. Second, due to the inherent black 

Fig. 6  Development of nomogram for predicting MSI status. The nomogram was built based on four independent predictors of the training set, 
including Rad-score, age, sex, and clinical T stage. In Rad-score, numbers represent scores. In age, the numerical value represents age, increasing by 
5 years for each cell. In sex, 0 on behalf of the woman and 1 on behalf of the man. In the stage, the increasing numbers each mean T1, T2, T3, and T4

Table 3  Comparison of the prediction performance of three models for MSI status

AUC​ Area under the curve; 95% CI 95% confidence interval

Models AUC (95%CI) Sensitivity (95%CI) Specificity (95%CI)

Clinical model

 Training (n = 167) 0.725 (0.611–0.840) 0.683 (0.478–0.870) 0.775 (0.404–0.851)

 Testing (n = 56) 0.738 (0.586–0.889) 0.553 (0.300–0.812) 0.812 (0.454–0.960)

Radiomics model

 Training (n = 167) 0.856 (0.792–0.919) 0.957 (0.782–1.000) 0.681 (0.518–0.794)

 Testing (n = 56) 0.753 (0.606–0.901) 0.625 (0.312–0.875) 0.750 (0.325–0.925)

Hybrid model

 Training (n = 167) 0.883 (0.822–0.945) 0.870 (0.565–1.000) 0.723 (0.539–0.823)

 Testing (n = 56) 0.802 (0.666–0.937) 0.688 (0.375–0.938) 0.775 (0.370–0.950)
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box property of machine learning, the process between 
model data input and output is difficult to interpret, and 
this lack of transparency has implications for clinical 
practice, so we plan to apply more transparent and inter-
pretable medical algorithms in future [49, 50]. Finally, we 
also noted the place of dual-energy CT (DECT) in radi-
omics, and in future, we plan to collect cases in DECT 
centers to study the benefit of DECT in GC MSI virtual 
biopsy studies.
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Fig. 7  Performance evaluation of prediction models and nomogram. Receiver operating characteristic (ROC) curves comparison of three prediction 
models in training (A) and testing (B) sets: Clinical characteristics model (name 1), radiomics features model (name 2), and hybrid model (name 3) of 
Rad-score combined with the clinical features. As shown in the figure, the hybrid model achieved the highest AUC (0.883 and 0.802) in both sets. C 
The calibration curve shows the calibration between the predicted risk of the MSI state and the observed result of the MSI state in the nomogram 
model. D The DCA of radiomics model and nomogram model. The x-axis represents the risk threshold probability, and the y-axis is the net benefits. 
The nomogram model showed better clinical net benefits. AUC​ area under the curve
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