
Zhong et al. Insights into Imaging           (2023) 14:79  
https://doi.org/10.1186/s13244-023-01426-5

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Robustness of radiomics features of virtual 
unenhanced and virtual monoenergetic images 
in dual-energy CT among different imaging 
platforms and potential role of CT number 
variability
Jingyu Zhong1†, Zilai Pan2†, Yong Chen2, Lingyun Wang2, Yihan Xia2, Lan Wang2, Jianying Li3, Wei Lu4, 
Xiaomeng Shi5, Jianxing Feng6, Fuhua Yan2, Huan Zhang2* and Weiwu Yao1*   

Abstract 

Objectives To evaluate robustness of dual-energy CT (DECT) radiomics features of virtual unenhanced (VUE) image 
and virtual monoenergetic image (VMI) among different imaging platforms.

Methods A phantom with sixteen clinical-relevant densities was scanned on ten DECT platforms with comparable 
scan parameters. Ninety-four radiomic features were extracted via Pyradiomics from VUE images and VMIs at energy 
level of 70 keV  (VMI70keV). Test–retest repeatability was assessed by Bland–Altman analysis. Inter-platform reproduc-
ibility of VUE images and  VMI70keV was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion 
(QCD) among platforms, and by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC) 
between platform pairs. The correlation between variability of CT number radiomics reproducibility was estimated.

Results 92.02% and 92.87% of features were repeatable between scan–rescans for VUE images and  VMI70keV, respec-
tively. Among platforms, 11.30% and 28.39% features of VUE images, and 15.16% and 28.99% features of  VMI70keV were 
with CV < 10% and QCD < 10%. The average percentages of radiomics features with ICC > 0.90 and CCC > 0.90 between 
platform pairs were 10.00% and 9.86% in VUE images and 11.23% and 11.23% in  VMI70keV. The CT number inter-
platform reproducibility using CV and QCD showed negative correlations with percentage of the first-order radiomics 
features with CV < 10% and QCD < 10%, in both VUE images and  VMI70keV (r2 0.3870–0.6178, all p < 0.001).

Conclusions The majority of DECT radiomics features were non-reproducible. The differences in CT number were 
considered as an indicator of inter-platform DECT radiomics variation.

Critical relevance statement: The majority of radiomics features extracted from the VUE images and the VMI70keV 
were non-reproducible among platforms, while synchronizing energy levels of VMI to reduce the CT number value 
variability may be a potential way to mitigate radiomics instability.
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Key points 

• The repeatability of DECT radiomics features was high between scan–rescans.
• The inter-reproducibility of radiomics features in VUE images and  VMI70keV was low.
• The differences in DECT techniques obviously altered the radiomics features.
• Synchronizing energy levels of VMI can potentially improve radiomics robustness.

Keywords Machine learning, Multidetector computed tomography, Reproducibility of results, Image enhancement, 
Image reconstruction

Graphical Abstract

Introduction
Radiomics extracts minable data from medical images 
to answer diagnostic, prognostic, and predictive ques-
tions, with the aim to deliver precision medicine [1–5]. 
Although numerous studies have shown its potential 
for clinical decision-making, gap between promising 
the academic results and the clinical utilization still 
exists due to instability of radiomics features [6–9]. 
The robustness of radiomics features has been dem-
onstrated to be sensitive and fragile to variations of 
data acquisition, image reconstruction, segmentation, 

image processing, and radiomics feature computation. 
The standardization of features is considered critical 
to overcome the difficulty in generalizability of radi-
omics [10], while it is still an open question which fac-
tors should be emphasized for improving radiomics 
robustness.

Dual-energy CT (DECT) is a tremendous innovation in 
CT technology that allows creation of numerous imag-
ing datasets by enabling discrete acquisitions at more 
than one energy level [11, 12]. This technology has been 
coupled with radiomics and yielded as a superior imaging 
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biomarker with encouraging initial results in both onco-
logical and non-oncological fields [13–17]. However, 
an important prerequisite for widespread application 
of radiomics on DECT data is a high degree of stability, 
calling for comprehensive investigation of which factors 
that influence on DECT radiomics robustness. Differ-
ence in single-energy CT (SECT) technique and diverse 
approaches of DECT acquisition result in CT number 
variation, and this variation is considered as an impor-
tant underlying source of radiomics variation [18–21]. 
Meanwhile, the CT number values also diverge in vir-
tual unenhanced (VUE) images and in virtual monoen-
ergetic images (VMI) across DECT platforms [22, 23]. 
The energy level of VMI has impact on radiomics robust-
ness [24, 25], and high repeatability of radiomics features 
could remain stable when the same equivalent energy 
level was used for VMI generation with different DECT 
approaches [26]. Accordingly, we hypothesized that the 
inter-platform variability of radiomic features due to dif-
ferences in DECT data acquisition and reconstruction 
may be reduced by creating VMI at appropriate energy 
levels with comparable CT number values.

In this study, we therefore aimed to evaluate the inter-
platform reproducibility of DECT radiomics features in 
the VUE images and the VMI at energy level of 70  keV 
 (VMI70keV) and explore whether variability of CT number 
value has correlation with the robustness of DECT radi-
omics features.

Materials and methods
Phantom
Figure  1 presents the workflow of this study. The insti-
tution’s ethics approval was not required since this was 
a phantom study. A CT Dual-Energy Phantom Model 
(Gmamex, Gammex Inc.) was used. This phantom was 
composed of a 330-mm-in-diameter disk of water-equiv-
alent material and sixteen 28-mm-in-diameter holes 
for holding interchangeable inserts of various clinical-
relevant densities. We selected five iodine inserts with 
concentrations from 2.0 to 15.0 mg/mL, and eleven rods 
with densities of 0.44–1.69 g/cm3, mimicking wide range 
of CT number values of human tissues. The inserts were 
placed to minimize beam-hardening artifacts and kept 
unchanged across all scans.

Image acquisition and reconstruction
The phantom was scanned on ten DECT imaging  plat-
forms using seven DECT-capable scanners with com-
parable acquisition and reconstruction parameters 
(Table 1). Three types of DECT scanners were employed 
in our study, namely dual-source DECT (dsDECT), rapid 
kV-switching DECT (rsDECT), and dual-layer detector 

DECT (dlDECT), to generate images that were com-
parable to conventional SECT 120-kVp images. Three 
dsDECT scanners were used, each with two different 
tube voltage combinations for data acquisition, to provide 
six DECT imaging platforms. Three rsDECT scanners 
were used to provide three DECT imaging platforms. 
One dlDECT scanner  at tube voltage of 120 kVp was 
used to provide the tenth DECT imaging platform. The 
scan field of view (500 × 500 mm), reconstruction matrix 
(512 × 512), and slice thickness (5  mm) remained the 
same for all acquisitions to keep voxel size unchanged. 
The volume CT dose index, strength of iteration recon-
struction algorithm, and reconstruction kernel were cho-
sen to present the typical abdomen-pelvic examinations 
at our institution. Each scan was repeated several min-
utes apart with repositioning, to allow test–retest repeat-
ability analysis.

Two kinds of images were generated on each DECT 
imaging platform for radiomic robustness assessment, 
namely the VUE image and the  VMI70keV. The VUE 
images were selected to show the impact of differences in 
material decomposition techniques between platforms. 
The VUE images were created using proprietary DECT 
software tools per vendor-specific material decomposi-
tion techniques: Advantage Workstation version 4.7 (GE 
Healthcare), Syngo.via version VB10 (Siemens Health-
ineer), and IntelliSpace Portal Workstation version 10 
(Philips Healthcare), respectively. The  VMI70keV were 
generated as a gray-scaled, contrast-enhanced bench-
mark reconstruction relying on comparable linear energy 
blending approaches on each platform [27–29].

Segmentation and feature extraction
We applied an open-source ITK-SNAP software ver-
sion 3.6.0 (http:// www. itksn ap. org/ pmwiki/ pmwiki. php) 
for segmentation, following a rigid registration to mini-
mize variations [30]. Sixteen circular regions-of-interest 
(ROIs) of 26 pixels (25 mm) in diameter were placed at 
the center of each insert to present the clinical-relevant 
densities. To present the true difference among plat-
forms, we did not employ any image preprocessing steps. 
Python version 3.7.6 (https:// www. python. org) with 
Image Biomarker Standardization Initiative (IBSI)-com-
pliant Pyradiomics package version 3.0 (https:// pyrad 
iomics. readt hedocs. io/ en/ latest/) was used to extract 
the radiomics features from the original images [31]. 
Since the ROIs were fixed, we excluded the 26 shape-
based features. Consequently, 94 radiomics features 
were extracted from each ROI, namely 19 order features 
and 75 texture features. The detailed radiomics analysis 
methods are presented in Additional file 1: Note S1.

http://www.itksnap.org/pmwiki/pmwiki.php
https://www.python.org
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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Radiomics robustness analysis
To present the radiomics robustness, the test–retest 
repeatability and the inter-platform reproducibility were 
estimated [32]. The test–retest repeatability was assessed 
using images from repeating scans by Bland–Altman 
analysis [33]. The percentage of repeatable features was 

calculated, with a cutoff value of 90% of 16 ROIs [18], 
indicating the portion of feature scan–rescan measure-
ments that did not exceed the 95% limits of agreement. 
To test the hypothesis that the obtained biases of the 
radiomics feature values between the scan and rescan 
was equal to zero, a one-sample t test was performed. 

Fig. 1 Study workflow. This study was composed of three steps, namely image acquisition, radiomics analysis and robustness analysis. 
A standardized phantom was scanned on ten platforms on seven DECT-capable scanners of three types with the same voxel and typical 
abdomen-pelvic examination parameters. Corresponding VUE images and  VMI70keV were generated. Pyradiomics was employed to extract 19 
first-order and 75 texture radiomics features from ROIs segmented with a rigid registration. The test–retest repeatability was evaluated by Bland–
Altman analysis for repeated scans, and the hypothesis that the obtained biases of the radiomics feature values between the scan and rescan 
was equal to zero was tested by one-sample t test. The inter-platform reproducibility among VUE images, and that among  VMI70keV images, were 
assessed by CV and QCD. Inter-platform reproducibility between two particular platform pairs were estimated by ICC and CCC to characterize 
inter-platform difference across DECT platforms. Since there were ten platforms, forty-five comparisons were performed within the VUE images and 
within the  VMI70keV, respectively. CT number and their inter-platform reproducibility were calculated. The correlation between CT number variability 
of and percentage of robust radiomics features was investigated. dsDECT = dual-source dual-energy CT, rsDECT = rapid kV-switching dual-energy 
CT, dlDECT = dual-layer dual-energy CT
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The inter-platform reproducibility among the VUE 
images from ten platforms, and that among the  VMI70keV 
from ten platforms were evaluated, by the coefficient of 
variation (CV) [34] and the quartile coefficient of dis-
persion (QCD) [35], respectively, with a cutoff of 10% 
[30]. To further characterize inter-platform difference 
across DECT platforms, the inter-platform reproduc-
ibility between each platform within the VUE images and 
within the  VMI70keV was estimated to present consistency 
of two particular platforms, using the intraclass correla-
tion coefficient (ICC) of single rater, absolute agreement, 
two-way random effects model [36] and the concordance 
correlation coefficient (CCC) [37, 38], with a cutoff of 
0.90 [39, 40]. Since there were ten platforms, forty-five 
pairs of platforms within the VUE images and within the 
 VMI70keV were compared, respectively, which resulted 
in ninety comparisons in total. Additional attention was 
paid to the reproducibility of fourteen individual radiom-
ics features that are important as biomarkers in clinical 
studies and have been reported to be robust [41–43]. The 
CT number values and their inter-platform reproducibil-
ity were calculated.

Statistical analysis
The statistical analysis was performed with R language 
version 4.1.3 (https:// www.r- proje ct. org/) within RStu-
dio software version 1.4.1106 (https:// www. rstud io. 
com/). The continuous variables were presented as 

average ± standard deviation (SD). Proportions of robust 
features were indicated as percentages. The correlation 
between inter-platform CT number reproducibility and 
percentage of radiomics features that met the criteria of 
reproducibility was quantitatively estimated by Spearman 
correlation analysis due to the nonnormal distribution of 
the data. A two-sided p value < 0.05 was considered as 
statistically significant. The detailed statistical analysis 
methods are presented in Additional file 1: Note S2.

Results
Test–retest repeatability analysis of radiomics features
The average percentages ± SD of repeatable radiom-
ics features were 92.02 ± 7.43% and 92.87 ± 4.71% for 
the VUE images and the  VMI70keV, respectively, when 
the cutoff value was 90% of 16 ROIs (Additional file 1: 
Table S1 and Fig. S1). The biases of the radiomics fea-
ture values between the scan and rescan were not sig-
nificantly different from zero (all p > 0.05).

Inter‑platform radiomics reproducibility among all 
platforms within the VUE images and within the  VMI70keV
The average percentages ± SD of inter-platform repro-
ducible radiomics features were 11.30 ± 4.15% and 
28.39 ± 7.19% among all platforms within the VUE 
images, and 15.16 ± 3.99% and 28.99 ± 13.36% among 
all platforms within the  VMI70keV, respectively, when 

Table 1 Dual-energy CT acquisition and reconstruction parameters

* represents mA not mAs for GE medical systems. dsDECT dual-source dual-energy CT, rsDECT rapid kV-switching dual-energy CT, dlDECT dual-layer dual-energy CT

No. of 
platform

Vendor Scanner Type Tube Voltage 
(kVp)

Milliamperage 
(mA or mAs)

Rotation 
Time 
(sec)

Volume CT 
dose index 
(mGy)

Iteration 
Method

Reconstruction 
kernel

1 SIEMENS SOMATOM 
Drive

dsDECT 80/140 580/224 0.5 20.00 ADMIRE 2 Q40f

2 SIEMENS SOMATOM 
Drive

dsDECT 100/140 279/216 0.5 20.04 ADMIRE 2 Q40f

3 SIEMENS SOMATOM Defi-
nition Flash

dsDECT 80/140 531/205 1.0 20.01 SAFIRE 2 Q40s

4 SIEMENS SOMATOM Defi-
nition Flash

dsDECT 100/140 258/199 1.0 19.96 SAFIRE 2 Q40s

5 SIEMENS SOMATOM 
Force

dsDECT 70/150 848/212 0.5 20.00 ADMIRE 2 Qr40

6 SIEMENS SOMATOM 
Force

dsDECT 100/150 294/147 0.5 20.02 ADMIRE 2 Qr40

7 GE Discovery 
CT750 HD

rsDECT 80/140 640* 0.6 21.84 ASiR-V 40% Standard

8 GE Revolution 
Apex

rsDECT 80/140 370* 1.0 19.75 ASiR-V 40% Standard

9 GE Revolution CT rsDECT 80/140 275* 0.8 20.00 ASiR-V 40% Standard

10 PHILIPS IQon spectral 
CT

dlDECT 120 221 0.75 20.00 iDOSE 3 Standard (B)

https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
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the criteria were CV < 10% and QCD < 10% (Table 2 and 
Fig. 2). The percentages of radiomics features that met 
the reproducible criteria ranged from 4.26 to 22.34% 

for CV < 10% and from 17.02 to 38.30% for QCD < 10% 
in VUE images, and varied from 9.57 to 20.21% for 
CV < 10% and from 19.15 to 38.30% for QCD < 10% 

Table 2 Inter-platform reproducibility of radiomics among all platforms within the VUE images and within the  VMI70keV

Percentage indicates the percentage of features met the cutoffs for robustness measures (CV < 10% and QCD < 10%). GLCM Gray-level co-occurrence matrix, 
GLDM Gray-level dependence matrix, GLRLM Gray-level run-length matrix, GLSZM Gray-level size zone matrix, NGTDM Neighborhood gray-tone difference matrix

Feature class CV < 10% CV mean QCD < 10% QCD mean

VUE (%) VMI70keV (%) VUE VMI70keV VUE (%) VMI70keV (%) VUE VMI70keV

First order (19 features) 8.88 26.64 0.5007 0.7358 44.74 50.99 0.4037 0.2484

Texture (75 features) 19.83 20.58 0.4232 0.4042 41.25 38.67 0.2791 0.2625

GLCM (24 features) 16.93 16.15 0.5460 0.4878 30.21 28.91 0.4073 0.3402

GLDM (14 features) 20.54 20.54 0.3081 0.3151 30.36 29.46 0.1839 0.1923

GLRLM (16 features) 7.03 7.03 0.3716 0.3602 25.39 21.48 0.2156 0.2244

GLSZM (16 features) 5.47 8.20 0.3975 0.3966 14.84 15.23 0.2482 0.2558

NGTDM (5 features) 0.00 0.00 0.4024 0.4176 5.00 12.50 0.2328 0.2299

Overall (94 features) 11.30 15.16 0.4388 0.4712 28.39 28.99 0.3043 0.2597

Fig. 2 Inter-platform reproducibility of radiomics among all platforms within the VUE images and within the  VMI70keV. Upper left and right graphs 
showed percentages of radiomic features that were deemed as inter-platform reproducible among platforms within the VUE images per CV < 10% 
and QCD < 10%, respectively, according to ROIs. Lower left and right graphs showed percentages of radiomic features that were deemed as 
inter-platform reproducible among platforms within the  VMI70keV per CV < 10% and QCD < 10%, respectively, according to 16 ROIs
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Fig. 3 Heatmap of Inter-platform reproducibility of radiomics among all platforms within the VUE images and within the  VMI70keV. Percentages 
indicated CV values and QCD values. GLCM = gray-level co-occurrence matrix, GLDM = gray-level dependence matrix, GLRLM = gray-level 
run-length matrix, GLSZM = gray-level size zone matrix, NGTDM = neighborhood gray-tone difference matrix

Table 3 Inter-platform reproducibility of radiomics between each platform within the VUE images and within the  VMI70keV

Percentage indicates the percentage of features met the cutoffs for robustness measures (ICC > 0.90 and CCC > 0.90). GLCM Gray-level co-occurrence matrix, 
GLDM Gray-level dependence matrix, GLRLM Gray-level run-length matrix, GLSZM Gray-level size zone matrix, NGTDM Neighborhood gray-tone difference matrix

Feature class ICC > 0.90 ICC mean CCC > 0.90 CCC mean

VUE (%) VMI70keV (%) VUE VMI70keV VUE (%) VMI70keV (%) VUE VMI70keV

First order (19 features) 45.03 49.36 0.6654 0.6811 44.68 49.36 0.6584 0.6749

Texture (75 features) 1.13 1.57 0.2324 0.2782 1.04 1.57 0.2247 0.2695

GLCM (24 features) 1.39 2.96 0.2871 0.3146 1.39 2.96 0.2782 0.3050

GLDM (14 features) 1.27 0.95 0.2093 0.2724 1.11 0.95 0.2028 0.2645

GLRLM (16 features) 0.97 0.97 0.2083 0.2644 0.69 0.97 0.2009 0.2560

GLSZM (16 features) 0.69 0.97 0.1963 0.2455 0.69 0.97 0.1895 0.2377

NGTDM (5 features) 1.33 0.44 0.2262 0.2681 1.33 0.44 0.2181 0.2588

Overall (94 features) 10.00 11.23 0.3199 0.3596 9.86 11.23 0.3124 0.3515
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in  VMI70keV, according to ROIs (Additional file  1: 
Table  S2). The individual radiomics features showed 
variable reproducibility (Fig.  3), and the top ten most 
inter-platform reproducible features among the VUE 
images and the  VMI70keV were mainly the texture fea-
tures (36 out of 40; Additional file  1: Table  S3). The 
reproducibility of fourteen important radiomics fea-
tures did not show high reproducibility neither in VUE 
images (CV values 16.64–579.47%, QCD values 9.11–
519.92%) nor in  VMI70keV images (CV values 17.61–
426.45%, QCD values 9.28–352.37%) (Additional file 1: 
Table S4).

Inter‑platform radiomics reproducibility between platform 
pairs within the VUE images and within the  VMI70keV
The average percentages ± SD of inter-platform repro-
ducible radiomics features were 10.01 ± 3.79% and 
9.86 ± 3.67% between each platform within the VUE 
images, and 11.23 ± 5.78% and 11.23 ± 5.78% within the 
 VMI70keV, respectively, when the criteria were ICC > 0.90 
and CCC > 0.90 (Table 3 and Fig. 4). The percentages of 
radiomics features that met the reproducible criteria 
ranged from 1.06 to 26.60% for ICC > 0.90 and from 1.06 
to 24.47% for CCC > 0.90 in VUE images and varied from 
9.57 to 40.43%% for ICC > 0.90 and from 9.57 to 41.49% 
for CCC > 0.90 in  VMI70keV, according to comparisons 
(Additional file  1: Table  S5 and Fig. S2). The individ-
ual radiomics features showed variable reproducibility 
(Additional file 1: Fig. S3), the top ten most inter-platform 
reproducible features between each platform within the 
VUE images and the  VMI70keV were mainly the first-order 

features (36 out of 40; Additional file  1: Table  S6). The 
reproducibility of fourteen important radiomics features 
did not show high reproducibility neither in VUE images 
(ICC values, 0.0918–0.4368, CCC values 0.0948–0.4235) 
nor in  VMI70keV images (ICC values 0.0948–0.4469, CCC 
values 0.0938–0.4345) (Additional file 1: Table S7).

CT number values and radiomics reproducibility
The CT number values varied among platforms within 
the VUE images and the  VMI70keV (Table  4 and Addi-
tional file 1: Table S8). The reproducibility of CT number 
values and percentage of first-order radiomics features 
that met the criteria of reproducibility showed correla-
tions (Additional file 1: Fig. S4). The negative correlations 
were found using CV and QCD in both VUE images 

Fig. 4 Inter-platform reproducibility of radiomics between platform pairs within the VUE images and within the  VMI70keV. Upper graphs showed 
percentages of radiomic features that were deemed as inter-platform reproducible between each platform per ICC > 0.90 and CCC > 0.90, and the 
mean of ICC and CCC between each platform within the VUE images, respectively, according to 45 comparisons. Lower graphs showed percentages 
of radiomic features that were deemed as inter-platform reproducible between each platform per ICC > 0.90 and CCC > 0.90, and the mean of ICC 
and CCC between each platform within the  VMI70keV, respectively, according to 45 comparisons

Table 4 Inter-reproducibility of CT number values

Percentage indicates the percentage of features met the cutoffs for robustness 
measures (CV < 10% and QCD < 10%, ICC > 0.90 and CCC > 0.90)

Images Criteria

Inter-platform reproducibility among all platforms within the VUE images 
and within the VMI70keV

16 ROIs CV < 10% CV mean QCD < 10% QCD mean

VUE 18.75% 1.1389 81.25% 1.4144

VMI70keV 68.75% 6.8006 87.50% 0.3055

Inter-platform reproducibility between particular platforms within the VUE 
images and within the VMI70keV

45 Comparisons ICC > 0.90 ICC mean CCC > 0.90 CCC mean

VUE 95.56% 0.9803 95.56% 0.9803

VMI70keV 100.00% 0.9974 100.00% 0.9972
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and  VMI70keV (r2 0.3870–0.6178, all p < 0.001), and posi-
tive correlations were estimated using ICC (r2 = 0.7378, 
p < 0.001) and CCC (r2 = 0.7717, p < 0.001) in the VUE 
images (Additional file 1: Fig. S4).

Discussion
Our study investigated the test–retest repeatabil-
ity and the inter-platform reproducibility of the VUE 
images and the  VMI70keV in DECT among different 
platforms, using data from a phantom with inserts of 
clinical-relevant multiple densities. Our finding dem-
onstrated that the test–retest repeatability of radiom-
ics features derived from different DECT platforms 
was high, but the inter-platform reproducibility was 
relatively low, indicating the potential influence of vari-
ous DECT acquisition and reconstruction techniques. 
We further characterized the inter-platform difference 
across DECT platforms by comparing different plat-
form pairs and found that their reproducibility varied 
according to platforms. The differences in CT number 
values were deemed to have relation with the inter-
platform reproducibility of DECT radiomics features, 
indicating the potential role of CT number values as an 
indicator in synchronizing the energy level of VMI of 
different DECT platforms to improve DECT radiomics 
robustness.

Our study showed that 11.30% and 28.39% and 
15.16% and 28.99% of features were with CV < 10% and 
QCD < 10%, among the VUE images and the  VMI70keV of 
different DECT platforms, respectively, suggesting the 
difference in DECT acquisition and reconstruction tech-
niques could be a source of instability. A previous study 
presented that 17.09% and 27.73% of radiomics features 
were considered to be reproducible among SECT plat-
forms [18]. This did not support the hypothesis that the 
differences in DECT data acquisition and reconstruction 
between platforms may introduce greater variability of 
radiomic features compared to SECT with a more simi-
lar technical set-up [19]. However, in terms of reproduc-
ibility, the images acquired via different SECT and DECT 
platforms, as well as the VUE images and the VMI gener-
ated from different DECT platforms, should not be used 
interchangeably in radiomic studies, even if they were 
scanned with comparable parameters.

The inter-platform reproducibility between each plat-
form within the VUE images and within the  VMI70keV 
presented varying percentage of radiomics features that 
met the reproducible criteria. A previous study showed 
0.00% and 0.00% of phantom-derived features with 
CCC > 0.90 in the VUE images and the  VMI65keV, respec-
tively, between different DECT scanner types, while 
2.45–16.15% and 2.71–11.11% of patient-derived features 

were estimated with CCC > 0.90 in the VUE images and 
the  VMI65keV, respectively [19]. The highest percentage 
of reproducible features were achieved between a third-
generation dsDECT scanner and a rsDECT scanner [19]. 
Another phantom study showed that 66.6–83.5% of radi-
omics features were with CCC > 0.90 between a third-
generation dsDECT scanner and a split-filter DECT 
scanner within the VMI of the same energy level from 40 
to 190  keV [26]. Our study supported that a third-gen-
eration dsDECT scanner shared more in common with 
rsDECT scanners, but did not find similarity between 
second-generation dsDECT scanners and rsDECT scan-
ners. Indeed, two second-generation dsDECT scanners 
with two combinations of tube voltages showed high 
reproducibility. Although the variability among DECT 
scanners was not greater than that among SECT scan-
ners, the differences in DECT data acquisition and recon-
struction between platforms did introduce variability 
among DECT imaging platforms.

In addition to the overall reproducibility evaluations 
of radiomics features, we also investigated fourteen indi-
vidual radiomics features that are currently of interest 
in clinical research and have been reported to be robust 
to quantum noise, segmentation variability, and image 
acquisition [41–43]. However, these radiomics features 
did not show high reproducibility among DECT plat-
forms, indicating that mitigation of DECT-specific radi-
omics variability was of importance for generalizability 
of radiomics models derived from one DECT platform to 
the other.

The texture features occupied the majority of the top 
ten most inter-platform reproducible features among the 
VUE images and among the  VMI70keV using CV or QCD 
as metrics, while the reproducible features between each 
platform using ICC or CCC were mainly the first-order 
features. One of the important sources of the inter-plat-
form variability of radiomics is CT number values [18]. 
The metrics of CV and QCD is considered to present 
the overall difference among platforms. The outliers of 
CT number values may have greater impact on the first-
order features. Our study found that most of the texture 
features that survived CV and QCD analysis were related 
to the homogeneity of the ROI. They were more sensitive 
to the small noise within ROI than the variations of CT 
number values. Therefore, the influence of the unstable 
CT number values on the texture features was less than 
that on the first-order features. On the other hand, the 
metrics of ICC and CCC allow evaluation between two 
specific platforms. The platform five, with obvious dif-
ferences in CT number values, showed lower repro-
ducibility of the first-order features comparing to other 
DECT platforms, indicating that the key for improving 
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the reproducibility of first-order features was to keep CT 
number values stable. In other words, it is possible to 
improve radiomics reproducibility between DECT plat-
forms by minimizing variability of CT number values, 
especially the first-order features.

To the best of our knowledge, our study is the first to 
show the correlation between variability of CT num-
ber value and reproducibility of the first-order features 
derived from DECT data. It is not strange that the first-
order features, but not the texture features, were strongly 
platform-dependent, since the first-order features were 
more sensitive to difference of CT number values among 
platforms. It has been considered as a source of differ-
ence of radiomics features in SECT that the variability of 
CT number values across scanners due to the different 
X-ray spectra of different scanners [20], as well as addi-
tional slight differences of the images caused by different 
calibrations method [30]. CT number values are simple 
representations of the different imaging appearances, 
texture features, and quantitative capabilities of DECT 
images with different technical approaches [11, 12, 22, 
23] and may lead to variations among DECT platforms.

CT number values potentially serve as an indicator 
for improvement for reproducibility among DECT plat-
forms. The lower the variability of CT number values 
among platforms achieved, the higher the inter-platform 
reproducibility of the first-order features became. Unlike 
the VUE images, the VMI could provide an increasing 
trend of CT number values with decreasing energy level 
[24]. Meanwhile, the VMI showed lower variability in 
CT number values than VUE images, when comparable 
acquisition and reconstruction settings were used [22, 
23]. This result might provide insights for reducing the 
inter-platform difference in DECT radiomic features by 
better synchronizing energy levels of VMI according to 
CT number values. It would be more practicable for clin-
ical practice to compare the CT number values, because 
it is time-consuming to calculate reproducibility of high-
dimensional radiomics data extracted from all available 
energy level of VMIs from different DECT platforms. 
Future studies should explore the utility of CT number 
values as an indicator for synchronizing energy level of 
VMI to improve DECT radiomics robustness.

Additionally, the use of VMI could potentially open 
more possibilities for radiomics modeling with its flex-
ibility to calculate at low energy level to increase contrast 
and iodine attenuation or to compute at high energy level 
to reduce beam-hardening artefacts [44, 45]. The energy 
level of 70  keV was chosen because this was used as a 
clinical standard of reference at our institution [18, 46] 
and has been suggested to be comparable to conventional 
images [27–29]. However, concerns remained on the 

potential impact of non-matching energy levels of VMI 
on radiomics features [24]. Although the choice of syn-
chronized energy level of VMI improved reproducibility 
between platforms [26], it is still unknown whether the 
energy level of VMI could alter the underlying minable 
information. Initial study suggested that VMI at different 
energy levels could provide varying performance of radi-
omics models for different clinical tasks [26]. We believe 
that the choice of energy level of VMI should hence be 
made to balance radiomics robustness and the specific 
clinical task.

The implementation of a preprocessing step may be 
necessary to harmonize data from different platforms 
using varying DECT techniques. Recently, many pre-
processing methods have been introduced into radiom-
ics studies for improving reproducibility of radiomic 
features, including min–max normalization, z-score 
normalization, mean normalization, batch effect correc-
tion, pixel resampling, Butterworth filtering, ComBat 
harmonization, radiomics data harmonization models 
specific to different clinical tasks, etc. [47–54]. As shown 
in our study, without the preprocessing step, the DECT 
images are not comparable between platforms in terms 
of radiomic features. These preprocessing methods have 
potential to improve the reproducibility of radiomic fea-
tures among DECT platforms, while their influence on 
the CT values remains unknown. We believe future stud-
ies should test these preprocessing methods to find out 
which can harmonize data from different platforms using 
different dual-energy techniques while maintaining CT 
values.

Our study has limitations that need to be acknowl-
edged. First, we did not investigate the robustness of 
radiomic features extracted from tumors, but rather 
from phantom of homogeneous clinical-relevant densi-
ties. Our results may not be directly translated to clini-
cal practice, partly due to lacking of texture [18, 46]. 
However, the phantom allows more specific results in 
humans benefiting by its similarity to human density 
[55]. Second, we did not identify at which energy levels 
of VMIs to accomplish the highest inter-platform repro-
ducibility. Nevertheless, our findings showed the possi-
bility of harmonizing inter-platform radiomics features 
by synchronizing energy levels of VMIs and showed the 
potential role of CT number values in guiding selec-
tion of energy levels for this purpose. With multiple 
phantom scans on different platforms, one may be able 
to adjust energy levels of different imaging platforms to 
obtain similar CT number values for the same object. 
Therefore, a pre-calibrated lookup table may be possi-
ble to account for the differences of data acquisition and 
image reconstruction from different DECT platforms to 
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improve DECT-derived radiomics robustness. Third, we 
only investigated fourteen individual radiomics features 
in detail. These radiomics features were considered to be 
clinically important, but the ability of radiomics features 
for clinical interpretation or classification varied accord-
ing to specific tasks. Therefore, further studies with 
patient images on specific clinical applications are war-
ranted. Last, the results of our study should be carefully 
interpreted as hypothesis generating. We neither per-
form experiments to test the feasibility of CT numbers as 
a correction factor for reducing inter-platform variabil-
ity nor conduct experiments to investigate the potential 
impact of a preprocessing step on the reproducibility of 
radiomics features. Our findings may provide insights on 
improvement of the inter-platform reproducibility, and 
our ongoing work is verifying the hypothesis.

To conclude, we have demonstrated that the radiomics 
features extracted from the VUE images and the  VMI70keV 
are not highly reproducible across different DECT plat-
forms, despite using comparable acquisition and recon-
struction parameters. DECT-derived radiomic models 
must be interpreted with caution due to the doubtful 
generalizability. The variability of CT number values is 
correlated with the reproducibility of the first-order fea-
tures in radiomics, implying a potential way to mitigate 
radiomics instability among DECT platforms. Future 
studies should investigate the possibility of synchronizing 
energy levels of VMI among different DECT platforms 
with an appropriate preprocessing step to improve the 
robustness of DECT-derived radiomics.
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