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Abstract 

Objectives Rupture of intracranial aneurysm is very dangerous, often leading to death and disability. In this study, 
deep learning and radiomics techniques were used to automatically detect and differentiate ruptured and unrup-
tured intracranial aneurysms.

Materials and methods 363 ruptured aneurysms and 535 unruptured aneurysms from Hospital 1 were included in 
the training set. 63 ruptured aneurysms and 190 unruptured aneurysms from Hospital 2 were used for independent 
external testing. Aneurysm detection, segmentation and morphological features extraction were automatically per-
formed with a 3-dimensional convolutional neural network (CNN). Radiomic features were additionally computed via 
pyradiomics package. After dimensionality reduction, three classification models including support vector machines 
(SVM), random forests (RF), and multi-layer perceptron (MLP) were established and evaluated via area under the curve 
(AUC) of receiver operating characteristics. Delong tests were used for the comparison of different models.

Results The 3-dimensional CNN automatically detected, segmented aneurysms and calculated 21 morphologi-
cal features for each aneurysm. The pyradiomics provided 14 radiomics features. After dimensionality reduction, 13 
features were found associated with aneurysm rupture. The AUCs of SVM, RF and MLP on the training dataset and 
external testing dataset were 0.86, 0.85, 0.90 and 0.85, 0.88, 0.86, respectively, for the discrimination of ruptured and 
unruptured intracranial aneurysms. Delong tests showed that there was no significant difference among the three 
models.

Conclusions In this study, three classification models were established to distinguish ruptured and unruptured aneu-
rysms accurately. The aneurysms segmentation and morphological measurements were performed automatically, 
which greatly improved the clinical efficiency.

Clinical relevance statement Our fully automatic models could rapidly process the CTA data and evaluate the 
status of aneurysms in one minute.
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Key points 

1. Three machine learning models were established to distinguish ruptured and unruptured aneurysms.
2. The aneurysms detection, segmentation and morphological measurements were performed automatically.
3. Thirteen morphological and radiomics features were proved associated with aneurysm rupture.

Keywords Computed tomography angiography, Intracranial aneurysm, Rupture, Deep learning, Radiomics

Graphical Abstract

Introduction
Intracranial aneurysm (IA) is a common and life-
threatening serious neurological disease caused by 
abnormal swelling or dilation of the walls of intracra-
nial arteries [1]. With the rapid development of medi-
cal imaging technology, more and more IAs have been 
found, and the incidence rate among general population 
is more than 3%. Aneurysms rupture can lead to seri-
ous consequences, with a mortality rate of 40%. Survi-
vors may suffer from long-term neurological sequelae 
and life quality decline [2]. In clinical practice, about 
85% of spontaneous subarachnoid hemorrhage (SAH) 
is caused by intracranial aneurysm rupture [3]. How-
ever, some patients with ruptured aneurysms did not 
show subarachnoid hemorrhage. On the other hand, 
for patients with multiple aneurysms, although there 
is subarachnoid hemorrhage, it is hard to determine 

which aneurysm ruptures. So, accurate identification 
of IA status is essential for clinical treatment and prog-
nosis evaluation [4, 5]. Ruptured aneurysms demand 
prompt surgery while the treatment of unruptured 
aneurysms is controversial. Some unruptured aneu-
rysms may remain asymptomatic for life [6], and either 
intravascular or microsurgical treatment may add risks 
of complications [7].

Computed tomography angiography (CTA) is a non-
invasive, efficient and accurate method for IA detection 
[8]. Although digital subtraction angiography (DSA) 
remains the gold standard, its invasion and time-con-
suming limited the clinical application, besides the high 
cost and complications [9]. At present, the accuracy of 
CTA in detecting IA has reached 97%–100% [10] and 
is of great potential to replace DSA [11]. Some studies 
[12, 13] have focused on the morphological difference 
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between ruptured and unruptured aneurysms in CTA 
and found that several morphological features were 
associated with aneurysm rupture, such as neck diam-
eter, aneurysm length, height, width, surface area, vol-
ume, etc. Other studies have proved radiomics valuable 
in classifying ruptured and unruptured intracranial 
aneurysms with CTA images [14]. However, the accu-
racies of these studies were not high enough, lacking 
large samples and external independent verification. 
On the other hand, both aneurysm segmentation and 
morphological measurement needed manual operation, 
which was very time-consuming and highly depended 
on the experience of radiologists. It might take about 
30  min to complete the reconstruction, segmentation 
and analysis of each case.

Convolutional neural network (CNN) [15] is one of 
the most commonly used deep learning methods. It has 
shown great potential in medical fields,such as disease 
detection, segmentation, diagnosis and prediction [16, 
17]. In previous research, we had developed an artificial 
intelligence model based on CNN to identify the arter-
ies in head and detect intracranial aneurysms [15, 16]. 
The whole automatic segmentation and reconstruction 
process took less than a minute. In this study, large and 
multi-center samples were collected. The detection, seg-
mentation and morphological parameters measurement 
of intracranial aneurysms were automatically performed 
and different machine learning models were established 
and independently tested in external dataset to help the 
differentiation of ruptured and unruptured intracranial 
aneurysms.

Materials and methods
Ethical statement
This study was approved by the Research Ethics Com-
mittee of Chongqing University Central Hospital, and 
informed consent was waived.

Patients
1007 patients diagnosed with intracranial aneurysms 
from October 23, 2016, to June 22, 2021, in Chongqing 
University Central Hospital (Hospital 1, 781 patients) 
and the Second Affiliated Hospital of Chongqing Medi-
cal University (Hospital 2, 226 patients) were retrospec-
tively included. The inclusion criteria for this study were 
(1) adult patient over 18 years old and (2) a diagnosis of 
intracranial aneurysm on CT angiography by a team of 
two neuroradiologists with more than 8 years of experi-
ence. In case of uncertainty, DSA was used for further 
confirmation. Exclusion criteria included: (a) severe 
image artifacts; (b) incomplete clinical data; (c) fusiform, 
dissecting, traumatic, infected aneurysms. All aneu-
rysms were divided into two groups: the ruptured group 

included aneurysms with nearby spontaneous subarach-
noid hemorrhage documented by conventional brain CT 
or confirmed by digital subtraction angiography, without 
any other potential pre-disposing factor (trauma, dissec-
tion, or local or systemic infection), and the unruptured 
group included aneurysms with no subarachnoid hem-
orrhage or related clinical symptoms. 168 patients from 
Hospital 1 were excluded, including 29 patients with fusi-
form aneurysms, 20 patients with dissecting aneurysms, 
2 patients with traumatic aneurysms, 50 patients with 
severe image artifacts and 67 patients with incomplete 
clinical data. 79 patients from Hospital 2 were excluded, 
including 11 patients with fusiform aneurysms, 9 patients 
with dissecting aneurysms, 9 traumatic aneurysms, 19 
patients with severe image artifacts and 31 patients with 
incomplete clinical data. The flow chart of the study 
design is shown in Fig. 1.

Clinical data collection and cerebral CTA 
Clinical data included gender, age, smoking status (smok-
ing for more than ten years), alcoholism (alcohol depend-
ence and addiction), and hypertension. All head CTA 
images were collected from four different CTs: United 
Imaging 760 64, Shanghai, China; General Electric Com-
pany, LightSpeed 64, USA; General Electric Company, 
Optima 660 64, USA; Canon Medical, Canon Aquilion 
ONE 320, Toshiba, Japan. Similar scanning parameters 
were used for all scans: 100 to 120 kV and automatic mas; 
section thickness: 0.5 to 0.625 mm; screw pitch: 0.984 to 
0.975; reconstruction thickness: 1  mm; reconstruction 
interval: 0.5 to 0.625  mm. Contrast agent was injected 
by smart tracking method. Each patient had a standard 
intravenous cannula placed in the anterior cubital vein in 
the upper limb and contrast was injected using an auto-
matic double syringe. 50  mL iohexol (350mgI/ml) and 
30  mL normal saline were intravenous bolus injected. 
The injection rate is 4.0  mL/s. The CTA scan was initi-
ated using a trajectory tracking technique, where a trig-
ger area was manually placed near the ascending aorta 
with a threshold of 110–120 HU and a delay of 8–10 s.

Aneurysm segmentation and morphological feature 
measurement
One 3-dimensional CNN network (Aneurysm Segmenta-
tion), which was embedded in  CerebralDoc®, was applied 
to identify, segment aneurysms from CTA images and 
calculate the morphological features. It was comprised of 
two cascaded ResUNet models. ResUNet1 elaborated on 
aneurysm detection and ResUNet2 was responsible for 
segmentation. Due to great imbalanced ratio of aneurysm 
to whole background, vessel segmentation [17] was firstly 
performed to help remove noises in aneurysm detection. 
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Fig. 1 The flow chart of the study design

Fig. 2 Aneurysm Segmentation network overview. a The complete pipeline of AS network. 3D patches were cropped uniformly from original CTA 
images and corresponding vessel segmentation images. Patches were balanced between positive (containing aneurysm) and negative types. Both 
original CTA and vessel segmentation patches were sent to ResUNet1 to firstly detect aneurysm with two channels of output, a probability map and 
corresponding aneurysm size map. Combined with original CTA images, two output channels, two layers of ResUNet1 were resized and input to 
ResUNet2 for segmentation. Emerging predicted cubes from ResUNet2 obtained the predicted whole volume. b ResUNet1 architecture illustration. 
c ResUNet2 architecture illustration
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Data augmentations, such as rotation, scaling and flip-
ping were carried out to diversify training samples and 
improve model robustness. All original CTA images and 
segmented vessels were patched into 128 ×  128 ×  128 
cubes (Fig.  2). Detailed information was introduced in 
supplementary files.

Morphological features of target aneurysm and par-
ent vessel were automatically calculated. Totally, 17 
aneurysm features and 4 parent vessel features, includ-
ing diameter, width, height, volume, neck plane diam-
eter, intersection angle, size ratio, aspect ratio, etc., were 
obtained. Detailed information about each morphologi-
cal feature was listed and explained in supplementary 
materials.

Pyradiomics feature extraction
Radiomics [18] feature extraction were performed with 
the open-source PyRadiomics package (version 3.0.1). 
Images for each patient were normalized by centering to 
the mean standard deviation, resampled to voxel size of 
1 × 1 × 1  mm3 with B-Spline interpolation and grey-level 
discretized by a fixed bin width of 25 in the histogram. 

Features of elongation, flatness, least axis length, major 
axis length, maximum2D diameter column, maximum2D 
diameter row, maximum2D diameter slice, maximum3D 
diameter, mesh volume, minor axis length, sphericity, 
surface area, surface volume ratio and voxel volume were 
extracted [19, 20]. Detailed information of each feature 
was available in following website https:// pyrad iomics. 
readt hedocs. io/ en/ latest/ or online documentation [21]. 
All features were subjected to Z-score normalization 
before feeded to models (Fig. 3).

Dimensionality reduction and model construction
To identify the most relevant features for aneurysm 
rupture judgment, selectKBest and L2-based logistic 
regression algorithms were successively applied in train-
ing dataset after preprocessing. All features with p value 
less than 0.05 after selectKBest were considered as sta-
tistically significant candidates for logistic regression 
model. L2-based regularization was used to obtain the 
most relevant features. Cross-validation was carried out 
to establish the optimal hyparameters for l2-based logis-
tic regression model. Support vector machine (SVM), 

Fig. 3 The flow chart of aneurysm identification, segmentation and feature extraction

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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random forest (RF) and multilayer perceptron (MLP) 
were used to establish models to distinguish ruptured 
and unruptured aneurysms. Grid search with fivefold 
cross-validation was applied to optimize the model 
hyper-parameters in training dataset and then applied 
in the external test dataset to comprehensively estimate 
model performance. Sensitivity, specificity, area under 
the receiver operating curve (AUC) were utilized to 
evaluate the model performance ability. Sensitivity and 
specificity of each model were determined at the optimal 
cutoff point on AUC, that is, the point where the Youden 
index (J = sensitivity + specificity−1) reaches its maxi-
mum. Delong test was used to compare the performance 
ability among RF, SVM and MLP models by sklearn pack-
age (version 0.23.2) in Python (version 3.8.12).

All statistical analyses were performed using the Sta-
tistical Package for Social Sciences software version 23.0 
(SPSS Inc., Chicago, Illinois, USA). Two-sample t-test 
was used for continuous variables, and chi-square test 
was used for discrete variables. P values less than 0.05 
were considered statistically significant.

Results
Patient demographics
The demographic, clinical, and radiographic characteris-
tics are summarized in Table 1.

363 ruptured aneurysms and 535 unruptured aneu-
rysms from Hospital 1 were included in the training set. 
63 ruptured aneurysms and 190 unruptured aneurysms 
from Hospital 2 were used for independent external 
testing. For Hospital 1, the locations of ruptured aneu-
rysms were as follows: anterior cerebral arteries or ante-
rior communicating arteries (117 cases, 32.2%), internal 
carotid arteries (171 cases, 47.1%), middle cerebral 

arteries (58 cases, 16%) and posterior circulation arter-
ies (17 cases, 4.7%). 81 (22.3%) patients had smoking, 
57 (15.7%) patients had alcoholism, and 304 (83.7%) 
patients had hypertension. The locations of unruptured 
aneurysms were as follows: anterior cerebral arteries or 
anterior communicating arteries (47 cases, 8.8%), inter-
nal carotid arteries (399 cases, 74.6%), middle cerebral 
artery (61 cases, 11.4%) and posterior circulation arter-
ies (28 cases, 5.2%). 109 (26.1%) patients had smoking, 39 
(9.3%) patients had alcoholism and 304 (72.7%) patients 
had hypertension.

Patients from Hospital 2 were all used for independ-
ent external testing. The locations of ruptured aneurysms 
were as follows: anterior cerebral arteries or anterior 
communicating arteries (11 cases, 17.5%), internal 
carotid arteries (40 cases, 63.5%), middle cerebral arter-
ies (11 cases, 17.5%) and posterior circulation arteries (1 
cases, 1.6%). 18 (28.6%) patients had smoking, 12 (19.0%) 
patients had alcoholism, and 26 (41.3%) patients had 
hypertension. The locations of unruptured aneurysms 
were as follows: anterior cerebral arteries or anterior 
communicating arteries (17 cases, 8.9%), internal carotid 
arteries (150 cases, 78.9%), middle cerebral artery (16 
cases, 8.4%), posterior circulation arteries (7 cases, 3.7%). 
45 (26.6%) patients had smoking, 28 (17.2%) patients had 
alcoholism and 93 (57.1%) patients had hypertension.

Feature selection and model performance
For each aneurysm, 21 morphological features were auto-
matically calculated by  CerebralDoc® and 14 radiomics 
features were obtained by Pyradiomics. After selectK-
Best, 33 features were retained. 13 features with absolute 
coefficients larger than the mean in L2-based logistic 

Table 1 Patients’ characteristics in the training cohort and testing cohort

Training cohort Testing cohort

Variables Ruptured (n = 363) Unruptured (n = 535) Variables Ruptured (n = 63) Unruptured (n = 190)

Age 58.04 ± 12.54 66.43 ± 12.61 Age 59.05 ± 11.80 65.48 ± 11.08

Gender Gender

 Male 172 (47.4%) 234 (56%)  Male 25 (39.7%) 83 (50.9%)

 Female 191 (52.6%) 184 (44%)  Female 38 (60.3%) 80 (49.1%)

Smoking 81 (22.3%) 109 (26.1%) Smoking 18 (28.6%) 45 (26.6%)

Alcoholism 57 (15.7%) 39 (9.3%) Alcoholism 12 (19.0%) 28 (17.2%)

Hypertension 304 (83.7%) 304 (72.7%) Hypertension 26 (41.3%) 93 (57.1%)

Location Location

 ACA 117 (32.2%) 47 (8.8%)  ACA 11 (17.5%) 17 (0.9%)

 ICA 171 (47.1%) 399 (74.6%)  ICA 40 (63.5%) 150 (78.9%)

 MCA 58 (16.0%) 61 (11.4%)  MCA 11 (17.5%) 16 (8.4%)

 PCA 17 (4.7%) 28 (5.2%)  PCA 1 (1.5%) 7 (3.7%)
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regression model were considered as most relevant fea-
tures to determine rupture status, including 7 radiomics 
features, 1 parent vessel feature and 5 aneurysm features 
(Fig.  4A). The best C for L2-based logistic regression is 
1291.55, selected via fivefold cross-validation determined 
by accuracy (Fig. 4B).

In the training set, the AUCs of SVM, RF and MLP 
were 0.86, 0.90, 0.88, respectively. In the external test 
set, the AUCs of SVM, RF and MLP were 0.85, 0.85, 0.86, 
respectively. Detailed sensitivity and specificity are plot-
ted in Fig. 5. Delong tests showed that there was no sig-
nificant difference among the three models (SVM versus 
RF, p = 0.76, z score = 0.30; SVM versus MLP, p = 0.57, z 
score = 0.56; RF versus MLP, p = 0.43, z score = 0.79).

Discussion
Evaluating the status of intracranial aneurysm is the key 
to select clinical treatment strategies. Early diagnosis and 
treatment of ruptured aneurysms can significantly reduce 
the mortality and disability rate. In this study, SVM, RF 
and MLP models were established to discriminate rup-
tured and unruptured intracranial aneurysms based on 
CTA images. They all showed high accuracies of 0.85 to 
0.86 in external validation data. Our results suggested 

that these methods have great potential value in clinical 
practice. They could enable neurosurgeons and interven-
tional physicians to better assess aneurysm status and 
plan surgery. Previously, Liu et al. [22] extracted morpho-
logical features of 719 aneurysms to predict the stability 
of aneurysms with an AUC of 0.73. Zhu et al. [14] used 
radiomics features to identify ruptured and unruptured 
aneurysms in the middle cerebral arteries, and obtained 
an AUC of 0.738 in the validation set. Compared with 
these previous studies [22, 23], our study had the largest 
sample size and the highest accuracy. External verification 
was adopted, and better reliability was obtained. On the 
other hand, all previous studies used traditional manual 
methods to segment, reconstruct aneurysms and meas-
ure morphological parameters. It took at least 30  min 
for one patient, which greatly reduced the efficiency of 
clinical diagnosis. Manual depiction of aneurysms led 
to huge workload and visual fatigue of doctors, which 
might reduce the accuracy. In the actual clinical work, 
this method was not feasible for emergency patients. Our 
study was the first time to use artificial intelligence model 
to automatically detect, segment aneurysms on CTA 
images. Our fully automatic model could quickly process 
the data in 1  min to obtain real-time results with good 

Fig. 4 a The feature coefficients of L2-based LR model. b The optimal C was selected via five-fold cross-validation

Fig. 5 Receiver operating characteristic (ROC) curves of SVM (a), RF (b), MLP (c) models in the training and testing dataset
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stability. For patients with multiple aneurysms accompa-
nied by subarachnoid hemorrhage in daily clinical work, 
CTA images were uploaded to the software platform, and 
through platform analysis criminal aneurysms could be 
automatically identified and labeled. With this system, 
doctors could quickly find criminal aneurysms and deal 
with them in time. This could greatly improve the medi-
cal efficiency and save medical costs.

In this study, 33 features were extracted from each 
aneurysm to establish the classification model for rup-
tured and unruptured aneurysms discrimination. After 
final feature selection, 13 features were retained that 
were considered to be associated with aneurysm rup-
ture, including 6 morphologic features and 7 radiom-
ics features. The six morphological features included 
D (diameter), V (volume), Wh (the largest distance 
orthogonal to height), AR (aspect ratio), SR (size ratio) 
and PD (parent vessel diameter). The D (diameter) was 
the largest distance between the center of the neck 
and the aneurysm surface that fitted inside the aneu-
rysm dome. Numerous studies [24, 25] have shown that 
the larger the D or volume of the aneurysm, the more 
likely it is to rupture. The International Study of Unrup-
tured Intracranial Aneurysms (ISUIA) [26] results have 
shown a 5-year rupture rate of 14.5% for 13 to 24 mm in 
diameter and if the diameter is greater than 25 mm, the 
5-year fracture rate is 40%. Wh was the largest distance 
orthogonal to height. Kim et  al. studied 57 patients 
with ruptured aneurysms and 198 patients with unrup-
tured aneurysms, and found that vertical height was the 
only significant predictor of rupture. AR was defined 
as the ratio between D and the maximum diameter of 
the neck plane. Previous studies [27] have proved that 
larger neck diameters and AR > 1.5 were key factors 
for posterior communicating artery aneurysms rup-
ture. PD was the weighted average diameter of parent 
vessel, starting from 5 mm close to proximal point and 
ending at 5 mm close to distal point of the neck plane 
[28]. It was the only retained parent vessel feature. SR 
(size ratio) was defined as the ratio between D and PD. 
Rahman et al. [29] had proved SR was associated with 
the rupture state of IA through blind test. The greater 
the SR, the higher the risk of aneurysm rupture. The 
7 radiomics features were all shape features, including 
elongation ratio, mesh volume, voxel volume, major 
Axis length, minor axis length, least axis length and 
maximum 3D diameter. The elongation ratio showed 
the relationship between the two largest principal com-
ponents in the aneurysm. Small elongation had been 
proved important factors of aneurysm rupture [19]. 
Mesh volume and voxel volume mainly reflect the size 
of aneurysm. Previous studies [25, 26] have found that 
volume change was an independent factor related to the 

formation of irregular intracranial aneurysms, which 
may directly lead to aneurysm rupture. The major axis 
length, minor axis length and least axis length represent 
the maximum axis length, the second axis length and 
the minimum axis length of the aneurysm, respectively. 
The difference of axial length may induce the hemody-
namic changes of intracranial aneurysms, thus affect-
ing their stability. Maximum 3D Diameter was defined 
as the largest pairwise Euclidean distance between the 
vertices of the tumor surface mesh. This feature could 
reflect the complex parameters of the aneurysm from 
a three-dimensional perspective, which cannot be 
achieved manually.

There were several limitations in our study. Firstly, this 
was a retrospective, cross-sectional study. A prospec-
tive and long-term follow-up study is needed to further 
validate our models. Secondly, all subjects included in the 
study were Asians. Different races or countries have dif-
ferent biology and etiology, which may enhance model 
robustness. Finally, many patients with subarachnoid 
hemorrhage were excluded due to immediate surgery. 
The imbalance between the number of ruptured and 
unruptured cases may affect the accuracy of our model. 
In future research, we will strive to overcome the above 
limitations, obtain multi-ethnic and multi-national sam-
ples, and design a prospective dynamic longitudinal 
study to verify the reliability of our research results.

Conclusion
In this study, we established three classification mod-
els which could distinguish ruptured and unruptured 
aneurysms accurately. Our fully automatic model could 
rapidly process the CTA data and evaluate the status of 
aneurysms in one minute. It greatly improves the diag-
nostic efficiency and has important value to help the 
early diagnosis and treatment in clinical practice.
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