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Abstract 

Purpose  To predict the International Neuroblastoma Pathology Classification (INPC) in neuroblastoma using a com-
puted tomography (CT)-based radiomics approach.

Methods  We enrolled 297 patients with neuroblastoma retrospectively and divided them into a training group 
(n = 208) and a testing group (n = 89). To balance the classes in the training group, a Synthetic Minority Over-sampling 
Technique was applied. A logistic regression radiomics model based on the radiomics features after dimensionality 
reduction was then constructed and validated in both the training and testing groups. To evaluate the diagnostic 
performance of the radiomics model, the receiver operating characteristic curve and calibration curve were utilized. 
Moreover, the decision curve analysis to assess the net benefits of the radiomics model at different high-risk thresh-
olds was employed.

Results  Seventeen radiomics features were used to construct radiomics model. In the training group, radiomics 
model achieved an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.851 (95% confidence inter-
val (CI) 0.805–0.897), 0.770, 0.694, and 0.847, respectively. In the testing group, radiomics model achieved an AUC, 
accuracy, sensitivity, and specificity of 0.816 (95% CI 0.725–0.906), 0.787, 0.793, and 0.778, respectively. The calibration 
curve indicated that the radiomics model was well fitted in both the training and testing groups (p > 0.05). Decision 
curve analysis further confirmed that the radiomics model performed well at different high-risk thresholds.

Conclusion  Radiomics analysis of contrast-enhanced CT demonstrates favorable diagnostic capabilities in distin-
guishing the INPC subgroups of neuroblastoma.

Critical relevance statement  Radiomics features of contrast-enhanced CT images correlate with the International 
Neuroblastoma Pathology Classification (INPC) of neuroblastoma.
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Key points 

•	 Radiomics features derived from contrast-enhanced CT images are strongly associated with the INPC sub-
groups of neuroblastoma.

•	 Radiomics analysis of contrast-enhanced CT images can effectively distinguish between unfavorable and favora-
ble histology of neuroblastoma.

•	 The decision curve analysis has validated the clinical utility of the radiomics model.

Keywords  Neuroblastoma, Pathology, Radiomics, Computed tomography

Graphical Abstract

Introduction
Neuroblastoma is a malignant solid tumor in children 
that accounts for 15% of cancer-related deaths in chil-
dren [1]. The International Neuroblastoma Pathology 
Classification (INPC) is an important classification sys-
tem for neuroblastoma, providing a reference for differ-
ent treatment stratification based on various risk factors 
associated with poor prognosis [2]. INPC classifies neu-
roblastoma into two subgroups based on patient age, 
tumor histological subtype, differentiation grade, and 
mitosis karyorrhexis index (MKI): favorable histology 
(FH) and unfavorable histology (UFH) [3]. INPC is highly 
prognostic, with significant differences in predicted 

survival between FH and UFH, with a 3-year event-free 
survival rate that is much higher in FH than in UFH 
[4]. Age has long been considered the most important 
prognostic factor for neuroblastoma, while INPC could 
provide additional valuable prognostic information [5]. 
In addition to being linked to the genomic signature of 
neuroblastoma, INPC is also an essential element of the 
Children’s Oncology Group neuroblastoma risk clas-
sification system [6, 7]. Therefore, INPC is essential for 
developing an effective stratified treatment strategy for 
neuroblastoma.

However, the assessment of INPC is complex and sub-
jective, and the analysis of the same patient by multiple 
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pathologists may lead to inconsistent results. Moreover, 
the pathological heterogeneity of neuroblastoma can 
cause different differentiation grades at different parts of 
the same tumor, thus reducing the accurate evaluation of 
INPC [8, 9]. Besides, the evaluation of MKI, an indicator 
of INPC, involves manual counting of 5000 cells under a 
microscope to determine the total number of cells under-
going karyorrhexis or in mitosis, which is a lengthy and 
laborious process [10]. Despite the significant success 
achieved through computer techniques in image analysis, 
determining MKI has proven to be a challenge [11]. Con-
sequently, creating an automated and objective method 
to aid in the pathological classification of neuroblastoma 
is of great clinical interest.

Radiomics is a rapidly developing technology that com-
bines big data and artificial intelligence to aid in diag-
nosis. By further analyzing medical images, it extracts 
quantitative features to reflect lesion heterogeneity 
and has demonstrated great potential in tumor staging, 
pathological subtyping, and prognosis prediction [12–
14]. Thus, medical images can provide not only visual 
information about the disease, but also act as a digital 
representation of a pathological section. Liu et  al. [15] 
demonstrated the potential of radiomics in neuroblas-
toma by incorporating it into machine learning models to 
predict outcomes. Other studies have also revealed that 
radiomics can be used to identify the pathological sub-
types and genetic aberrations of neuroblastoma [16, 17]. 

Nevertheless, there has been only one report on the use 
of 18F-FDG PET/CT-based radiomics to predict INPC 
subgroups in neuroblastoma [18]. Therefore, the aim of 
this study was to predict the INPC subgroups in neuro-
blastoma using a CT-based radiomics approach.

Materials and methods
Study population
This study was approved by the Ethics Committee of 
the Children’s Hospital of Chongqing Medical Univer-
sity, and the consent was waived due to its retrospective 
nature. The clinical and pathological data of children 
with pathologically confirmed neuroblastoma from our 
hospital between January 2010 and September 2022 
were retrospectively collected. To divide the cohort 
into a training group and a testing group, a 7:3 strati-
fied sampling was utilized. The inclusion criteria for 
this study were as follows: (1) patients aged 0–16 years; 
(2) neuroblastoma confirmed by pathological examina-
tion with sufficient material to classify histologically; 
(3) patients receiving contrast-enhanced CT exami-
nation before oncological treatment; (4) specimens 
taken no later than a week after imaging. The exclu-
sion criteria were as follows: (1) patients only receiv-
ing non-contrast-enhanced CT, MRI, or ultrasound; (2) 
artifacts present in the CT images; (3) patients receiv-
ing oncological treatment before the CT examination; 
(4) insufficient material to classify histologically; (5) 

Fig. 1  Patient selection pathway. INPC, International Neuroblastoma Pathology Classification; FH, favorable histology; UFH, unfavorable histology
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pathological examination and imaging not performed 
at the same visit. As shown in Fig. 1, the patient selec-
tion pathway was followed.

INPC evaluation
Two pathologists were involved in the pathological 
analysis and any disagreements were resolved through 
discussion where the tumor was pathologically ana-
lyzed depended on the sampling method. If upfront 
complete resection was performed, the whole tumor 
was analyzed. If upfront complete resection was not 
performed, a biopsy or incomplete resection was con-
ducted. Patients were divided into FH and UFH based 
on the histological subtype, differentiation degree, MKI 
and patient age [3, 19]. The definitions of FH and UFH 
can be found in Additional file 1: Fig. S1.

CT acquisition
All patients underwent CT scans using a Lightspeed 
VCT (GE Healthcare) or Brilliance iCT (PHILIPS). 
The scanning parameters were set to a tube voltage of 
80–120  kV, tube current of automatic, noise index of 
12, scanning layer thickness of 5  mm, pitch of 0.6–1.1. 
An isotonic iodine contrast agent (Visipaque 320  mg I/
mL, GE Healthcare) was used for the contrast agent pro-
tocol. The injection dose (mL) was calculated using the 
formula of 2 × body weight (kg), with a maximum dose of 
80 mL. The contrast agent was injected from the periph-
eral superficial vein by a high-pressure syringe at a rate of 

0.5–3.5 mL/s for 18–20 s, followed by flushing of the tube 
with saline at the same rate for 6–8 s. Initially, a CT scan 
without the use of a contrast agent was conducted. Sub-
sequently, images in the arterial and venous phases were 
obtained at 20–28 s and 55–66 s after the injection of the 
contrast agent, respectively.

Tumor segmentation and radiomics feature extraction
The contrast-enhanced CT images at the arterial phase 
were uploaded to ITK-SNAP (version 3.6.0) software for 
tumor segmentation. A radiologist with 3 years of experi-
ence, who was blinded to the pathological results, manu-
ally delineated the maximum five slices of the tumor area. 
The segmentation was subsequently verified by another 
radiologist with 14  years of experience. We segmented 
the area of interest to exclude vascular structures and 
organs that were encased, resulting in only the tumor 
region being included for radiomics feature extraction. 
An example of tumor segmentation can be seen in Fig. 2. 
To ensure generalization performance, voxel resampling 
(1 × 1 × 1 mm3) was conducted on CT images prior to 
radiomics features extraction. A total of 1046 radiomics 
features, including morphological features, histogram 
features and texture features, were extracted (Supple-
mentary Table 1). The original features were transformed 
with Laplacian of Gaussian (LOG) and wavelet filters to 
generate higher-order features. To assess the depend-
ability of radiomics features, a subset of 40 patients from 
the cohort underwent tumor re-segmentation and subse-
quent extraction of radiomics features.

Fig. 2  Example of tumor segmentation. The patient, an 8-year-old male, with thoracic poorly differentiated neuroblastoma, was classified as 
favorable histology
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Table 1  Demographic characteristics of the patients

FH favorable histology, UFH unfavorable histology, NA not applicable, INRG international neuroblastoma risk group

Characteristics FH (n = 120) UFH (n = 177) p value

Age (months) 12.5 (3.25, 37.75) 37.0 (22.0, 57.0)  < 0.001

Gender 0.659

 Male 64 (53.3%) 99 (55.9%)

 Female 56 (46.7%) 78 (44.1%)

Location NA

 Neck 1 (0.8%) 1 (0.6%)

 Neck-thorax 2 (1.7%) 0 (0.0%)

 Thorax 14 (11.7%) 12 (6.8%)

 Thorax-abdomen 2 (1.7%) 4 (2.2%)

 Abdomen 85 (70.8%) 152 (85.9%)

 Abdomen-pelvis 7 (5.8%) 6 (3.4%)

 Pelvis 9 (7.5%) 2 (1.1%)

INRG stage  < 0.001

 L1 25 (20.8%) 17 (9.6%)

 L2 71 (59.2%) 42 (23.7%)

 M 15 (12.5%) 115 (65.0%)

 MS 9 (7.5%) 3 (1.7%)

Histological subtype  < 0.001

 Poorly differentiated neuroblastoma 73 (60.8%) 132 (74.6%)

 Undifferentiated neuroblastoma 0 (0.0%) 20 (11.3%)

 Differentiated neuroblastoma 3 (2.5%) 2 (1.1%)

 Intermixed ganglioneuroblastoma 40 (33.3%) 0 (0.0%)

 Nodular ganglioneuroblastoma 4 (3.3%) 23 (13.0%)

Fig. 3  Pathway of feature selection using a least absolute shrinkage and selection operator algorithm. Figure a shows the selection of the optimal 
lambda value with minimum prediction error using a fivefold cross-validation method. Figure b shows the selection of the radiomics features with 
nonzero compression coefficients under the optimal lambda value
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Radiomics feature selection
According to the radiomics features extracted from 
the twice tumor segmentation, the intra-class correla-
tion coefficient (ICC) was calculated, and radiomics 
features with an ICC greater than 0.80 were selected. 
To increase the size of the minority class in the train-
ing group to match that of the majority class, a Syn-
thetic Minority Over-sampling Technique (SMOTE) 
was employed before feature dimensionality reduction, 
with the k-neighbors set to 5. Pearson correlation coef-
ficient (PCC) between the pairwise radiomics features 
was calculated, with the threshold set to 0.99. To select 
radiomics features, a least absolute shrinkage and selec-
tion operator (LASSO) algorithm was employed in con-
junction with fivefold cross-validation, which was used to 
identify the best lambda value with the lowest prediction 
error. The radiomics features with nonzero compression 
coefficients were then selected based on the best lambda 
value, as illustrated in Fig. 3.

Development and validation of the radiomics model
The logistic regression radiomics model was constructed 
using the final selected radiomics features and then vali-
dated in the training and testing groups. The calibration 
curve and Hosmer–Lemeshow goodness-of-fit test were 
employed to assess the consistency between the pre-
dicted and actual probabilities of the radiomics model in 
the training and testing groups. The p value was used to 
determine if the predicted probabilities of the radiomics 
model were significantly different from the actual prob-
abilities, with a p value less than 0.05 indicating poor 
diagnostic performance. To further evaluate the clinical 
utility of the radiomics model, decision curve analysis 
was employed to analyze the net benefits of the radiom-
ics model at different high-risk thresholds.

Statistical analysis
Statistical analysis was performed using RStudio (ver-
sion 4.1.1) and FeAture Explorer software (version 0.5.3) 

Table 2  Comparison of demographic characteristics of the patients between the training group and testing group

FH favorable histology, UFH unfavorable histology, NA not applicable, INRG international neuroblastoma risk group

Characteristics Training group (n = 208) Testing group (n = 89) p value

FH (n = 84) UFH (n = 124) p value FH (n = 36) UFH (n = 53) p value

Age (months) 13.5 (3.0, 36.75) 36.50 (20.25, 51.00)  < 0.001 11.5 (4.5, 39.0) 46.0 (26.5, 71.5)  < 0.001 0.205

Gender 0.682 0.857 0.830

 Male 45 (53.6%) 70 (56.5%) 19 (52.8%) 29 (54.7%)

 Female 39 (46.4%) 54 (43.5%) 17 (47.2%) 24 (45.3%)

Location NA NA NA

 Neck 1 (1.2%) 0 (0.0%) 0 (0.0%) 1 (1.9%)

 Neck-thorax 1 (1.2%) 0 (0.0%) 1 (2.8%) 0 (0.0%)

 Thorax 9 (10.7%) 12 (9.8%) 5 (13.9%) 0 (0.0%)

 Thorax-abdomen 0 (0.0%) 3 (2.4%) 2 (5.5%) 1 (1.9%)

 Abdomen 63 (75.0%) 105 (84.6%) 22 (61.1%) 47 (88.7%)

 Abdomen-pelvis 5 (6.0%) 2 (1.6%) 2 (5.6%) 4 (7.5%)

 Pelvis 5 (5.9%) 2 (1.6%) 4 (11.1%) 0 (0.0%)

INRG stage  < 0.001  < 0.001 0.911

 L1 17 (20.3%) 14 (11.3%) 8 (22.2%) 3 (5.7%)

 L2 50 (59.5%) 30 (24.2%) 21 (58.3%) 12 (22.6%)

 M 10 (11.9%) 79 (63.7%) 5 (13.9%) 36 (67.9%)

 MS 7 (88.3%) 1 (0.8%) 2 (5.6%) 2 (3.8%)

Histological subtype  < 0.001  < 0.001 0.522

 Poorly differentiated neuroblastoma 49 (58.3%) 96 (77.4%) 24 (66.7%) 36 (67.9%)

 Undifferentiated neuroblastoma 0 (0.0%) 11 (8.9%) 0 (0.0%) 9 (17.0%)

 Differentiated neuroblastoma 2 (2.4%) 1 (0.8%) 1 (2.8%) 1 (1.9%)

 Intermixed ganglioneuroblastoma 29 (34.5%) 0 (0.0%) 11 (30.6%) 0 (0.0%)

 Nodular ganglioneuroblastoma 4 (4.8%) 16 (12.9%) 0 (0.0%) 7 (13.2%)
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software [20]. Categorical data were compared between 
two groups using a chi-square test, and measurement 
data between two groups were compared using Student 
t test or Mann–Whitney U test. The diagnostic perfor-
mance of radiomics model was evaluated using receiver 
operating characteristic (ROC) curves and precision-
recall (PR) curves, with the area under the curve (AUC), 
95% confidence interval (CI), accuracy, sensitivity, speci-
ficity, negative prediction value (NPV) and positive pre-
diction value (PPV) used to assess the performance. 
Statistical significance was determined when the p value 
was less than 0.05.

Result
Demographic data
This study included a total of 297 cases, with 163 males 
and 134 females. The median age of the patients was 
30.0  months, with a range of 0.07–161  months. There 
were 120 cases in FH group and 177 cases in UFH group. 
In the FH group, there were 64 males and 56 females, 
with a median age of 12.5  months and an age range of 
0.07–150 months. In the UFH group, there were 99 males 
and 78 females, with a median age of 37.0 months and an 

Table 3  The final radiomics features selected by a least absolute 
shrinkage and selection operator algorithm

Log Laplacian of Gaussian, glszm gray level size zone matrix, glcm gray level 
co-occurrence matrix, gldm gray level dependence matrix

Filter Type Subtype

Log.sigma.3.0.mm.3D glszm ZoneEntropy

Wavelet.LHH glszm LargeAreaLowGrayLevelEmphasis

Log.sigma.1.0.mm.3D glszm LargeAreaLowGrayLevelEmphasis

Wavelet.LLH glszm GrayLevelNonUniformity

Wavelet.HHL glcm Imc2

Log.sigma.2.0.mm.3D Firstorder Skewness

Wavelet.HLH Firstorder RootMeanSquared

Original Shape Maximum2DDiameterRow

Wavelet.LLL glszm ZoneEntropy

Original Shape Sphericity

Wavelet.HLH Firstorder Kurtosis

Wavelet.LLH Firstorder Median

Wavelet.LLH gldm DependenceNonUniformityNor-
malized

Wavelet.LHL glszm SizeZoneNonUniformityNormalized

Log.sigma.3.0.mm.3D glszm GrayLevelVariance

Wavelet.LLL glcm JointEnergy

Wavelet.LHL glszm GrayLevelNonUniformity

Fig. 4  Raincloud plots of radiomics features between favorable histology (FH) and unfavorable histology (UFH) in the entire dataset
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age range of 1–161  months. The age and international 
neuroblastoma risk group (INRG) stage were found to 
be statistically different between FH and UFH (p < 0.001), 
but gender was not statistically different between the two 
groups. Table 1 presents the demographic data of the FH 
and UFH groups, while Table 2 shows that there was no 
statistically significant difference in demographic data 
between the training and testing groups.

Feature dimensionality reduction
Out of the 40 selected cases, there were 25 males and 
15 females, with a median age of 14.0 (4.25, 47.75) 
months and a range of 0.09–114  months, including 20 
FH cases and 20 UFH cases. The ICC of radiomics fea-
tures extracted from twice tumor segmentation had a 
range from 0.02 to 0.99, with an average ICC of 0.90 and 
a standard deviation of 0.15. Out of the 168 radiomics 
features, the ICC of those was found to be less than 0.80. 

After the removal of features with a PCC greater than 
0.99, 593 radiomics features were left. Subsequently, a 
total of 17 features were retained after LASSO selection. 
These retained radiomics features are shown in Table 3, 
with their corresponding distribution in the entire data-
set displayed in Fig. 4. The raincloud plots of the remain-
ing features can be seen in Additional file 1: Fig. S2.

Diagnostic performance of the radiomics model
The coefficients of the radiomics features used to con-
struct logistic regression model are presented in Fig.  5. 
The results of the radiomics model in the training group 
showed an AUC of 0.851 (95% CI 0.805–0.897), accuracy 
of 0.770, sensitivity of 0.694, and specificity of 0.847. The 
evaluation of the radiomics model in the testing group 
revealed an AUC of 0.816 (95% CI 0.725–0.906), accu-
racy of 0.787, sensitivity of 0.793, and specificity of 0.778. 
The details of the evaluation indicators of the radiomics 

Fig. 5  Coefficients of the final radiomics features incorporated in the logistic regression model

Table 4  Diagnostic performance of the radiomics model in the training and testing groups

AUC​ area under the curve, CI confidence interval, PPV positive prediction value, NPV negative prediction value

Radiomics model AUC​ 95%CI Accuracy Sensitivity Specificity PPV NPV

Training group 0.851 0.805–0.897 0.770 0.694 0.847 0.819 0.734

Testing group 0.816 0.725–0.906 0.787 0.793 0.778 0.840 0.718
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model in both the training and testing groups can be 
found in Table  4. Hosmer–Lemeshow goodness-of-fit 
test indicated that radiomics model fitted well in both 
the training and testing groups (both p > 0.05). Figure  6 
demonstrates the ROC curves, PR curves and calibra-
tion curves of radiomics model in the training and testing 
groups. Decision curve analysis indicated that radiomics 
model performed well at different high-risk thresholds in 
the training and testing groups (Fig. 7).

Discussion
Our study utilized radiomics analysis based on contrast-
enhanced CT images to predict INPC subgroups of neu-
roblastoma. The logistic regression model built on the 
radiomics features of contrast-enhanced CT images was 
able to distinguish INPC subgroups of neuroblastoma. 
The AUC of the radiomics model in the training group 
was 0.851 (95% CI 0.805–0.897), with an accuracy of 
0.770, while the AUC in the testing group was 0.816 (95% 

Fig. 6  Diagnostic performance of the radiomics model. Figures a–c show the receiver operating characteristic curve, precision-recall curve, and 
calibration curve in the training group. Figures d–f show the receiver operating characteristic curve, precision-recall curve, and calibration curve in 
the testing group. Hosmer–Lemeshow goodness-of-fit test confirmed that radiomics model fitted well in the training group (p = 0.447) and testing 
group (p = 0.162)

Fig. 7  Decision curves of the radiomics model in the training group (a) and testing group (b). The blue curve indicated the net benefit of the 
radiomics model at different high-risk threshold
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CI 0.725–0.906), with an accuracy of 0.787. These results 
demonstrate that the radiomics model is an effective tool 
for discriminating INPC subgroups of neuroblastoma. 
Additionally, the decision curve analysis revealed that the 
radiomics model could provide clinical benefits.

In the field of medical imaging, radiomics offers a non-
invasive and powerful diagnostic tool to uncover the 
genetically and pathologically heterogeneous features of 
neuroblastoma. Wu et  al. developed a radiomics model 
based on CT images to predict MYCN amplification in 
pediatric neuroblastoma, and the AUC of the model was 
0.93 (95% CI 0.87–1.00) in the training group and 0.92 
(95% CI 0.80–1.00) in the testing group [21]. In another 
study with a larger sample size, the radiomics logis-
tic regression model was also successful in predicting 
MYCN amplification status in pediatric abdominal neu-
roblastoma [22]. In this study, the efficacy of the radiom-
ics model we established to predict INPC subgroups was 
lower than that of the radiomics models established in 
other studies to predict MYCN amplification. This may 
be due to the fact that MYCN, as a risk factor with inde-
pendent prognostic ability, has a greater influence on 
the image features of neuroblastoma. In the radiomics 
model based on 18F-FDG PET/CT images for identifying 
INPC subgroups established by Qian et al. [18], the AUC 
in the training cohort and validation cohort was 0.877 
and 0.868, respectively. This comparatively lower per-
formance in comparison with other studies implies that 
INPC subtypes are not easily distinguishable [23, 24].

In this study, the final radiomics features used to iden-
tify INPC subtypes included gray-level size zone matrix 
(GLSZM) (8/17), first-order features (4/17), gray-level co-
occurrence matrix (GLCM) (2/17), shape (2/17), and gray-
level dependence matrix (GLDM) (1/17). The radiomics 
model was mainly composed of GLSZM, which is a count-
ing matrix that records the number of zones of adjacent 
connected voxels with the same discrete gray level and is 
more effective in characterizing texture consistency [25]. 
In contrast to the run length matrix and the co-occurrence 
matrix, GLSZM does not require multiple direction cal-
culations. Nevertheless, in Wu et al.’s study, the gray level 
run length matrix (GLRLM) was highly effective in pre-
dicting MYCN amplification [21]. Although the principle 
of GLRLM is similar to GLSZM, GLRLM mainly records 
the run length of connected voxels with the same gray 
level, thus being less affected by the distribution range of 
voxel values [26]. In contrast to the radiomics model used 
to identify high-risk neuroblastoma, shape features were 
found to be less significant in this study [27]. Nevertheless, 
the results of this study, along with previous research, sug-
gest that texture features play a crucial role in identifying 
both high-risk and UFH neuroblastoma.

In the 18F-FDG PET/CT imaging radiomics model 
developed to discriminate INPC subgroups, the radi-
omics features involved in the model were also mainly 
composed of GLSZM [18]. This indicates that GLSZM 
is more effective in capturing the image differences 
between FH and UFH. In this study, GLSZM was mainly 
composed of LargeAreaLowGrayLevelEmphasis (2/8), 
GrayLevelNonUniformity (2/8) and ZoneEntropy (2/8). 
These GLSZM-related texture features represent the uni-
formity of zone counting at the gray level of the image, 
indicating the differences in the texture of the contrast-
enhanced CT images between the FH and UFH groups. 
This may be related to the biological behavior of the 
tumor, as FH is more common in younger children with 
spontaneous regression or age-appropriate tumor differ-
entiation or maturation, whereas UFH patients are older 
and have a more heterogeneous molecular signature [28]. 
Therefore, more attention should be paid to the correla-
tion between GLSZM and the heterogeneous character-
istics of neuroblastoma in future studies.

This study has some limitations. The MKI analysis, 
which is one of the indicators of the INPC classifica-
tion system, was based on the count of 5000 tumor 
cells, which could lead to subjective errors and affect the 
results of the pathological classification. Additionally, 
the radiomics analysis within the maximum five slices 
was not ideal. We opted to segment areas of interest in 
the five largest slices of each tumor due to the large size 
of the primary tumor, making it difficult and laborious 
to delineate the entire tumor region of interest in a large 
sample study. However, in cases of upfront complete 
resection, it is thought that the histological analysis was 
taken from the region of the tumor that was prone to 
radiomics analysis. For primary lesions that underwent 
biopsy or incomplete resection, INPC classification 
could only be done when the material was sufficient, so 
the maximum five slides were very close to the speci-
men’s origin. Furthermore, the use of CT scanning in 
pediatric patients is a sensitive issue due to the potential 
radiation exposure it may cause, so this study was lim-
ited to a retrospective design. It would be beneficial to 
investigate if MRI images could provide more informa-
tion, and conducting multi-center studies could further 
validate the applicability of the constructed model.

To sum up, the radiomics model that was developed 
exhibited a good diagnostic performance in discriminat-
ing the INPC subgroups of neuroblastoma and could offer 
a noninvasive approach to assist in the evaluation of the 
INPC subgroups of neuroblastoma. In the future, the com-
bination of multimodal imaging with functional imaging 
could potentially enhance the effectiveness of artificial intel-
ligence in the pathological classification of neuroblastoma.
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