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Abstract 

Machine learning, and especially deep learning, is rapidly gaining acceptance and clinical usage in a wide range of 
image analysis applications and is regarded as providing high performance in detecting anatomical structures and 
identification and classification of patterns of disease in medical images. However, there are many roadblocks to the 
widespread implementation of machine learning in clinical image analysis, including differences in data capture 
leading to different measurements, high dimensionality of imaging and other medical data, and the black-box nature 
of machine learning, with a lack of insight into relevant features. Techniques such as radiomics have been used in 
traditional machine learning approaches to model the mathematical relationships between adjacent pixels in an 
image and provide an explainable framework for clinicians and researchers. Newer paradigms, such as topological 
data analysis (TDA), have recently been adopted to design and develop innovative image analysis schemes that go 
beyond the abilities of pixel-to-pixel comparisons. TDA can automatically construct filtrations of topological shapes of 
image texture through a technique known as persistent homology (PH); these features can then be fed into machine 
learning models that provide explainable outputs and can distinguish different image classes in a computationally 
more efficient way, when compared to other currently used methods. The aim of this review is to introduce PH and its 
variants and to review TDA’s recent successes in medical imaging studies.

Key points 

1. Topological data analysis (TDA) provides information on the shape of data.
2. In radiology, the shape of 2D and 3D images contains additional information.
3. TDA can be combined with other applications, such as textural analysis.
4. Persistent homology can provide a visual representation of extracted TDA data.
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Background
Over the last few years, rapid advancements in artifi-
cial intelligence and deep learning, in particular, have 
resulted in a surge of publications in medical image 
analysis fields. Establishing innovative, effective diagnos-
tic support tools could improve disease detection, such 
that physicians can make more accurate diagnostic deci-
sions to quickly treat patients [1, 2]. Physical exam find-
ings, laboratory testing, and expert-driven interpretation 
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of ultrasonography, computed tomography (CT), and 
magnetic resonance imaging (MRI) are used in clinical 
practice for detecting a variety of conditions. Medical 
imaging datasets are now commonplace in the biomedi-
cal industry. However, healthcare image data collection 
such as CT or MRI datasets may involve high dimen-
sionality (many predictors relative to patient samples) or 
mismatches in metric scale from equipment calibration 
differences, both of which can pose issues for deep learn-
ing and other machine learning algorithms [3, 4].

Topological data analysis (TDA) is a novel approach 
to medical imaging analytics that leverages tools from 
topology, a branch of mathematics that can look at global 
structures in data, such as loops or holes, that do not 
depend on specific measurements, such that features 
exist irrespective of whether they are measured in cen-
timeters, inches, or other units. TDA solves the issues of 
dimensionality (the large number of predictors relative to 
the number of patients from whom data was collected) 
and metric mismatches (such as the aforementioned unit 
of measurement). In a coordinate-free approach (where 
metrics are not needed or used), this branch of data sci-
ence defines the dataset structure as shapes; these shapes 
are created by connecting pieces of point data or loops 
within the dataset, profiling the data as point clouds 
with a notion of distance or similarity [1–4]. Datasets 
collected on the same biological systems using different 
technological platforms can thus be directly compared. 
In addition, TDA is well suited to deal with the high 
dimensionality present in medical imaging and biological 
analyses [5]. TDA has been studied in a variety of medical 
fields including neurology, cardiology, hepatology, gene-
level and single-cell transcriptomics, drug discovery, evo-
lution, and protein structural analysis [6]. TDA has been 
successfully utilized in a variety of medical contexts, such 
as the identification of novel pathological phenotypes of 
asthma, the discovery of phenotype-biomarker associa-
tions in traumatic brain injury [5], the identification of 
diagnostic factors for pulmonary embolism [7], and the 
differentiation between healthy patients and those with 
diabetic retinopathy from retinal imaging [8].

TDA has been combined with convolutional neural 
networks (CNNs) to improve the analysis of radiomics 
data. In fact, CNNs themselves are a type of topology-
based algorithm that optimizes mapping between topo-
logical spaces with respect to an outcome and input data 
[9, 10]. However, training CNNs still requires large sam-
ples of imaging data and enough images within each out-
come group of interest to allow the CNN to find relevant 
feature differences that distinguish the groups. TDA can 
work with very small sample sizes and find meaningful 
information, allowing for its use in cases where CNNs 
may not have enough data to create an accurate model. 

In fact, CNNs themselves are a type of topology-based 
algorithm that optimizes mapping between topological 
spaces with respect to an outcome and input data.

Given the continued expansion of data acquisition due 
to the development of next-generation high-throughput 
sequencing [11], high dimensional medical imaging such 
as spectral CT and MRI [12–14], and a greater empha-
sis on personalized medicine [15, 16], effective data 
analysis methods are essential for transforming this data 
into information that may be used in clinical diagnostic 
and therapeutic settings. The goal of TDA is to identify 
regional and global structures in data at various scales by 
concentrating on the shape of the data to solve the issues 
of data dimensionality and differences in data collection 
methodologies and scales.

Brief overview of persistent homology
Persistent homology (PH) is a commonly used tool 
from TDA that relies on two notions: (1) filtration with 
a distance metric (so that we can create a series of data 
objects from the initial object) and (2) tracking topologi-
cal features over that filtration (so that we can examine 
the shapes that exist in each of the data objects created 
by the filtration). After providing a detailed framework of 
the statistical basis of this approach, we provide a practi-
cal example to help illustrate the properties of PH.

To filter a data point cloud or distance matrix built 
from a point cloud, a series of threshold distances is 
defined with a metric, such that each threshold iteratively 
cuts the dataset and builds a topological object from 
that defined threshold distance. Essentially, points that 
are within the thresholded distance of each other (either 
pairwise in the Vietoris–Rips complex or all mutually in 
the Cech complex) are connected into an object (called a 
simplicial complex) with vertices and edges and higher-
dimensional analogues of edges (such as faces). A graph 
is a simple example of a simplicial complex with mutual 
two-way connections between points. However, if three 
points are mutually within a distance threshold of each 
other, they are connected into a triangle. If four points 
are mutually within a distance threshold of each other, 
they form a tetrahedron. This pattern holds to an arbi-
trary number of points that are within a mutual distance 
of each other. As this process is applied to each threshold, 
a series of simplicial complexes is created with a hierar-
chical structure.

For example, suppose we have three points in a two-
dimensional point cloud, two of which are closer together 
than either is to the third point (Fig. 1). In this example, 
we can take three patients who present with malignancy, 
each having a different 3D tumor volume on CT imaging. 
For patients 1 and 2, their volumes are similar and form a 
simplicial complex with only a small distance threshold. 
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If we expand our distance threshold, we can now include 
other values that are increasing dissimilar, connecting all 
three points to create a triangle. In practice, we’d have 
many more points and dimensions in our point cloud, 
but this illustrates the principle of filtration and simpli-
cial complex hierarchies at a basic level.

Once the series of simplicial complexes has been built, 
their structures can be analyzed. Homology, a topologi-
cal tool, counts the number of holes in each dimension 
that exist within a space. In simplicial complexes, these 
are connected components, loops, voids, and higher-
dimensional voids. To build the intuition around this, it 
is important to consider a part in a simplicial complex 
made of three, two-way relationships (edges in a graph) 
but lacking a mutual three-way relationship (to form 
a triangle of three points within a mutual distance of 
each other). This forms a loop, a part of the space with 
a potentially higher-dimensional interaction that does 
not exist in the simplicial complex but includes the 
lower-dimensional interactions. We can consider mutual 
three-way relationships that do not form a mutual four-
way relationship, which would create a void. Betti num-
bers, which track the number of holes that exist in each 
dimension for a space or a simplicial complex, are a good 
way to summarize and quantify this information.

In Fig.  2, we have three two-way relationships that 
mutually exist (perhaps distance or some other metric 
upon which we’ve filtered the data); however, the crite-
rion for a three-way relationship does not exist, though 
all three, two-way relationships do exist. In this example, 
we use characteristics comprising the shape of a tumor 
identified from CT imaging, such as elongation and flat-
ness, to demonstrate the principle of three two-way rela-
tionships that can mutually exist. While each of the pairs 
share aspects of elongation, flatness, or both qualities, 

the criterion for creating a three-way relationship is not 
met; this creates a loop where a three-way relationship 
currently does not exist but has the potential of existing 
under varying conditions assigned by the data scientist.

Because we have a series of simplicial complexes from 
our filtration, we can track the Betti numbers for holes in 
each dimension across the filtration to see where topo-
logical features appear and disappear in the dataset. This 
provides us with information about which features might 
be most important (features that persist across a large 
part of the filtration) and those which might just be noise 
in the dataset (features that do not persist long across 
the filtration). These features and their lifetimes within 
the filtration can be plotted visually with a persistence 
diagram. This allows for the identification of features in 
medical images and potential comparison of features 
across different datasets. In fact, there are distance met-
rics that can measure this difference in features directly; 
Wasserstein distance, also known as earth mover dis-
tance, is the most applied metric. Figure  3 is a simple 
example of a persistence diagram that tracks features in 
the 0th, 1st, and 2nd homology group (connected com-
ponents, the 0th, 1st, and 2nd Betti numbers).

Compute times for persistent homology are reasonable 
for medical images. On a basic laptop, one fMRI image 
takes about 1–2 min to process with the TDApplied [17]. 
With a distributed computing system of 20 cores, 5000 
fMRI images would take about 250–500  min (~ 4–8  h) 
to process. On a GPU system with hundreds of cores, it 
is possible to scale this estimate across large healthcare 
systems.

However, imaging data features often need to inte-
grate with other data sources or need to be combined 
within a multivariate model for further analysis. To 
do this, we need to transform the persistence diagram 

Fig. 1 An example of three patients with varying 3D tumor volumes within a two-dimensional point cloud. The point from patient 1 and patient 
2 for 3D tumor volume is close, therefore only requiring a small distance threshold to create a simplicial complex. As the distance threshold is 
expanded, the simplicial complex can include additional points with increasing variance
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into a structure that will integrate well with statistical 
models or machine learning algorithms. Persistence 
images impose a weighting function to the points in a 
persistence diagram and then define probability distri-
butions on those points. This gives a surface over the 
diagram, which becomes a feature vector for algorithms 
further down the analysis pipeline. In this way, persis-
tent homological features derived from a filtration over 
a patient imaging dataset become features in a machine 
learning algorithm much like patient biometric meas-
urements or demographic factors. Thus, we can think 
of PH and persistence images as a type of feature engi-
neering like how features such as height and weight 
can be combined into a single metric of body mass 
index or how key words indicating a specific condition 

or medication can be flagged in an electronic health 
record (EHR). Figure  4 illustrates how this flow might 
work for raw EHR data.

Traditional topological data analysis pipeline
It is assumed that the input consists of a finite set of 
points (pixel values) from medical images with a defined 
distance—or similarity—between them. This distance 
can either be an intrinsic metric determined by a pair-
wise distance matrix or induced by the metric on the 
point cloud (for example, the Euclidean metric when the 
data are embedded in  Rd). Typically, the definition of the 
metric is provided as an input or is dictated by the appli-
cation. Different metrics can result in the extraction of 
varying features, which is crucial to define according to 
specific projects and clinical needs.

From the data, a “continuous” shape is constructed 
to draw attention to the underlying topology or geom-
etry. This is frequently a simplicial complex or a family 
of nested simplicial complexes, known as a filter, which 
depicts the data’s structure on several scales. Defining 
structures that can be successfully deployed in practice is 
the challenge at hand. The Vietoris–Rips algorithm tends 
to meet computational constraints of building hierarchies 
of simplicial complexes while preserving most features 
[18].

The structures constructed from the data are used 
to extract topological or geometric information. This 
may lead to either a complete reconstruction of the 
shape underlying the data—typically a triangulation—
from which topological or geometric features can be 

Fig. 2 An example of three patients with varying 3D tumor shapes within a two-dimensional point cloud. In examining characteristics such as 
elongation and flatness, the points form mutual two-way relationships within a distance or filter characteristic without a three-way relationship. This 
can be altered by the data scientist, as increasing the distance threshold can increase the points included within a simplicial complex

Fig. 3 Persistence diagram that tracks features in the 0th, 1st, and 
2nd homology groups. This persistence diagram shows where the 
0th, 1st, and 2nd Betti numbers appear (X-axis) and disappear (Y-axis) 
throughout the filtration of the data



Page 5 of 10Singh et al. Insights into Imaging           (2023) 14:58  

easily extracted, or it may lead to rough summaries or 
approximations from which the extraction of pertinent 
information necessitates the use of particular tech-
niques, like PH or Mapper. The problem at this stage 
is to (1) demonstrate the relevance of the topological/
geometric information found, (2) include presentation 
and interpretation, and (3) show stability in the face 
of perturbations or the existence of noise in the input 
data. Understanding the statistical behavior of the 
inferred features is crucial for that goal as well.

New families of features and data descriptors are 
provided by the extracted topological and geometric 
information. They can be paired with other types of 
data for more in-depth analysis, or they can be utilized 
to explore the data through visualization. For instance, 
we can combine functional MRI data with clinical his-
tory notes, sociodemographic data, and biometric data 
on groups of patients to test the efficacy of a new trau-
matic brain injury drug. At this stage, it is crucial to 
demonstrate the added value and complementarity (in 
relation to other aspects) of the information provided 
utilizing TDA technologies.

TDA in CT imaging
Current techniques for assessing texture patterns that 
result from local intensity change can only capture the 
spatial arrangement of the texture structures in 3D CT 
images. However, the main advantage of TDA is in offer-
ing a practical representation tool for comprehending 
and analyzing the spatial configuration of a 3D image 
texture component. For instance, in pulmonary nodules, 
the shape and connectivity of convex excursion sets can 
be expressed in terms of scalar quantities to capture the 
spatial arrangement of the texture of lung adenocarci-
noma in great detail. The total amount of functionals 
needed to complete this task equals the excursion set’s 
dimensionality plus one [19]. Regarding the geometric 
interpretation of the Minkowski functionals (MF) of the 
object under study in three dimensions (set of voxels in 
an image), the first functional corresponds to its volume, 
the second functional to its surface, the third functional 
to its mean integral curvature, and the fourth functional 
to the Euler–Poincaré number, which is a purely topo-
logical quantity [19]; the spatial configuration of the tex-
ture of a lung adenocarcinoma could be captured in great 

Fig. 4 Workflow for integrating PH from imaging data and raw EHR data into machine learning models
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detail using this method. Boehm et  al. [20] presented a 
TDA approach to express the spatial arrangement of tex-
tural feature maps in 3D images. This approach clarifies 
the geometric aspects of data from topology (Fig. 5) [19].

Another example of how TDA has been implemented 
on clinical CT imaging is assessment of survival rates of 
lung cancer patients, as shown by Somasundaram et  al. 
[21], using persistent homology summary aspects of CT 
images. A cubical filtration based on Hounsfield units 
was created for each scan. The number of 0-dimen-
sional topological characteristics was plotted against 
each Hounsfield unit to construct a feature curve and 
showed patients with lung cancer, with the 0-dimensional 

topological feature curve statistic indicating progno-
sis. While valuable, the use of TDA should be compared 
against other data modeling approaches to assess the 
superiority, or inferiority, of the technique.

In addition, Vandaele et  al. [22] revealed how to 
predict the histology of lung tumors from thoracic 
radiography images using TDA and highlighted the 
advantages of TDA over cutting-edge quantitative 
imaging technologies for all the notable learning issues 
on lung tumor CT images. On thoracic radiographic 
images of lung cancers, this study investigated funda-
mental learning problems where PH outperforms the 
most recent radiomics-based learning techniques. An 

Fig. 5 Numerous ways to compute PH from radiographic images. a An example 3D slice from a CT scan showing a lung tumor. The red box shows 
the lung tumor. The segmented tumor pixels are highlighted in white to distinguish them from their CT pixel values, which may be better seen 
in the following two images. b The same slice of the CT scan image only showing the tumor pixels that have been segmented. c A point cloud 
illustrating the tumor surface by stacking the tumor contours of all the 2D CT scan slices. d (i) Persistence diagrams derived from sublevel filtration 
of a 3D tumor image; image b showing a 2D slice. Three persistence diagrams are displayed. Each of the three dimensions of the topological hole 
under consideration has an unique diagram (H0/0-dim: connected components, H1/1-dim: cycles, and H2/2-dim: voids). (ii) The persistence diagrams, 
of which a 2D slice is shown in b, were generated by sublevel filtering the 3D tumor image with adjacent boundary box pixels. (iii) The lightly drawn 
persistence diagrams for the Vietoris–Rips filtering of the tumor surface-representing point cloud in c. e This is the persistent barcode extracted 
from the PH  (H0/0-dim: connected components, H1/1-dim: cycles)
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interesting finding was that the novel topological fea-
tures captured complementary information well for 
“benign versus malignant” and “adenocarcinoma versus 
squamous cell carcinoma” tumor prediction but less 
consistently for “small cell versus non-small cell”. Radi-
omics is currently unable to characterize the overall 
data structure [22]. Furthermore, topological features 
appear to be superior to radiomics features in predict-
ing tumor histology as determined by long-term radi-
ology review, biopsy, surgical resection, progression, or 
response, even though radiomics features appear to be 
superior in predicting malignancy scores assigned by 
expert radiologists based on visual inspection [22].

In other work, Iqbal et al. [23] identified SARS-CoV-2 
by computing their topological properties through 
CT images. To calculate the topological properties 
of SARS-CoV-2 features, PH from TDA was used to 
compute these topological features. The “SARS-CoV-2 
CT scan dataset” [24], an open-source dataset with 
2481 CT scans of healthy individuals and COVID-19 
patients, served as the basis for the model’s training 
and testing. The model achieved a benchmark F1 score 
of 99.42% overall, 99.416% in accuracy, 99.41% in preci-
sion, and 99.42% in recall.

TDA in MRI
Topological properties can be extracted from grayscale 
MRI scans by first transforming scans into binary images 
through applying a threshold to each pixel value and then 
applying PH or persistent images.

Oyama et al. [9] investigated the accuracy for classify-
ing hepatic cancers using PH to characterize T1-weighted 
MRI. By using algebraic topology-based machine learn-
ing, Singh et al. [25] extracted MRI features that predict 
the development of hepatic decompensation (Fig. 6) and 
also demonstrated the value of Betti numbers, which aid 
in the classification of liver diseases [26]. The topological 
features were employed as input for classification to pre-
dict who developed early hepatic decompensation within 
1 year of their baseline MRI. When developed model was 
applied in the independent validation cohort, it remained 
predictive of early hepatic decompensation (AUC 0.84). 
In a different study, Turner et  al. [27] developed the 
smooth Euler characteristic transform (SECT), a variant 
of the persistent homology transformer (PHT), to over-
come the challenges of integration with conventional sta-
tistical models. SECT is a new statistic that enables the 
incorporation of shape information into conventional sta-
tistical models and was used to forecast disease-free sur-
vival in glioblastoma multiforme (GBM) based on tumor 

Fig. 6 Workflow of algebraic topology-based machine learning with MRI imaging signal as input
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shape from post-contrast T1 axial MRI [28]. The output 
of PHT is a collection of persistence diagrams, whereas 
the output of SECT is a collection of smooth vectors [29]. 
Both create complex representations of the underlying 
topology that make it difficult to integrate with statistical 
models. Further statistical models, including the Bayes-
ian linear mixed model (BLMM), have been employed 
in the identification of GBM [30–32]; these topological 
approaches performed gene expression, volumetric, and 
morphological summaries in predicting disease-free lon-
gevity when applied to GBM in MRI.

TDA in ultrasound imaging
Data is temporally and spatially normalized to an 
n-dimensional point cloud with simplicial complexes 
built upon the point cloud from which topological invari-
ants are extracted. Birth and death features are trans-
formed into a persistent image to develop feature vectors 
and features are stored in a visual representation that can 
be directly interpreted by physicians/scientists or serve 
as input for machine learning. Feature selection and clas-
sification of patients is performed using machine learn-
ing [33, 34]. TDA has been used to find new classification 
schemes that provided more information about the evo-
lution of diseases. Casaclang-Verzosa et  al. [35] charac-
terized the natural history of aortic stenosis, which has 
two unique moderate stenosis phenotypic manifestations 
as it advances from mild to severe stenosis, in the first 
application of TDA in cardiovascular research (i.e., mod-
erate aortic stenosis with normal vs. reduced ejection 
fraction) (Fig. 7). The same group reported findings in an 
abstract on TDA’s ability to differentiate a variety of heart 
illnesses with varying severity. On the basis of common 
electrocardiographic measures including left ventricular 

ejection fraction, mass, and so on, four patient sub-
groups with clearly different major adverse cardiac event 
(MACE) outcomes were automatically identified using 
unsupervised machine learning with TDA.

Future applications of TDA
The widespread use of cross-sectional imaging in mod-
ern medicine underscores the need for advanced ana-
lytic techniques to augment detection and phenotypic 
characterization of diseases. As new technologies have 
emerged, the amount of data that needs to be analyzed 
has significantly expanded and become much more com-
plex, driving researchers to develop approaches that 
enhance current data curation approaches. With the use 
of TDA, a relatively new analytical technique, researchers 
have made significant advancements in the understand-
ing (pathophysiological features, etiology, prognosis) of 
several diseases, including cancer, asthma, and chronic 
lung disorders. TDA uses the data’s “shape” to draw out 
important information and has the capacity to be com-
bined with other techniques (i.e., PH) to transform data 
into visually meaningful representations, removing 
the “black-box” nature of conventional deep learning 
algorithms.

The field of TDA has many more algorithms than just 
PH and persistent images, and the ability to integrate 
TDA tools into data pipelines invites many possibili-
ties for future directions. For instance, integrating brain 
imaging data with electronic health record text notes, 
genetic data, treatment history, biometric measurements, 
and sociodemographic factors can create richer models 
of patient outcomes for neurological or mental health 
disorders such that patients can be optimally matched to 
treatments [36]. Through persistent images, imaging data 

Fig. 7 Workflow for echocardiographic features on TDA network. a Normalized bivariate correlation matrix of the different echocardiographic 
parameters of the dataset. b TDA combines the compressed representation with expressive visualization and understanding using a persistence 
diagram and barcode
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collected over the course of a disease (such as cancers) 
can be included within longitudinal models, such as gen-
eralized estimating equations, to understand the evolu-
tion of a disease like glioblastoma.

Many other TDA algorithms exist. Tools like Morse 
functions and the Conley index [37] can be used to clus-
ter data by metrics of interest (part of the Mapper algo-
rithm). Sheaves can be used to understand glucose flow 
on PET scans to better understand behavioral decisions 
related to health behaviors [38]. Tools from Hodge the-
ory, such as the Hodge-Helmholtz decomposition, can 
be used to understand types of flow within biological 
systems, such as brains or tumors (or used to understand 
patient movements through the healthcare system) [39].

Simplicial complexes themselves provide another ave-
nue for further investigation. Many tools from network 
science (applied to graphs) can be extended to higher-
dimensional simplicial complexes [40, 41]. Geometric 
tools such as graph Laplacians and Forman–Ricci curva-
ture already exist for simplicial complexes [42], but many 
tools have not been extended yet. Extension of network 
science tools allow for the extraction and summary of 
other features across filtrations besides homological 
features [43], and this avenue may be fruitful for image 
analytics, where features like degree or betweenness cen-
trality might be relevant to underlying disease processes 
(such as the analysis of neural pathways or tumor angio-
genesis). As these tools develop, they will provide a richer 
set of features to integrate with other healthcare data to 
understand disease etiologies and personalize treatment 
plans to optimize patient care.
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