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Abstract 

Background To investigate the potential of synthetic MRI (SyMRI) in the prognostic assessment of patients with 
nonmetastatic nasopharyngeal carcinoma (NPC), and the predictive value when combined with diffusion-weighted 
imaging (DWI) as well as clinical factors.

Methods Fifty-three NPC patients who underwent SyMRI were prospectively included. 10th Percentile, Mean, 
Kurtosis, and Skewness of T1, T2, and PD maps and ADC value were obtained from the primary tumor. Cox regression 
analysis was used for analyzing the association between SyMRI and DWI parameters and progression-free survival 
(PFS), and then age, sex, staging, and treatment as confounding factors were also included. C-index was obtained by 
bootstrap. Moreover, significant parameters were used to construct models in predicting 3-year disease progression. 
ROC curves and leave-one-out cross-validation were used to evaluate the performance and stability.

Results Disease progression occurred in 16 (30.2%) patients at a follow-up of 39.6 (3.5, 48.2) months. T1_Kurtosis, 
T1_Skewness, T2_10th, PD_Mean, and ADC were correlated with PFS, and T1_Kurtosis (HR: 1.093) and ADC (HR: 
1.009) were independent predictors of PFS. The C-index of SyMRI and SyMRI + DWI + Clinic models was 0.687 and 
0.779. Moreover, the SyMRI + DWI + Clinic model predicted 3-year disease progression better than DWI or Clinic 
model (p ≤ 0.008). Interestingly, there was no significant difference between the SyMRI model (AUC: 0.748) and 
SyMRI + DWI + Clinic model (AUC: 0.846, p = 0.092).

Conclusion SyMRI combined with histogram analysis could predict disease progression in NPC patients, and 
SyMRI + DWI + Clinic model further improved the predictive performance.

Key points 

1. SyMRI showed excellent performance in predicting disease progression in NPC.
2. T1_Kurtosis and ADC were independent predictors of progression-free survival.
3. T1_Kurtosis was lower in the non-disease progression group than the disease progression group.
4. Combination of SyMRI, DWI, and clinical factors could improve the predictive performance.
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Introduction
Nasopharyngeal carcinoma (NPC) is an aggressive head 
and neck cancer and more than 70% of new patients were 
diagnosed in East and Southeast Asia [1]. Intensity-mod-
ulated radiation therapy (IMRT) with or without chem-
otherapy is the mainstay of treatment for NPC. Despite 
good overall survival after treatment, approximately 
10–30% of patients would occur locoregional relapse 
or distant metastases [2, 3]. Moreover, retreatment for 
disease progression is challenging due to a lack of effec-
tive means and fatal complications. Thus, it is critical 
to find high-risk patients for disease progression before 
treatment.

Pretreatment TNM stage is most commonly used and 
is the benchmark to establish treatment regimens, while 
large variations are reported in the treatment response 
and clinical outcomes of patients with the same stage 
under similar treatment [4]. Ignored intratumor charac-
teristics and heterogeneity may be its major limitation 
[5]. Nowadays, circulating EBV DNA [6–8], serum lac-
tate dehydrogenase (LDH) [9], C-reactive protein (CRP) 
[10], and systemic immune-inflammation index (SII) [11] 
have been demonstrated to influence recurrence and sur-
vival in NPC patients. Notably, the addition of pretreat-
ment EBV DNA into the 8th Edition TNM stage system 
greatly improved its prognostic performance [6–8]. How-
ever, even using the same assay and identical procedures, 
comparatively large interlaboratory variability was found 
in research works [12]. Therefore, constructing a robust 
prognostic predictor is of vital importance.

Magnetic resonance imaging (MRI) is the commonly 
used imaging modality for NPC diagnosis, clinical stag-
ing, and therapy monitoring. However, conventional MRI 
such as T1-weighted imaging (T1WI) and T2-weighted 
imaging (T2WI) only reflect morphological character-
istics, resulting in insufficient diagnostic performance 
in therapy assessment and survival prediction [13]. 
Recently, advanced MRI techniques including intravoxel 
incoherent motion diffusion-weighted imaging (IVIM-
DWI), dynamic contrast-enhanced, arterial spin labeling, 
as well as amide proton transfer (APT) have been utilized 
to evaluate the early efficacy of chemoradiotherapy and 
higher apparent diffusion coefficient (ADC), pure diffu-
sion coefficient and APT values were correlated with dis-
ease progression in NPC [14–16].

Synthetic MRI (SyMRI), using multi-delay and 
multi-echo (MDME) sequence, could generate quan-
titative T1, T2, and proton density (PD) maps and 

multi-contrast qualitative images (including T1WI, 
T2WI, and PDWI) within the clinically feasible time. 
The research [17] in head and neck region proved the 
clinical feasibility of generating synthetic T1WI and 
T2WI images from quantitative relaxometry mapping. 
Recently, preliminary SyMRI studies have demon-
strated a potential role in evaluating prognostic factors 
in breast [18, 19], prostate [20], bladder [21], and rectal 
cancer [22, 23]. However, only short-term outcome on 
tumor was researched and the value of SyMRI on NPC 
prognostic assessment has not been investigated. 
Therefore, the purpose of our study is to investigate the 
predictive value of SyMRI in the long-term prognostic 
assessment of nonmetastatic NPC patients. In addition, 
the diagnostic performance of SyMRI was also com-
pared with combined SyMRI, DWI, and clinical factors.

Methods
Patients
This prospective study was approved by the Ethics 
Committee of our hospital, and informed consent was 
obtained from all patients before MRI examination. 
In total, 62 consecutive patients with primary NPC 
between August 2018 and May 2019 were evaluated 
for inclusion in this study. The inclusion criteria was as 
follows: (1) Histologically confirmed NPC without dis-
tant metastases. (2) Complete nasopharynx and neck 
MRI including SyMRI before treatment. (3) Underwent 
a standard treatment regimen that consisted of IMRT 
and/or chemotherapy based on TNM classification. (4) 
Surviving patients with a minimum follow-up duration 
of 3 years. The exclusion criteria included (1) A history 
of other head and neck malignancies; (2) Severe motion 
artifacts on MRI. Ultimately, 53 patients were recruited 
and the workflow diagram of the study cohort is shown 
in Fig. 1.

Patients underwent conventional imaging for stag-
ing workup including nasopharynx–neck MRI, neck–
chest–abdomen–pelvis CT, neck ultrasonography, 
and/or fluorodeoxyglucose positron emission tomog-
raphy-computed tomography (FDG-PET/CT). Two 
senior radiologists (M.L. and X.Y. with 21 and 18 years 
of diagnostic radiology experience, respectively) per-
formed TNM staging based on medical records and 
images according to the American Joint Committee on 
Cancer (AJCC) Cancer staging Manual Eighth Edition, 
with any disagreement resolved through discussion.
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Imaging acquisition
All MRI examinations were performed on a 3 T scanner 
(Pioneer, GE Healthcare, USA), with an 8-channel head 
and neck phased array coil. Conventional MRI sequences 
including axial T1WI, T2WI with fat suppress, DWI, and 
enhanced axial T1WI with fat suppress were acquired 
according to the following parameters: repetition time, 
482, 6100, 2930, 250; echo time,13.6, 85, 80, 13.6; the field 
of vision, 26; acquisition matrix, 256 × 320, 256 × 288, 
128 × 96, 256 × 320; slice thickness/gap, 4.0/0.4; number 
of excitations, 2, 2, 4, 2; acquisition time (min), 4.02, 4.41, 
1.22, 3.47. For SyMRI, the parameters were as follows: 
repetition time, 6200; echo time, 18.9/94.7; the field of 
vision, 26; acquisition matrix, 256 × 320; slice thickness/
gap, 4.0/0.4; number of excitations, 1; acquisition time, 
7.02.

Data processing
The acquired raw images were processed using SyMRI 
software (version 8.0, Synthetic MR, Linkoping, Sweden) 
to generate three quantitative maps (T1 map, T2 map, 
and PD map) and multiple contrast-weighted images 
(T1WI, T2WI, T1WI FLAIR, T2WI FLAIR, PDWI and 
so on). Then, two radiologists (X.Y., F.Y., 18 and 3 years 
of tumor-imaging experience) manually delineated vol-
umes of interest (VOIs) of the primary tumor on SyT2WI 
images using ITK-SNAP software (version 2.2.0, www. 
itksn ap. org), with reference to conventional images and 
excluding any visible necrosis and hemorrhage. The VOIs 
were automatically copied to the T1 map, T2 map, and 
PD map to extract histogram features, including Mean, 

10th Percentile, Skewness, and Kurtosis using open-
source PyRadiomics (http:// www. radio mics. io/ pyrad 
iomics. html). Additionally, referring to conventional 
images, the VOIs were delineated on the ADC maps, 
and mean ADC values were then obtained. Additionally, 
ten clinical factors, including patient age, sex, T stage, N 
stage, clinical stage, treatment, EBV DNA, LDH, CPR, 
and SII, were also analyzed.

Treatment regimen
All included patients underwent the standard treatment 
regimen. Stage I was treated with IMRT alone, while 
stage II was treated with IMRT with or without chemo-
therapy. Stage III or IV was treated with IMRT and con-
current or adjuvant chemotherapy. The radiation doses 
of the primary tumor and enlarged lymph nodes are 
66–74  Gy. The regions at risk of metastasis and bilat-
eral cervical lymphatics were selectively irradiated to 
50–60 Gy.

Follow‑up and outcome endpoints
After treatment completion, regular clinical and endo-
scopic examinations were performed every 3–4  months 
for the first 3  years, every 6  months during 4–5  years, 
then yearly. Patients with suspected disease relapse 
underwent imaging examination (including CT, MRI, 
ultrasonography, bone scan, and PET/CT) and/or biopsy 
through histopathological examination. The clinical out-
come of this study was progression-free survival (PFS), 
which was defined as the time from the start of treat-
ment to the date of disease progression (local–regional 

Fig. 1 Workflow diagram of patient selection

http://www.itksnap.org
http://www.itksnap.org
http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
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recurrences or distant metastases), death, or last follow-
up, whichever occurred first.

Statistical analysis
All statistical analyses were performed using SPSS soft-
ware (version 26.0, Chicago, IL), R (version 1.3.1073, R 
Foundation, Vienna, Austria), and X-tile (version 3.6.1, 
http:// tissu earray. org). Interobserver consistency was 
analyzed using a two-way random interclass correla-
tion (ICC), and histogram features with an ICC < 0.8 
were excluded. A two-tailed p < 0.05 indicated statisti-
cal significance. Continuous data were expressed as 
mean and standard deviation and categorical variables 
were expressed as percentage. SyMRI parameters were 
compared between patients with and without disease 
progression using the independent sample-t test or 
Mann–Whitney U test, as appropriate. In consideration 
of the sample size of staging classification subgroups, the 
best groupings of staging classification based on the log-
rank test (lowest p value) were used [24]. Univariate Cox 
proportional hazards regression analysis was performed 
to assess the correlation of SyMRI and DWI parameters 
with survival endpoints. Significant parameters were 
entered in a multivariable Cox proportional hazards 
regression analysis using the forward selection approach 
to construct models, and the relevant parameters were 
then reevaluated using confounding factors (age, sex, T 
stage, N stage, clinical stage, and treatment) [14, 16]. The 
optimal threshold values of significant parameters were 
obtained using X-tile software. The survival rate was cal-
culated by using Kaplan–Meier analysis and differences 
were compared using log-rank test. The C-index and 95% 
confidence interval (95% CI) were obtained by bootstrap 
(n = 1000).

In addition, SyMRI and DWI parameters and clinical 
features that were associated with PFS were selected for 
classification models to identify whether disease progres-
sion has occurred at 3 years. The ROC curve was used to 
evaluate the predictive performance, and the area under 
the curve (AUC) comparisons were performed to deter-
mine the best predictive model by using the Delong test. 
The bootstrap test was applied. Moreover, leave-one-out 
cross-validation (LOOCV) was used to avoid over-fitting 
according to previous studies [25, 26]. In each round of 
the LOOCV, all study subjects except for one (testing set) 
were used as the training set, and the prediction error 
was assessed for the excluded test set. This procedure 
was repeated until each participant was tested once.

Results
Patient characteristics and study endpoints
The characteristics of the 53 NPC patients are given 
in Table  1. Ten of 53 (18.9%) patients were diagnostic 

with locoregional relapse, including primary tumor site 
in 7/53 (13.2%) patients and regional lymph nodes in 
3/53 (5.7%) patients. Distant metastases (such as liver, 
bone, lung, and brain metastasis) were diagnosed in 
8/53 (15.1%) patients; among them, 2/53 (3.8%) patients 
simultaneously occurred locoregional recurrence and 
distant metastases. The median follow-up duration for 
all patients was 39.6 (3.5, 48.2) months; for NPC patients 
with disease progression (n = 16) of 17.8 (3.5, 34.1) 
months; and for NPC patients without disease progres-
sion (n = 37) of 41.5 (38.6, 48.2) months. The 3-year PFS 
was 69.8%.

All parameters showed excellent inter-rater consistency 
(all ICC > 0.891, Additional file 1: Table S1). The details of 
16 patients are attached in Additional file 1: Table S2.

Correlation of imaging and clinical parameters with PFS
For staging classification, the best groupings were as 
follows: T1 and T2 + T3 + T4 (p = 0.032, Fig.  2), N0 
and N1 + N2 + N3 (p = 0.425), and I + II and III + IV 
(p = 0.678). Among all clinical factors, only T stage was 
selected for the subsequent Clinic model. After uni-
variate Cox regression analysis, high T1_Kurtosis and 
T1_Skewness, and low T2_10th and PD_Mean were cor-
related with poor PFS (p = 0.003, 0.024, 0.047, and 0.022, 
respectively) in NPC (Fig.  2, Table  2). In multivariate 
analysis, T1_Kurtosis remained a significant predictor of 
PFS, with HR of 1.083 (95% CI 1.007–1.165), whereas the 
associations with T1_Skewness, T2_10th, and PD_Mean 
were no longer significant (p > 0.05). After adjusting for 
confounding factors, results showed that T1_Kurtosis 
was an independent predictor of PFS (p = 0.043, Table 3). 
Additionally, multivariate Cox analysis also showed that 
ADC was an independent predictor of PFS (p = 0.002, 
Table 3). The Kaplan–Meier plot of the SyMRI model and 
SyMRI + DWI + Clinic model is shown in Fig. 3, and the 
C-index was 0.687 (95% CI 0.612, 0.762) and 0.779 (95% 
CI 0.716, 0.842), respectively. The bootstrap curves are 
presented in Additional file 1: Fig. S1.

Classification model and performance
The disease progression group showed higher T1_
Kurtosis and T1_Skewness, lower T2_10th, PD_10th, 
and PD_Mean than non-disease progression group 
(all p ≤ 0.041, Additional file  1: Table  S1). T1_Kurto-
sis showed the best diagnostic performance among all 
SyMRI-derived parameters for distinguishing those 
two groups, with an AUC of 0.748 (Table 4). The com-
bination of SyMRI, DWI, and Clinic can significantly 
improve the AUC when compared with DWI and Clinic 
(AUC: 0.635) alone with all p < 0.008 (Fig.  3). Inter-
estingly, there was no significant difference between 
the SyMRI model and SyMRI + DWI + Clinic model 

http://tissuearray.org
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(p = 0.092, Fig.  3). The nomogram and calibration 
curve are shown in Fig.  4. LOOCV analysis revealed 
that the bias-corrected AUC of SyMRI + DWI + Clinic 
model was 0.863 (95% CI 0.757, 0.969), as shown in 
Fig. 4.

Representative pretreatment axial SyMRI images, 
T1, T2, PD, and ADC maps, and T1 histogram of NPC 
patients with and without disease progression are 
shown in Fig. 5.

Discussion
In this study, we evaluated the prognostic value of his-
togram parameters extracted from pretreatment SyMRI 
in the assessment of patients at risk for 3-year disease 
progression. After adjusting for conventional clini-
cal factors as confounding variables, the T1_Kurtosis 
and ADC remained significant predictors of PFS. The 
SyMRI + DWI + Clinic model significantly increased the 
diagnostic performance compared with DWI or Clinic 

Table 1 Characteristics of NPC patients

IMRT Intensity-modulated radiation therapy; EBV Epstein–Barr virus; LDH Lactate dehydrogenase; SII Systemic immune-inflammation index; CRP C-reactive protein

Clinical characteristics Disease progression group (n = 16) Non‑disease progression group (n = 37) p value

Age 54.13 ± 8.45 48.08 ± 12.62 0.086

Gender 1.000

 Male 13 29

 Female 3 8

Histology 0.310

 WHO II 8 13

 WHO III 8 24

T stage 0.035

 T1 0 10

 T2 6 5

 T3 5 14

 T4 5 8

N stage 0.758

 N0 1 6

 N1 6 11

 N2 4 9

 N3 5 11

Clinical stage 0.847

 I 0 1

 II 3 8

 III 5 11

 IV 8 17

Treatment 1.000

 IMRT 2 4

 IMRT + chemotherapy 14 33

EBV DNA 0.311

 < 4000 13 35

 ≥ 4000 3 2

LDH 0.686

 < 182 9 23

 ≥ 182 7 14

SII 0.422

 < 402.10 2 10

 ≥ 402.10 14 27

CRP 0.599

 < 2.46 16 34

 ≥ 2.46 0 3
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Fig. 2 Kaplan–Meier plots of features that are associated with PFS and every plot has a log-rank p value and risk table. a T stage; b Kurtosis of T1 
map; c Skewness of T1 map; d 10th Percentile of T2 map; e Mean of PD map; f Mean of ADC map. PFS Progression-free survival; PD Proton density; 
ADC Apparent diffusion coefficient
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single model. Particularly, there was no significant differ-
ence between SyMRI model and SyMRI + DWI + Clinic 
model, suggesting good prospects for SyMRI in the 
prognostic evaluation of tumors. As far as we know, this 
is the first study based on SyMRI to focus on long-term 
prognosis. Quantitative T1, T2, and PD values of SyMRI, 

which were not affected by different scanners and scan 
parameters, supply clinicians with an objective and reli-
able assessment method.

The benefit of SyMRI is twofold, providing relaxometry 
maps in a clinically feasible time and the ability to gener-
ate different contrast images in a single acquisition [17]. 
Quantitative T1, T2, and PD Mean values were reported 
to be lower in malignant tumors vs. benign tumors [20, 
27, 28], and in poor prognostic relevant factors tumors 
vs. good prognostic relevant factors [20–23, 29]. Moreo-
ver, several histogram parameters, such as 10th Percen-
tile, Kurtosis, Energy, Standard Deviation, and so on, 
were reported to predict tumor molecular subtypes [30] 
and lymph node metastasis (LNM) [31]. The research 
works [18, 19] in breast cancer found changes in T1 dur-
ing treatment and T2_Standard Deviation were useful to 
predict pathological response after neoadjuvant therapy. 
However, treatment response in NPC is difficult to assess 
accurately due to inaccessibility to biopsy and minor 
residual and deeply seated abnormalities may be ignored 
[14]. Over 90% metastasis of NPC occurred in the first 3 
years after treatment [32]. Therefore, our study set 3 years 
as a minimum follow-up time for surviving patients.

Currently, the intratumor heterogeneity has been 
reported to be associated with prognosis [33]. Histogram 
and texture analysis, as well as radiomics, were intro-
duced for a comprehensive assessment of tumor charac-
teristics. Previous studies found radiomics features based 
on conventional MRI could help predict disease progres-
sion in NPC [24, 32]. However, a recent study showed 
that among 177 radiomics features including shape, first-
order and texture features, many radiomics features were 
redundant [34]. Besides, variations in acquisition and 
image reconstruction parameters can obscure underlying 
biological effects [35], and the radiomics feature selection 
is relatively instability [36]. Therefore, we investigated the 
value of SyMRI combined histogram analysis in the prog-
nosis assessment of NPC. The percentile parameter is 
less influenced by random fluctuations than Mean value 
statistically [37], and Skewness of APT helps in discrimi-
nating 2-year disease-free survival in NPC [16], so four 
histogram parameters, including 10th Percentile, Mean, 
Kurtosis, and Skewness, were included in our study. 10th 
Percentile and Mean reflect signal intensity within the 
VOIs. Kurtosis and Skewness reflect histogram peaked-
ness and asymmetry, which could indirectly describe the 
image gray-level heterogeneity [38]. The Kurtosis and 
Skewness are 3 and 0 when the data is Gaussian distri-
bution. Higher Kurtosis indicates that the mass of the 
distribution is concentrated toward the tails rather than 
toward the mean, and positive Skewness indicates that 
there is a greater frequency of low quantitative values 
(the curve is skewed right).

Table 2 Cox analysis of SyMRI and DWI parameters for the 
prediction of disease progression in NPC patients

Parameters in bold mean p < 0.05; *Only T1_Kurtosis was selected to construct 
SyMRI model after multivariate Cox proportional hazards regression analysis

Parameters HR (95% CI) p value

SyMRI

T1_10th 1.001 (0.996, 1.005) 0.825

T1_Mean 0.999 (0.996, 1.002) 0.571

T1_Kurtosis* 1.083 (1.007, 1.165) 0.003
T1_Skewness 1.943 (1.090, 3.465) 0.024
T2_10th 0.929 (0.865, 0.999) 0.047
T2_Mean 0.949 (0.883, 1.019) 0.146

T2_Kurtosis 1.000 (1.000, 1.001) 0.294

T2_Skewness 1.023 (0.978, 1.070) 0.326

PD_10th 0.889 (0.782, 1.011) 0.073

PD_Mean 0.836 (0.717, 0.975) 0.022
PD_Kurtosis 1.127 (0.821, 1.547) 0.460

PD_Skewness 1.111 (0.367, 3.367) 0.852

DWI

ADC 1.006 (1.001, 1.010) 0.002

Table 3 Multivariable analysis for the prediction of PFS in NPC

Parameters in bold mean p < 0.05; * indicates the HR and 95% CI were not 
obtained because there was no disease progression in patients with T1 stage

PFS Progression-free survival; NPC Nasopharyngeal carcinoma; CI Confidence 
interval; ADC Apparent diffusion coefficient

Parameters PFS (T1_Kurtosis and 
clinical factors)

PFS (ADC and clinical 
factors)

HR (95% CI) p value HR (95% CI) p value

T1_Kurtosis 1.093 (1.003, 
1.192)

0.043 – –

ADC – – 1.008 (1.002, 
1.014)

0.007

Age 1.040 (0.979, 
1.192)

0.205 1.053 (0.994, 
1.116)

0.078

Sex 1.446 (0.352, 
5.937)

0.609 0.905 (0.238, 
3.432)

0.883

Treatment 1.021 (0.085, 
12.204)

0.987 0.429 (0.031, 
5.984)

0.529

T stage * 0.987 * 0.960

N stage 4.791 (0.484, 
47.431)

0.180 1.963 (0.177, 
21.820)

0.583

Clinical stage 0.262 (0.032, 
2.123)

0.210 1.767 (0.203, 
15.349)

0.606
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Quantitative T1 value depends on the composition 
of tissue, such as macromolecule concentration, tissue 
water content, and proliferation level [21]. High levels 
of extracellular macromolecules and tissue water con-
tent result in higher T1 value. Besides, high T2 and PD 
values are reported in correlation with high extracellular 
water content [30, 39]. Our research demonstrated that 
T1_Kurtosis, T1_Skewness, T2_10th, and PD_Mean 
were correlated with PFS in NPC, and T1_Kurtosis was 
an independent prognostic factor after adjusting for con-
founding factors. Patients with high Kurtosis, which sug-
gests the tumor is heterogeneous [40], exhibited worse 
PFS than those with low Kurtosis in our study. This 

finding supports the view that high tumor heterogene-
ity is usually associated with poor prognosis [41]. Simi-
lar results were found in previous studies [24, 38]. Lower 
contrast-enhanced T1WI-based Mean Absolute Devia-
tion [24] and higher contrast-enhanced T1WI-based 
Uniformity [38] were the predictive factors for favorable 
PFS in NPC. The SyMRI studies in breast/rectal cancer 
also found lower Kurtosis of PD and T2 maps was asso-
ciated with good prognostic relevant factors (such as 
low grade and without LNM) [30, 31]. Poor outcome is 
associated with primary tumors that have high stro-
mal content, hypoxia, low proliferation, and decreased 
blood volume/flow [14, 42]. A decrease in tumor blood 

Fig. 3 Performance of models and comparison between models. a Kaplan–Meier plots of the SyMRI model and SyMRI + DWI + Clinic model; b 
ROC curves of models in predicting 3-year disease progression; c The difference between different models using the DeLong test. SyMRI Synthetic 
magnetic resonance imaging; DWI Diffusion-weighted imaging; ROC Receiver operating characteristic

Table 4 Performance of quantitative SyMRI and DWI parameters in the prediction of 3-year disease progression

SyMRI Synthetic magnetic resonance imaging; DWI Diffusion-weighted imaging; PD Proton density; ADC Apparent diffusion coefficient; AUC  Area under the curve; 
95% CI 95% confidence interval

Logit (SyMRI) = 0.18 × T1_Kurtosis − 2.471; Logit (SyMRI + DWI + Clinic) = 0.136 × T1_Kurtosis + 0.008 × ADC + 20.643 × T stage − 29.05

Cutoff value AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) PPV NPV

SyMRI model

T1_Kurtosis 6.98 0.748 (0.590, 0.907) 81.3 64.9 73.6 0.625 0.756

DWI model

ADC 868.00 0.716 (0.564, 0.868) 68.8 73.0 71.7 0.571 0.739

Clinic model T stage T1 stage 0.635 (0.485, 0.785) 100.0 27.0 69.8 0 0.698

SyMRI + DWI + Clinic model 
T1_Kurtosis + ADC + T stage

0.29 0.846 (0.731, 0.961) 81.2 75.7 81.1 0.818 0.833
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volume/flow as well as hypoxia induces more deoxy-
hemoglobin (paramagnetic properties) accumulation, 
and lower proliferation reduce T1 value [43]. A greater 
frequency of low T1 value in the disease progression 
group caused higher T1_Skewness (the histogram curve 
skew right), compared to the non-disease progression 
group. The Skewness parameter could comprehensively 
reflect intratumor features, not only with the change of 
value but also with heterogeneity characteristics. Simi-
lar results were found in previous studies based on DWI 
[44, 45]. Furthermore, the research in NPC [42, 46] found 
the response and good prognostic groups have abundant 
blood supply/volume, high microcirculation perfusion, 

and oxygen content than the non-response and worse 
groups. Increased tumor blood volume/flow and perfu-
sion and low stromal content in the non-disease progres-
sion group increase the extracellular water space and 
thus raise T1, T2, and PD values [43, 47]. This may be the 
major reason for high T2_10th, PD_10th, and PD_Mean 
in the non-disease progression group.

ADC value, which is derived from DWI, noninvasively 
reflects the Brownian motion of water molecules. In our 
study, we found ADC_Mean was an independent prog-
nostic factor in PFS of NPC and low ADC_Mean was 
correlated with non-disease progression survival, which 
was similar to previous studies [48, 49]. Tumor lesions 

Fig. 4 The performance of SyMRI + DWI + Clinic model in predicting 3-year disease progression of NPC. a A nomogram incorporating T1_
Kurtosis, ADC_Mean, and T stage for predicting 3-year disease progression; b Calibration plot shows the relationship between the actual values 
and the predicted probability based on the nomogram; c ROC analysis and LOOCV analysis of SyMRI + DWI + Clinic model. SyMRI Synthetic 
magnetic resonance imaging; DWI Diffusion-weighted imaging; NPC Nasopharyngeal carcinoma; ROC Receiver operating characteristic; LOOCV 
Leave-one-out cross-validation
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with low ADC have lower stromal content and higher cell 
density, suggesting that relatively abundant blood sup-
ply therefore result in higher radiosensitivity [49, 50] and 
favorable survival. Moreover, a high ADC value level also 
indicates invasive biological features of the tumor, lead-
ing to the high possibility of local disease progression 
[48].

One of the advantages of SyMRI is that it can directly 
reflect tissue intrinsic characteristics provided by quan-
titative T1, T2, and PD maps without contrast agents. 
Freed from different scan parameters and machines, 
SyMRI provides a robust, objective, and reliable 
method in the clinic. There are some limitations in 
this study. First, the sample is relatively small, but all 
patients in this study were included consecutively and 
stable results were confirmed by two statistical meth-
ods. Multiple centers with large samples are needed in 
the future. Second, pretreatment EBV DNA level was a 

useful predictor of disease progression [49]. But EBV 
level was not significant in our study partly because of 
the EBV cutoff value we chose and large interlabora-
tory variability existed in EBV analysis. New techniques 
such as digital PCR or next-generation sequencing and 
the simultaneous analysis of two EBV sequences can be 
of great benefit for assay harmonization [1]. Third, no 
patient in T1 stage occurred with disease progression 
and the follow-up time was relatively short in PFS pre-
diction. However, T1-stage patients with NPC do have 
good PFS and survival quality. And our study focused 
on whether SyMRI could predict 3-year disease pro-
gression. A clear endpoint for the development of dis-
ease progression (with or without) has advantages over 
an unclear endpoint such as survival [45]. Ai et al. [45] 
found seven NPC patients in stage T1-2 were diagnosed 
with distant metastasis during 5-year follow-up. There-
fore, longer follow-up is needed in further research.

Fig. 5 Representative pretreatment images of NPC patients without disease progression (a–e, k) and with disease progression (f–j, i). SyT2WI (a, f), 
T1 map (b, g), T2 map (c, h), PD map (d, i), ADC map (e, j), and histogram of T1 map (k, l) of NPC patients are shown. A 48-year-old woman with NPC 
(T1_Kurtosis: 4.34) showed no disease progression at 39.6 months after treatment initiation (a–e, k). A 56 year-old man with NPC (T1_Kurtosis: 7.03) 
showed disease progression at 25.2 months (f–j, i)
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Conclusion
Several quantitative parameters of SyMRI (T1_Kur-
tosis, T1_Skewness, T2_10th, and PD_Mean) were 
demonstrated efficient in predicting PFS in NPC, and 
T1_Kurtosis showed high diagnostic efficiency in pre-
dicting 3-year disease progression. Furthermore, the 
SyMRI + DWI + Clinic model showed outstanding pre-
diction efficiency in disease progression before initial 
treatment. These findings demonstrated the feasibility 
of SyMRI in prognostic assessment and required further 
research before it can be translated into clinical practice.
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